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Preface

This document reports on a part of the activities that have been performed during the first half
of the study activities. In its present form it is a “living document” which presents the status
of October 31, 2006.

Work presented here has been conducted by Nils Olsen, Terence J. Sabaka and Luis R.
Gaya-Pique, with strong support from Alexei Kuvshinov and Lars Tøffner-Clausen.
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This report describes the results of activities performed during the Science Study Study
“Study of an Improved Comprehensive Magnetic Field Inversion Analysis for Swarm” (ESTEC
Contract No. 11570/05/NL/AR).

The goal of this activity is to investigate the improvement in modeling Earth’s magnetic
field that can be obtained using advanced algorithms for analyzing Swarm magnetic field ob-
servations, including the differences of the magnetic field measured by the two lower satellites.

The proposed activity is a natural extension of the Swarm End-to-End Mission Performance
Analysis [Olsen et al., 2004] performed by our team during Phase A of the mission, and the
outcome of that activity will be used as a starting point for the current study.

The objectives of this study are:

• An adaptation of the Comprehensive Inversion (CI) approach to account for magnetic
vector differences, and to treat the magnetic data in the measurement frame.

• An optimization of the analysis chain to be able to “quickly” respond to questions related
to magnetic field mission performance.

• An analysis of the impact of product quality degradation on the mission performance
related to geomagnetic field models.

Regarding the first objective, improvement is expected by taking advantage of the constellation
aspect through treatment of the lower satellite pair vector data as magnetic field differences,
together with an optimal combination with data from the high satellite. This requires a design
and implementation of procedures for handling the differences of the vector magnetic data and
tuning the comprehensive inversion approach to include differences in an optimal sense. It also
includes an in-flight co-estimation of the alignment parameters defining the rotation between
the vector magnetometer and the star imager. A mission performance analysis with the most
recent choices of orbits and launch dates will be performed including specific “failure” cases.
During the development process of improving the End-to-End mission performance simulator,
special emphasis will be put on optimizing procedures to arrive at “quick” response tools for
assessment of mission performance relevant to models of the internal magnetic field. This will
be used during the development and first operational phase of the mission.

1.2 Study Logic

The study has been organized in three main tasks and structured as indicated in Figure 1.1.
The forward scheme for the production of the synthetic data is described in chapter 2.
Impact of the data sampling rate on the recovery of the lithospheric field is discussed in

chapter 3.
Lithospheric field recovery using magnetic field differences measured by the lower satellite

pair (Swarm A and B) is the topic of chapter 4.
While all the results obtained in chapters 3 and 4 are obtained using perfectly aligned

data (i.e. vector data in the NEC system), a mult-satellite in-flight alignment is discussed in
chapter 5.

1.3 Test quantities and criteria

For the present study we used similar assesment criteria as for the Phase A E2E activities. In
particular:
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Figure 1.1: Study Logic

• Difference in spectra, degree error, and accumulated error. The Mauersberger-
Lowes spectrum (degree variance), Rn, of the differences between the original and the
recovered model coefficients, ∆gm

n ,∆hm
n , in combination with the spectrum of the original

model, has been used to evaluate a recovered model. Degree error is defined as
√

Rn, and
accumulated error at degree n is defined as

√∑n
l=lmin

Rl.

• Difference in spectra, azimuthal error. Although the Rn spectrum provides the
mean-squared field magnitude at Earth’s surface for degree n, it is rotationally invariant
and provides no phase information. Alternatively, one may look at the power spectrum as
a function of the ratio a = m/n, remenicient of an azimuthal number, which varies from 0
for zonal terms to 1 for gn

n and −1 for hn
n sectorial terms. This spectrum, denoted as Ra,

provides the mean-squared field magnitude at Earth’s surface for azimuth a. Because the
cardinality of the set of a values is usually large, Ra is often smoothed in order to reveal
general trends.

• Degree correlation, ρn, [Langel and Hinze, 1998, eq. 4.23] between the original and the
recovered model has also been used to evaluate a recovered model. Models are considered
compatible up to that degree n where ρn drops below 0.7.

• Sensitivity matrix is the relative error of each coefficient in a degree versus order matrix
and was used to investigate systematic errors. The difference (recovered minus original
model) of all the coefficients is determined and subsequently normalized by the mean
spectral amplitude of the associated degree n.
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• Finally, global maps of field differences (for instance of Br) between the original and
the recovered model are used to find geographically confined deficiencies in the recovered
models, for instance in connection with the size of the polar gaps.

1.4 Meetings and Workshops

The following meetings and workshops have been held in connection with the activities described
in this report:

• Kick-off meeting (KO) at DNSC Copenhagen/Denmark, January 27, 2006

• Progres meeting 1 (PM1) at DNSC Copenhagen/Denmark, March 29, 2006

• Mid Term Review (MTR) at ESTEC Noordwijk/Netherlands, June 26, 2006

• Progres meeting 2 (PM2) at DNSC Copenhagen/Denmark, November 3, 2006
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This chapter describes the production of synthetic data for the simulated Swarm mission.
Involved in this task are the working packages WP-1100 ”Orbit Determination”, and WP-1200
”Magnetic Field Generation”.

2.1 Introduction

Figure 2.1 shows a flow chart of the forward scheme.
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Figure 2.1: Flow chart of the forward scheme.
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2.2 A fast approach for generating synthetic orbits

This section describes the approach that we developed for calculating synthetic orbits (posi-
tions). This activity relates to WP 1100 “Orbit Determination”.

In the following we only consider the two effects that have the largest impact on orbit
evolution

• secular variation in the Right Ascension of the Ascending Node, Ω, because of Earth’s
oblateness, and

• decay of the orbit altitude due to air drag.

For a circular orbit with semi-major axis asma and orbit inclination i the nodal drift rate Ω̇
due to Earth’s oblateness (expressed by the dimensionless geopotential coefficient J2 = 1082.63 ·
10−6) in the International Celestial Reference Frame (ICRF) is given by

Ω̇ = −1.5nJ2

(
a

asma

)2

cos(i) (2.1)

= −2.06474 · 1014a−7/2
sma cos(i) (2.2)

[Wertz and Larson, 1999, eq. 6-19], where a is Earth’s (equatorial) radius and n is mean motion.
Orbit period Tp is

Tp = 2π

√
a3

sma

µ
, (2.3)

with µ = 3.986005 · 1014m3s−2 as the geocentric gravitational constant.
In our approach we first calculate the position vector rORF of a circular orbit of radius asma

in a coordinate system that is fixed with the orbit plane (Orbit Reference Frame, ORF). Its
z-axis coincides with the z-axis of the International Celestial Reference Frame ICRF, but the
orbit plane is declined w.r.t. the z axis by the inclination i:

rORF =

 xORF

yORF

zORF

 = asma

 cos(α)
sin(α) cos i
sin(α) sin i

 (2.4)

with
α = 2π

t− t0
Tp

+ ν

where t is time, t0 is epoch, and ν is mean anomaly at epoch t0. We then rotate about the
z-axis by β = (t− t0)Ω̇− Ω to get position in ICRF coordinates: xICRF

yICRF

zICRF

 =

 +cos β − sin β 0
+ sinβ +cos β 0

0 0 1

  xORF

yORF

zORF

 (2.5)

Finally, a rotation about the z-axis by -GAST (where GAST is Greenwich Apparent Sidereal
Time, cf. Seeber [2004]) yields position and velocity in the coordinates of the International
Terrestrial Reference Frame, ITRF: xITRF

yITRF

zITRF

 =

 +cos GAST +sinGAST 0
− sinGAST +cos GAST 0

0 0 1

  xICRF

yICRF

zICRF

 (2.6)
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After the gravity field the second largest force acting on a satellite at this altitude is the
atmospheric drag. The modeling of the atmospheric density is based on the MSIS-86 model
[Hedin, 1987] making use of the 3-hourly geomagnetic indices (Ap), as well as the daily solar
flux (F10.7) and the average solar flux over 3 solar rotations (81 days).

Orbit calculation is done using the following steps:

1. Initial conditions asma, ν, and Ω are obtained for epoch t0

2. positions rITRF are calculated for one day, i.e. for t = t0 – t0+86400 s and 1 min sampling
rate, assuming constant values for asma and Tp.

3. Air-density ρ is calculated for each location from the MSIS model [Hedin, 1987, 1991],
considering the geomagnetic activity Ap and solar radiation F10.7

4. The decrease ∆asma of the semi-major axis asma due to air drag during the day in con-
sideration is calculated in the following way: According to eq. (4.431) of Flury [2000], the
change of the semi-major axis per orbit is

∆asma = −2πρ
a2

sma

B
(2.7)

where ρ = 1
Tp

∫ Tp

0 ρdt is the mean air density, averaged over one orbit,

B =
m

ACD
(2.8)

is the ballistic coefficient, m is satellite mass, A is the satellite cross-section area, and CD

is the drag coefficient. Since the number of orbits per day is 86400 s/Tp, the change of
the semi-major axis per day is

∆asma = −ρ

√
µasma

B
(2.9)

where ρ = 1
1day

∫ 1day
0 ρdt is the mean air density, averaged over one day.

5. The decrease of asma is linearly interpolated (distributed) over the 24 hours in consider-
ation:

rfinal
ICRF =

[
1 + (t− t0)

∆asma

asma

]
rICRF (2.10)

6. New staring values asma, ν, and Ω for the new epoch t0 = t0 + 1 day are calculated and
the above steps 2 to 6 are repeated for the next day, until the end of the mission.

2.2.1 Validation of the method

The method is tested by comparison with the observed orbit decay of the CHAMP satellite.
For this comparison we used the following initial conditions for the CHAMP orbit: inclination
i = 87.255◦, semi-major axis asma = a + 457.1 km, ν = 63.816◦, and Ω = 144.43◦ for epoch
t = 213.0 MD2000 (August 1, 2000, 00:00 UT).

A critical issue is the value of the ballistic coefficient B = m
ACD

. A is the effective satellite
cross section, which depends on the actual flight direction and on the strength and direction of
across-track winds. The cross section area perpendicular to the CHAMP x-axis (which is the
nominal flight direction) is Ax = 0.74 m2; the value for the two other axes are Ay = 3.12 m2 and

11 Draft Report, E2Eplus Science Study, October 31, 2006



Az = 4.2 m2. Initial CHAMP satellite mass was m = 505 kg. Using this mass, Ax as the cross
section area, and a value of CD = 2.2 results in a ballistic coefficient of B = 170 kg/m2. This
value is, however, much lower than those based on observations of the actual CHAMP orbit
decay [Liu and Lühr, 2005]. According to Hermann Lühr (personal communication, 2006),
an effective cross section area of A = 0.9 m2 and a value of CD = 2.3 − 2.4, resulting in
B = 230 kg/m2 is in much better agreement with the observations. For the following comparison
we therefore used B = 230 kg/m2.

Figure 2.2 shows the geomagnetic activity index Ap (left) and solar radio flux F10.7 (right)
for the period in consideration.

Two major orbit maneuvers were performed for CHAMP in 2002, which resulted in an
increase of altitude of several kilometers, cf. the black curve in the top panel of Figure 2.3,
which presents the observed CHAMP altitude. We accounted for these two orbit maneuvers
by increasing the semi-major axis asma of our prediction by 12.5 km on June 11, 2002, and by
14.5 km on December 10, 2002.

Since the exact value of the ballistic parameter B are not known, we performed the calcu-
lations for different values of B. A value of B = 230 kg/m2 (blue line) gave the best agreement
with observations (black line). The difference between observed and simulated altitude for that
values of B is shown in left panel of Figure 2.4; the right panel shows the difference between
simulated and observed Local Time.
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Figure 2.2: Left: Geomagnetic activity index Ap. Right: Solar Radio Flux F10.7.

The difference between daily mean values of the simulated and observed CHAMP altitude
is less then 3 km, and the difference in Local Time is below 3 min. From these numbers we
conclude that our approach is able to predict the main characteristics of a Swarm-like satellite
orbit.
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(for B = 230 kg/m2). Right: Difference between observed and simulated CHAMP Local Time
(for B = 230 kg/m2).
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2.3 Constellation # 3

For test purposes, we have generated synthetic orbits and data for a constellation – denoted as
Constellation #3 (constellation #1 and 2 were the ones analyzed in the E2E mission perfor-
mance simulation, cf. Olsen et al. [2004]) – that has the following characteristics:

Prerequisites

Epoch for simulations 1997.0 (Launch expected in 2008.0)
Reference radius for altitudes a = 6371.2 km
Earth gravitational constant µ = 3.986004418 · 1014 m3s−2 (IERS Conventions 2003)
Drag coefficients CD = 2.2
Cross-section area A = 0.82 m−2 (0.75 m−2 + 10% margin)
Satellite mass m = 400 kg

Low Satellites

Swarm A
Inclination i = 86.8◦

RAAN Ω = 0◦

Eccentricity ε = 0
Argument of Perigee ω = 0◦

Mean Anomaly at Epoch M = 0◦

Mean Altitude h =∼ 450 km
Semi-Major Axis asma = 6821.2 km

Swarm B
Inclination i = 86.8◦

RAAN Ω = 358.5◦(= −1.5◦)
Eccentricity ε = 0
Argument of Perigee ω = 0◦

Mean Anomaly at Epoch M = 0◦

Mean Altitude h =∼ 450 km
Semi-Major Axis asma = 6821.2 km

High Satellite

Swarm C
Inclination i = 87.3◦

RAAN Ω = 0◦

Eccentricity ε = 0
Argument of Perigee ω = 0◦

Mean Anomaly at Epoch M = 90◦

Mean Altitude h =∼ 530 km
Semi-Major Axis asma = 6901.2 km

Table 2.1: Kepler elements used for Constellation #3, for epoch January 1, 1997, 00:00 UT
(launch).

Since this constellation was only used for test purposes, it will not be considered further.
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2.4 Constellation # 4

We have used orbit parameters that covers the following points:

• The orbits of all spacecraft shall be circular and near-polar.

• Two satellites (Swarm A and B) shall fly at 450 km initial altitude, and separated in
longitude by 1.4◦.

• The third satellite (Swarm C) shall fly at 530 km initial altitude.

• The two orbital planes shall have slightly different inclinations giving rise to a difference
in nodal drift by some 90◦ in 3 years.

Based on this criteria we designed Constellation #4, which has the following characteristics:
For our simulation we assumed a launch of the Swarm satellites on July 1, 1998, 00:00 UT,

i.e. approximately one solar cycle (11 years) before the anticipated launch in 2010. Start of
the simulation one solar cycle before the anticipated launch was done in order to have similar
ambient conditions, but have access to actual input values to parameterize e.g. the atmospheric
drag model, the Earth rotation variations, etc. And start in July 1998 (rather than January
1999, which would have been exactly 11 years before the anticipated launch in 2010) was done
since this terminate the simulated mission before January 2003. This is necessary in order to
use the rather sophisticated model of magnetospheric contributions that we developed during
Phase A and which is only valid between 1997.0 and 2003.0

Observed and predicted solar flux and geomagnetic activity for the years 1980 - 2015 are
shown in Figure 2.5. Note that geomagnetic activity lags solar activity, especially concerning
the activity minima.

Due to increasing solar activity, a launch later than July 1998 would require more attitude
maintenance in order to guarantee a 4.5 year mission lifetime (assuming a 6 months commis-
sioning phase followed by 4 years of science phase). This is illustrated in Figure 2.6 which shows
orbit decay as a function of mission lifetime, for several launch dates and orbit maintenance
scenarii.

In order to get a mission of 4.5 years duration in combination with a launch in July 1998,
we included four orbit maneuvers for the lower pair: we increased the altitude of Swarm A and
B by 15 km on April 1, 2001 and September 1, 2001, respectively, and by 12 km on November
15, 2001 and April 1, 2002, respectively. The obtained altitude is shown by the blue curve in
the left panel of Figure 2.6.

Obtained Local Time, Local Time difference between the upper satellite and the lower pair,
and satellite altitude as a function of time is shown in Figure 2.7.

The orbits of Swarm B were calculated from those of Swarm A in the following way:

• Shift of longitude by 1.4◦

• Shift of time stamp by ∆t, where ∆t increases linearly from 2 secs to 10 secs within
60 days, followed by a re-set to the initial value of 2 secs (saw-tooth function). This
simulates the requirement that “The maximum time difference between Swarm A and
Swarm B when crossing the equator shall be 10 seconds”.
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Prerequisites

Epoch for simulations 1998.5 (Launch expected in 2010)
Reference radius for altitudes a = 6371.2 km
Earth gravitational constant µ = 3.986004418 · 1014 m3s−2 (IERS Conventions 2003)
Ballistic coefficients B = 230 kg/m2

Low Satellites

Swarm A
Inclination i = 87.4◦

RAAN Ω = 0◦

Eccentricity ε = 0
Argument of Perigee ω = 0◦

Mean Anomaly at Epoch M = 0◦

Mean Altitude h =∼ 450 km
Semi-Major Axis asma = 6821.2 km

Swarm B
Inclination i = 87.4◦

RAAN Ω = 358.6◦(= −1.4◦)
Eccentricity ε = 0
Argument of Perigee ω = 0◦

Mean Anomaly at Epoch M = 0◦

Mean Altitude h =∼ 450 km
Semi-Major Axis asma = 6821.2 km

High Satellite

Swarm C
Inclination i = 88.0◦

RAAN Ω = 0◦

Eccentricity ε = 0
Argument of Perigee ω = 0◦

Mean Anomaly at Epoch M = 90◦

Mean Altitude h =∼ 530 km
Semi-Major Axis asma = 6901.2 km

Table 2.2: Kepler elements used for Constellation #4, for epoch July 1, 1998, 00:00 UT (launch).
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2.5 Magnetic Field Generation

Magnetic field generation follows mainly the approach used during Phase A of the mission [Olsen
et al., 2004, section 3.5]. However, since the toroidal synthetic data generated in Phase A were
found to be unrealistic (due to the extrapolation from the Ørsted altitude between 650 and
850 km down to Swarm altitudes of 450 km an lower) and thus not included in the Phase A
field recovery, we now generated toroidal magnetic fields assuming a fixed altitude of 750 km
(i.e. the mean Ørsted altitude). This implies that the in-situ ionospheric currents that are
responsible for the toroidal magnetic field do not change with altitude.

Data availability

Data of Constellation #4 are available as daily files with 15 secs sampling rate
at ftp.spacecenter.dk/data/magnetic-satellites/Swarm/E2Eplus/constellation 4/. The data
are provided as text files (gzipped); The filename follows the naming scheme
swarm4 4 991201.txt.gz which means data of satellite swarm4, Constellation #4, and for
December 1, 1999.
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Chapter 3

Impact of the sampling rate: a
re-analysis of Phase A data

20



This section discusses the impact of the sampling rate on the quality of the high-degree
lithospheric field recovery. Involved in this task are the working packages WP-3100 “Mission
Performance Analysis”, and WP-3200 “Mission Performance Analysis, Support”.

Recall from the Phase A Task 2 and 3 crustal field recoveries that CI performed well for
n < 90, but that the results of Maus et al. were superior for n ≥ 90. The high degree recovery
in CI was hampered by a peculiar contamination that was manifested as a “hemispherical”
degradation pattern in the sensitivitly matrix centered on m = 0 with roughly n > 84 shown
in Fig. 3.1 along with that of Maus et al.. It was unclear as to whether the feature was due to

Figure 3.1: Sensitivity matrices for the lithospheric field recovery of two different methods.
Left: Gradient approach by Maus et al., cf. section 6.2.8 of the Final E2E Report. Right:
Three satellite Comprehensive Inversion result by Sabaka et al., cf. section 6.1.7 of the Final
E2E Report.

contamination from a particular magnetic source or perhaps a deficiency in data distribution.
Therefore, a series of three test cases were performed over the last year of the mission: only the
crustal source was included in the data and parameterized in the model; the magnetospheric field
and its parameterization were added; and then finally the field induced by the magnetosphere
and its parameterization were added. The results show near perfect recovery when only crust
is considered, but the same degradation pattern when adding the magnetosphere and then the
induced field. These results indicate that a portion of the time-varying, non-crustal field is
being fit by crustal field parameters corresponding consistently to n > 84.

Consider that the sampling rate of constellation #1 data is once per minute with an angular
speed of the low satellites at approximately 3.84◦−4.03◦/min. This means that Fourier circular
functions having wavenumbers above about k = 88 are free to oscillate about a low satellite
orbit, which overlaps the transition from n = 85 − 90 to the degraded regime. In terms of
surface spherical harmonics, let this orbit plane coincide with the equatorial plane of a spherical
coordinate system, i.e., the plane θ = π/2. In this system the harmonics of order m > 88
would be free to oscillate between the sampling nodes. If the orbit plane is now rotated by
its inclination angle into the usual geographic system, then the pattern of freely oscillating
coefficients would change, but the degree bounds of affected coefficients would remain n > 88
since surface spherical harmonics of degree n are an irreducible representation of the rotation
group. To illustrate this, spherical harmonic coefficients of m > 88 were set to unity, otherwise
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zero. The coefficient table is shown in the left panel of Fig. 3.2. These coefficients were then
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Figure 3.2: Coefficient tables with respect to two different coordinate systems. Left: Coefficients
of unity for m > 88, otherwise zero, in a reference coordinate system. Right: Same coefficients,
but in a system which has been rotated by 86.8◦ about the cartesian Y axis.

rotated by the low satellite inclination angle of 86.8◦ about the geographic cartesian Y axis,
and the resulting pattern is shown in the right panel of the same figure. This rotation has
dramatically changed the pattern such that it looks very similar to the degradation pattern
seen in the sensitivity matrix for CI in Fig. 3.1. Although the minimum n of the CI crustal
sensitivity matrix is a bit lower (n = 86), this strongly suggests that the degradation patterns
seen in Phase A Task 2 and 3 may be related to some type of along-track undersampling due
to the one minute sampling rate.

The previous discussion is based upon the sampling along a single orbit, but the task results
are a function of the total orbit coverage from all satellites over the mission. Previous “crustal
only” results clearly show that over time there is sufficient densification of sampling points
such that the crustal harmonics are very well determined. Experiments by Sabaka and Olsen
[2006] show that the same degradation pattern emerges when dealing with synthetic crustal
and magnetospheric signals through either co-estimation or serial estimation. This means that
non-crustal signal not fit by non-crustal parameters, on average over the sphere, must alias into
the static crustal parameters, if the hypothesis is true. To this end, Task 3 was redone using
a 30 sec sampling period so that the corresponding Nyquist wavenumber is about n = 170.
The results show a dramatic improvement in crustal field recovery, which was synthesized and
modelled to n = 120, well below the Nyquist wavenumber. The task was further redone using
the n = 150 crustal model described in the Final E2E Report using both 30 sec and 15 sec
sampling periods. The deviation Rn, coefficient difference, and degree correlation plots are
shown in Fig. 3.3 for these two cases and the Maus et al. case, the best to date. Clearly the
increased along-track sampling rate has made an enormous improvement, even from a 30 to
15 sec period, and has allowed for a satisfactory recovery of crustal field coefficients through
the entire n = 150 spectrum and not just to n = 140 as in Maus et al.. Further information is
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provided by sensitivity matrices in Fig. 3.4 where faint spikes are seen near m = 0 and m = ±32
above about n = 65 for the CI recoveries, but whose elements are generally much nearer zero
than in the Maus et al. case.

To understand such a marked improvement, consider that both the induced and magneto-
spheric fields are linearly interpolated in time between static expansions centered on the hour.
This means that it is highly likely that any two consecutive samples at one minute or shorter
periods will be highly positively correlated, and so also the portions of their signal not described
by the non-crustal model, which could easily be as significant as the true crustal signal above the
Nyquist wavenumber. However, samples taken over the same geographical position but at much

Figure 3.3: Left: Rn spectra of the true (black) crustal field for n > 13 and those of its difference
with the Maus et al. (red), CI 30 sec (blue), and 15 sec (green) sampling period models. Middle:
Coefficient differences of the various models (same color scheme) with respect to the true model.
Right: Degree correlation of the various models (same color scheme) with respect to the true
model.
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Figure 3.4: Sensitivity matrices for the lithospheric field recovery of two different methods.
Left: Gradient approach by Maus et al., cf. section 6.2.8 of the Final E2E Report. Middle:
Three satellite Comprehensive Inversion result using a 30 sec sampling period. Right: Same as
middle, but with a 15 sec sampling period.
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different times will likely not be highly correlated in these remaining signals. Therefore, the
leakage of non-crustal signal into crustal parameters is likely driven by consecutive, temporally
correlated samples. If these signals are large enough, then the reduction of the least-squares cost
function will be worth the crustal field fitting these signals with coefficients above the Nyquist
wavenumber. Now if samples are taken every 30 seconds, then there will be a point midway
between the original one minute samples. If this point has remaining non-crustal signal which
is not positively correlated with that of the two adjacent samples, e.g., it is strongly negative
while the adjacent signals are strongly positive, then there is a chance that these three signals
can be fit by crustal parameters above the original Nyquist wavenumber. However, if the signal
is positively correlated, e.g., all signals are strongly positive or negative, then their fitting will
be prohibited since the crustal harmonics above the Nyquist wavenumber must oscillate about
the zero level between the one minute samples. That is, a good fit to the one minute samples
will result in a large misfit to the 30 sec sample midway between and perhaps an increase in the
cost function. It is expected that 30 sec samples will indeed be strongly positively correlated,
and so this is thought to be the reason for the large reduction in non-crustal leakage into the
crustal spectrum above the Nyquist wavenumber. Note that by this argument the 15 sec period
would not be expected to have much advantage over the 30 sec case, and this is corroborated
in Figs. 3.3 and 3.4.

In summary, undersampling of the time varying non-crustal field along track, with respect to
the crustal field harmonics, can result in aliasing of prominent portions of this field into crustal
field parameters. A higher sampling rate can reduce this aliasing, but this probably depends
upon the nature of the remaining non-crustal field; if it is not strongly positively correlated
from point to point, then this problem may remain. In general, non-crustal models of higher
resolution, when supported by adequate data coverage, are the key to mitigating this problem.
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Chapter 4

Improved Lithospheric Field
Recovery Using Magnetic Field
Differences

25



This chapter describes the development, test and implementation of an approach to utilize
the magnetic field difference (“gradient”) of the lower Swarm satellite pair. Involved in this
task are the working packages WP-2110 “Difference Approach: Algorithm Development”, and
WP-2120 “Difference Approach: CI Implementation”.

Perhaps one of the most innovative features of the Swarm mission is the east-west pairing of
the lower satellites whose near-polar orbit planes are separated by 1.5◦. A simple differencing
of the data will result in an enhancement of their potential field signal as a function of spherical
harmonic order m. Advantage may be taken of this enhancement to resolve crustal structure
much smaller than possible by an analysis of the usual field components at the same altitude.
These ideal gain factors are shown in Fig. 4.1 for longitudinal separations of ∆φ = 1◦, 1.5◦, and
2◦.
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Figure 4.1: Gain factor for order m from data differences at longitude differences of ∆φ = 1◦,
1.5◦, and 2◦.

A sequential analysis may be undertaken in which non-crustal fields are first removed from
either the field components or directly from the difference or gradient data. These data are
then fit with a crustal field. However, these types of sequential estimations have been shown to
be sub-optimal in their separation of signals from the various sources [Sabaka and Olsen, 2006].
The CI approach attempts to parameterize and estimate all major sources simultaneously to
avoid these separation problems. The following section will introduce a methodology in which
the sensitivity of the gradient data to small-scale crustal structure is exploited while non-crustal
parameters are determined by the whole data set all within the CI framework.

4.1 Selective Infinite-Variance Weighting

The key to this approach is producing and/or identifying data subsets that are particularly
sensitive to certain parameter subsets and applying appropriate weighting such that these data
strongly influence the determination of such parameters. The weighting employed here will be
termed “selective infinite-variance weighting” (SIVW) for reasons now to be discussed. Consider
the following simple linear model where the data vector d is related to the model parameter
vector x through a linear operator A

d = Ax + ν, (4.1)
= Ax + By + e, (4.2)
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where ν is the noise vector having both a random part, e and a systematic part By. Here B
is a linear operator and y is the underlying state. Let e and y be uncorrelated and normally
distributed such that e = N(0, C) and y = N(µ,Q). Therefore, ν is normally distributed
such that ν = N(Bµ, C +BQBT ). Given that least-squares is the estimator of choice, a critical
restriction is then imposed on the treatment of the noise vector, i.e., that which is accounted for
in the data covariance matrix W−1, which is its expected value is to be zero. This is equivalent
to choosing finite C and Q covariance matrices such that

W = (C + BQBT )−1, (4.3)
= C−1 − C−1B(Q−1 + BT C−1B)−1BT C−1. (4.4)

The corresponding least-squares solution x̃ is then given by

x̃ = (AT WA)−1AT Wd, (4.5)
= (AT WA)−1AT W (Ax + By + e), (4.6)
= x + (AT WA)−1AT W (By + e), (4.7)

with expected value
E[x̃] = x + (AT WA)−1AT WBµ. (4.8)

If E[ν] = µ = 0, in accordance with least-squares, then the solution is unbiased, otherwise
not. This violation in the assumption of zero expected value of the noise occurs frequently in
geomagnetic field modelling, usually in the context of unparameterized natural field sources.
Because they are accounted for solely through W−1 by attempting to assign a finite variance,
they are necessarily assumed to be zero-mean by the restrictions imposed by least-squares. Note
that even if a natural field is a zero-mean process over some characteristic time interval, it most
certainly does not have a zero-valued realization at the time a measurement was taken.

Aside from the restriction of zero-mean noise processes, one is free to choose the variance,
σ2, of the process in the least-squares weighting. Recall that as σ2 increases, the distribution
curve remains centered on zero, but becomes flatter. In fact, for finite σ2, the distribution is
always centered on zero. However, for infinite variances the central tendency, and thus, the
mean of the distribution becomes undefined. This is a very useful result in that it allows for
undefined (non-zero) means within the restrictive framework of least-squares. Now let Q = σ2Q̃
and let σ2 →∞ in eq. 4.4 such that

W∞ ≡ lim
σ2→∞

W, (4.9)

= lim
σ−2→0

C−1 − C−1B(σ−2Q̃−1 + BT C−1B)−1BT C−1, (4.10)

= C−1 − C−1B(BT C−1B)−1BT C−1. (4.11)

The corresponding least-squares solution is now given by

x̃ = (AT W∞A)−1AT W∞d, (4.12)
= (AT W∞A)−1AT W∞(Ax + By + e), (4.13)
= x + (AT W∞A)−1AT W∞e. (4.14)

The term in B in eq. 4.13 has dropped out of eq. 4.14 because

W∞B = (C−1 − C−1B(BT C−1B)−1BT C−1)B, (4.15)
= C−1B − C−1B(BT C−1B)−1BT C−1B, (4.16)
= C−1B − C−1B, (4.17)
= 0. (4.18)
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In fact, if eq. 4.1 is prewhitened such that C = I, then W∞ = NB, where NB is the projection
matrix onto the nullspace of the column span of B. Thus, W∞ imposes a harder bound on
x̃ than does W such that all signal that can be represented by By is eliminated from the
estimation. This can be seen from

E[x̃] = x, (4.19)

and so the solution is always unbiased independent of the state of y. Sabaka and Olsen [2006]
have shown that the solution given in eq. 4.12 is equivalent to the solution one gets when
least-squares co-estimating y with x in eq. 4.2. Thus, one finds that co-estimating y with x
is equivalent to treating y as a normally distributed infinite-variance process requiring infinite-
variance weighting.

One can now begin to see the mechanism by which infinite-variance weighting may be used to
selectively minimized the influence of certain data subsets on certain parameter subsets. Define
two data subsets, d1 and d2, which are linear functions of two parameter subsets of interest,
x and y, associated with linear operators A and B, respectively. Let the corresponding data
noise vectors be ν1 = N(0, I) and ν2 = e + B2z, where e = N(0, I) and z is deterministic and
represents a systematic contamination of y in the d2 data. In order to account for ν1, e, and z
the following W is constructed which treats z as an infinite-variance process

W =
(

I 0
0 I −B2(BT

2 B2)−1BT
2

)
=

(
I 0
0 NB2

)
. (4.20)

Since W is idempotent it may be used directly to prewhiten the augmented system equations(
d1

d2

)
=

(
A1 B1

A2 B2

) (
x
y

)
+

(
ν1

ν2

)
, (4.21)

such that (
d1

NB2d2

)
=

(
A1 B1

NB2A2 NB2B2

) (
x
y

)
+

(
ν1

NB2ν2

)
, (4.22)

=
(

A1 B1

NB2A2 0

) (
x
y

)
+

(
ν1

NB2e

)
. (4.23)

Note from eq. 4.23 that this W has selectively eliminated the direct influence of d2 on the
determination of y via the B2 matrix while allowing all data to continue to influence x. The
equivalent system of equations for co-estimation is given by

(
d1

d2

)
=

(
A1 B1 0
A2 0 B2

)  x
y
n

 +
(

ν1

e

)
, (4.24)

where n = y+z are considered “nuisance parameters”. From an operational standpoint, solving
eq. 4.24 is much preferred to solving eq. 4.23, since the latter requires an explicit formation of
the dense matrix NB2 , which has square dimensions of order dimd2.

The application of selective infinite-variance weighting to the current problem is now straight
forward. Let d1, d2, and d3 be the data from Swarm low satellites 1 and 2 and high satellite
3. Assume that dimd1 = dimd2 and that their elements are chronologically matched. Let
x be the non-crustal parameters related to the data through A and let y be the crustal field
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parameters related through B. Let ν1, ν2, and ν3 be the noise vectors corresponding to the
data. Consider the following rotation of the prewhitened system equations

1√
2

1√
2

0
1√
2

−1√
2

0
0 0 1


 d1

d2

d3

 =


1√
2

1√
2

0
1√
2

−1√
2

0
0 0 1


 A1 B1

A2 B2

A3 B3

 (
x
y

)
+

 ν1

ν2

ν3

 ,(4.25)

 ds

dd

d3

 =

 As Bs

Ad Bd

A3 B3

 (
x
y

)
+

 νs

νd

ν3

 , (4.26)

where the subscripted “s” and “d” indicate sums and differences, respectively.
The gain factors in Fig. 4.1 correspond to the difference data only. It turns out that the

gain factors for sums of data are complementary to this. That is, if the difference gain for order
m is gd(m), then the corresponding sum gain is gs(m) = 2− gd(m). This suggests that higher
order crustal coefficients should be determined by difference data only while the lower order
coefficients should be determined by sum data and possibly data from the high satellite. Let
the lower order crustal coefficients be designated by y` and the higher order by yh and let them
be related to the data through B` and Bh, respectively. The resulting system equations are
given by

 ds

dd

d3

 =

 As B`
s 0 0 Bh

s

Ad 0 Bh
d B`

d 0
A3 B`

3 0 0 Bh
3




x
y`

yh

n`

nh

 +

 νs

νd

ν3

 , (4.27)

where n` and nh are the nuisance parameters in the low and high order crustal coefficient
regimes, respectively. These parameters are a combination of true crustal signal and a sys-
tematic noise component due to such things as non-crustal signal leakage. Thus, while the x
parameters are influenced directly by all data, the y parameters are determined by different
combinations of data, depending on their sensitivity. Note that if the distinction between y
and n were not made, then eq. 4.27 would reduce to the original, unrotated system in eq. 4.25.
Clearly, this method may be further refined, for example, by distinguishing again between sums,
differences, and high satellite data collected on the dayside versus nightside.

4.2 Application to the Gradient problem

The application of SIVW to the gradient problem was carried out on synthesized data from
constellation # 3 using a 15 sec sampling interval. Specifically, the difference data were focused
on coefficients of order m > 20, while all data, including sums and differences, were focused on
m ≤ 20. The change in recovery of low-order coefficients when difference data are focused on
them or not is negligible in this case. Therefore, eq. 4.27 now becomes ds

dd

d3

 =

 As B`
s 0 Bh

s

Ad B`
d Bh

d 0
A3 B`

3 0 Bh
3




x
y`

yh

nh

 +

 es

ed

e3

 . (4.28)

Fields whose parameters reside in x include core and associated SV, ionosphere and associated
induced, and magnetosphere and associated induced in the form of explicit high-frequency
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Figure 4.2: Upper-left: Rn spectra of the true (black) crustal field for n > 13 and those of its
difference with CI applied directly to field values (red) and to low satellite sums and differences
and high satellite data (blue). Upper-right: Ra (azimuthal) spectra. Lower-left: Coefficient
differences with respect to the true model. Lower-right: Degree correlation with respect to the
true model.

internal expansions, and follow the E2E study of Sabaka and Olsen [2006]. The data are
prewhitened by the usual equal-area factor,

√
sin θ, where θ is the geographic colatitude of the

data position.
A comparison of the performance of CI applied directly to the field components measured by

the satellites versus a solution to the system in eq. 4.28 is illustrated in Fig. 4.2. The upper-left
panel shows the Rn spectra of the former (red), the latter (blue), and the true model (black)
and indicates a roughly two-fold reduction in power in the error per degree above about n = 45
when difference data are exploited. Looking at the upper-right panel shows an error that is as
much as three times less for azimuthal, (m/n), numbers near 0.5, but consistently less when
using difference data for |m/n| > 0.2. Interestingly, both cases show nearly identical behavior
for low azimuthal numbers, which are dominated by low-order m and high-degree n. Recall
that this regime (m ≤ 20) is sensitive to all data, and so this is not unexpected. The lower-left
panel shows the coefficient differences between the true and recovered models and confirms that
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the SIVW applied to the rotated data system extracts coefficients at least as accurate as the
traditional approach, but much more so for high n. The increased spread of the differences for
n ≤ 20 is due to the fact that SV is present and is more of a challenge to resolve than static
coefficients. Finally, the lower-right panel indicates a far superior recovery of coefficients with
the new method with regards to phase of the models, i.e., degree correlation. The new method
is now recovering a field that is positively correlated with the true field at the 0.93 level for
n = 150, the degree limit of the synthetic signal. Again, note the slight excursion below n = 20
due to SV.

A more complete view of the performance of the traditional field value method versus the
gradient method can be seen by comparing the sensitivity matrices in Fig. 4.3. The gradient
recovery is excellent for mid-valued m, as confirmed by the Ra plots in Fig. 4.2, but is nearly
identical to the traditional approach for the m ≤ 20 regime. There is also some improvement for
the purely sectorial terms (left and right edges). All of these results strongly suggest that the
Swarm constellation is capable of accurately recovering very small-scale lithospheric structure,
perhaps even smaller than indicated in these tests. This will go far in closing the gap in inter-
mediate lithospheric wavelength coverage that exists now between satellites and aeromagnetic
surveys.

Figure 4.3: Sensitivity matrices for the lithospheric field recovery from CI applied directly to
field values (left) and to low satellite sums and differences and high satellite data (right).

It is clear from the previous discussion that SIVW has successfully exploited the difference
data from the low satellites to extract high order lithospheric field coefficients without degrading
those of low order. Furthermore, Figs. 4.4 and 4.5 show that neither the magnetospheric nor
the associated high-frequency induced coefficient recoveries have suffered. Not only do the
magnetospheric coefficient time series show good agreement with the true series (blue), but the
results from the traditional (red) and gradient approach (green) are identical. Notice, however,
that certain recovered coefficients, such as q1

1, show large excursions from the true model at the
beginning of the mission. This has been discussed by Sabaka and Olsen [2006] and is due to
the minimal separation in local time of the low and high satellite orbital planes in co-rotation
phase, which affects some coefficients. The high-frequency induced coefficients also show exact
agreement between the two recovered time series. Again, there are large discrepancies between
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certain recovered and true coefficients at the beginning and end of the mission due to minimal
orbital plane separation. Indeed, it appears that SIVW applied to sums, differences, and high
data to target high-order lithospheric recovery is performing precisely as hoped. That is, it
is exploiting the enhanced signal to noise ratio of the high-order lithospheric field in the low
satellite difference data to obtain superior recovery of this portion of the field without degrading
the recovery of low-order lithospheric and non-lithospheric field parameters.

Figure 4.4: Time series of selected magnetospheric coefficients from the true model (blue) and
from CI applied directly to field values (red) and to low satellite sums and differences and high
satellite data (green). The blue and red lines have been shifted for clarity. Local time differences
between the low and high satellite orbital planes are delineated by vertical dotted lines at 3, 6
and 9 hr separation.
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Figure 4.5: Time series of selected high-frequency induced coefficients from the true model (blue)
and from CI applied directly to field values (red) and to low satellite sums and differences and
high satellite data (green). The blue and red lines have been shifted for clarity. Local time
differences between the low and high satellite orbital planes are delineated by vertical dotted
lines at 3, 6 and 9 hr separation.
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Chapter 5

Multi-Satellite In-Flight VFM/STR
Alignment

34



This section describes the in-flight alignment of the Swarm magnetometers, i.e. the de-
termination of the transformation between the coordinate frame of the vector magnetometer
(VFM) and that of the star camera (STR). This transformation is described by means of three
Euler angles (α, β, γ). Involved in this task are the working packages WP-2210 “Multi-Satellite
Alignment: Algorithm Development”, and WP-2120 “Multi-Satellite Alignment: CI Implemen-
tation”. The described activity is an extension of the experiments that have been performed
during Phase A [cf. section 4.2 of Olsen et al., 2004].

To obtain the magnetic field in the North-East-Center (NEC) coordinate system, the VFM
magnetometer readings (given in the VFM frame) are combined with the attitude measured by
the STR. The latter measures the rotation between the International Celestial Reference Frame
(ICRF) and the Common Reference System (CRF) of the optical bench; attitude is delivered
in the CRF (the merging of the attitude of the individual camera heads to the CRF will not be
discussed here), and therefore rotation between the CRF and the ICRF is straightforward. Like-
wise, transformation from the ICRF to the International Terrestrial Reference Frame (ITRF),
and further to the North-East-Center Frame (NEC) is straightforward, too. Hence the following
steps are required in the processing of the level 1b data:

BVFM −→ BCRF −→ BICRF −→ BITRF −→ BNEC

Note that no knowledge of the spacecraft attitude is required in this scheme; only the attitude
of the optical bench (CRF) is required.

5.1 From VFM-Frame to NEC-Frame – Description of the In-
volved Rotations

Since a simulation of the star camera was not included in the present study, STR attitude data
(i.e., attitude of the CRF) were not available. In order to obtain the attitude of the optical
bench, it was therefore assumed that the CRF and spacecraft (SC) reference frames coincide,
where the latter can be derived from the unit vector of the along-track velocity, but rotation
was allowed between the CRF (i.e. SC frame) and the orbit reference frame (ORF). Note that
this approach is only used for this simulation since no real STR attitude data were available.
For the real processing of level 1b data, neither SC nor ORF attitude are required.

In order to transform the magnetic field vector BNEC = (Br, Bθ, Bφ) from the NEC co-
ordinate system to that of the vector magnetometer, various rotations (between orthogonal
coordinate systems) are necessary. In particular:

Rotation of the magnetic field from the NEC system to the orbit reference frame
(ORF)

This rotation is given by
BORF = R

1
BNEC (5.1)

with

R
1

=

 x̂r x̂θ x̂φ

ŷr ŷθ ŷφ

ẑr ẑθ ẑφ

 (5.2)

where x̂ = (x̂r, x̂θ, x̂φ) is the unit vector of the x-direction in the ORF system. Figure 5.1
defines the coordinate system used here.
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optical bench

Figure 5.1: Definition of coordinate systems.

We assume that x̂ is in the (nominal) flight direction, so x̂ = v/|v| is determined from the
instantaneous spacecraft velocity vector. Assuming that ẑ is in the plane spanned by x̂ and the
radial direction (no roll misalignment of the space-craft), we find

ŷ =
x̂× r̂
|x̂× r̂|

=
1√

x2
θ + x2

φ

 0
xφ

−xθ



ẑ =
x̂× ŷ
|x̂× ŷ|

=
1√

x2
θ + x2

φ

 −
(
x2

θ + x2
φ

)
xrxθ

xrxφ



Rotation of the magnetic field from the Orbital Frame (ORF) to the Common
Reference Frame (CRF)

This rotation is given by

BCRF = R
2
BORF (5.3)

The Common Reference Frame (CRF) is the coordinate system of the optical bench that con-
tains STR and VFM, and is defined by the merged attitude information of all three camera
heads. Nominally the CRF is (approximately) equal to the orbit reference frame, and hence
R

2
is a 3×3 identity matrix; however, since we are interested in the effect of rotating the op-

tical bench with respect to the nominal flight direction, we modified the algorithm in order to
parameterize R

2
by three Euler angles defining a 1-2-3 rotation.
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Figure 5.2: Definition of the three Euler angles α, β, γ describing a 1-2-3 rotation. Courtesy T.
J. van Hond.

Rotation of the magnetic field from CRF to the VFM system

This rotation is given by
BVFM = R

3
BCRF (5.4)

where R
3

is parameterized by the three Euler angles (α, β, γ) as given by the product of three
rotation matrices:

R
α

=

 1 0 0
0 cos α − sinα
0 sinα cos α

 (5.5)

R
β

=

 cos β 0 sinβ
0 1 0

− sinβ 0 cos β

 (5.6)

R
γ

=

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 (5.7)

We have performed our simulations assuming a 1-2-3 rotation, i.e.:

R
3

= R
γ
×R

β
×R

α

The definition of this rotation is shown in Figure 5.2.
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5.2 The effect of cost funtional reference frames on alignment
angle estimation problems

Historically there have been at least two methods of determining the alignment angles, e.g.,
Euler angles, between the reference frame of a vector magnetometer, VFM, and that of an
optical bench (CRF) or star imager (STR). These basically differ in the coordinate system
used to express the observation equations which in turn define the least-squares cost funtional.
Though both methods provide equivalent forms of the problem, it will be seen that one exhibits
superior stability. While both methods have appeared in the literature, it seems that the
advantages of the one variant have either not been appreciated or have been assumed trivial.
This section will attempt to establish theoretical grounds for the use of this favored method,
both from a numerical stability viewpoint as well as a computational viewpoint.

Consider the following model prediction for the jth magnetic vector measurement Bj

Bj = Rj(ε)Ajp, (5.8)

where Rj(ε) is a rotation from CRF to VFM coordinates to be determined through estimation
of Euler angles ε (denoted as R

3
in the previous section) and Ajp is the model prediction in

CRF coordinates from the geophysical parameters p. The first method employs eq. 5.8 in order
to estimate both ε and p and can be seen to define the problem in the VFM coordinate system.
Looking collectively at the entire problem of N vector measurements, let

d = a(x) + ν, (5.9)
= R(ε)Ap + ν, (5.10)

where

d =

 B1
...

BN

 ,R =

 R1 · · · 0
...

. . .
...

0 · · · RN

 ,A =

 A1
...

AN

 ,x =
(

ε
p

)
. (5.11)

Here ν is a vector of uncorrelated zero-mean Gaussian distributed deviates of unit variance.
This condition can always be satisfied by premultiplying by an appropriate weight matrix. In
order to estimate x a Gaussian least-squares estimator is employed which first linearizes eq. 5.10
about some nominal model state, xk

d−R(εk)Apk =
(

∂R(ε)
∂εk

• (Apk) R(εk)A
) (

dε
dp

)
+ ν. (5.12)

d−Akpk =
(
Mk(xk) Ak

) (
dε
dp

)
+ ν. (5.13)

Note that the partial derivative of the matrix R(ε) with respect to the vector ε is a rank-three
tensor and the dot denotes the appropriate contraction with the vector Apk. It can be shown
that

Mk(xk) ∈ (Akpk)⊥ (5.14)

which means that the columns of Mk are perpendicular to the vector Akpk and represent
perpendicular displacements of this vector scaled by dε.

The least-squares solution for dε from eq. 5.13 is of particular interest for here the instability
of the method can be seen. First, eq. 5.13 can be reduced to the following equivalent sub-problem
in which dε are the only free parameters [Sabaka and Olsen, 2006]

NAk
(d−Akpk) = NAk

Mk(xk)dε +NAk
ν, (5.15)
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where
NAk

= I −Ak

(
AT

kAk

)−1AT
k (5.16)

is the projection matrix onto the nullspace of the column span of Ak. Since Akpk is in the
column span of Ak, eq. 5.15 reduces to

d−Akp̃ = NAk
Mk(xk)dε +NAk

ν, (5.17)

where
p̃ =

(
AT

kAk

)−1AT
k d, (5.18)

that is, the best least-squares fit of d with the basis functions represented by the columns of
Ak. Thus, eq. 5.17 states that the difference vector rk = d−Akp̃ should be fit by perpendicular
displacements of the vector Apk, all in the space that is orthogonal to the column span of Ak.
Even if the column span of Ak is sufficient to capture the underlying true model, but pk is a
poor parameter state vector, then the mapping from Apk to rk can take several false paths.
This will result in the iterative series converging to a secondary, incorrect minima and thus give
wrong values for x̃. This method was used in the E2E simulator report of Olsen et al. [2004]
and was found to be very unstable.

The second method simply changes the coordinate system of eq. 5.10 from the VFM to the
CRF system or any other known system. This subtle yet profound difference renders a much
superior method, in general, in terms of stability and computational efficiency. The transformed
eq. 5.10 is now

RT (ε)d = Ap +RT (ε)ν, (5.19)
0 = Ap−RT (ε)d +RT (ε)ν. (5.20)

Linearizing gives

RT (εk)d−Apk =
(
−

[
∂R(ε)
∂εk

]T
• d A

) (
dε
dp

)
+RT (ε)ν. (5.21)

dk −Apk =
(
Mk(εk) A

) (
dε
dp

)
+RT (ε)ν. (5.22)

Comparing eqs. 5.13 and 5.22 it can be seen that the second method uses a constant A matrix
andMk is now only a function of ε. Rotations are now applied directly to d. In fact, the second
method enjoys the property that

∂2a(x)
∂εi∂pj

= 0 (5.23)

where i and j denote elements of the given vector. This is, however, not the case in the first
method; the premultiplication of eq. 5.10 by RT has effectively decoupled ε and p in the second
method such that products between the two have been eliminated. Note that both methods
still retain nonlinearity due to products between elements of ε, but this is the only nonlinearity
in the second method. It should also be stated that since ν is isotropic, then ν ′ = RT ν in the
second method will have the same statistical properties.

Focusing again on the ε sub-problem for the second method, and letting NA and p̃ be
analagously defined as their counterparts in the first method, yields

NA (dk −Apk) = NAMk(εk)dε +NAν ′, (5.24)
dk −Ap̃ = NAMk(εk)dε +NAν ′. (5.25)
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This time
Mk(εk) ∈ (dk)⊥ , (5.26)

and so the columns of Mk are perpendicular to the vector dk and represent perpendicular
displacements of this vector scaled by dε.

One can see from eq. 5.25 that pk has been completely eliminated from the ε sub-problem,
and because of the linearity of A, it is eliminated from the full problem. This means that a good
guess for pk, which was so crucial in the first method, is not even required here. In fact, eq. 5.25
states that the difference vector rk = dk −Ap̃ should be fit by perpendicular displacements of
the vector dk, all in the space that is orthogonal to the column span of A. Thus, to reconcile
two vectors, infinitessimal rotations are applied to one of the pair, not a third unrelated vector.
This is intuitively more stable, especially if the column span of A is sufficient to capture the
underlying true model. Fortuneately, the second method (estimation in the NEC frame, which
in this context has the same advantage as estimation in the CRF frame) has been used in the
estimation of the Ørsted alignment parameters [Olsen et al., 2000, 2003] and in the combined
estimation of Ørsted and CHAMP alignment parameters in the CHAOS model [Olsen et al.,
2006]1.

It should also be noted that the first method (model estimation in the VFM frame) may
possibly be salvaged by initially solving eq. 5.18 for p0 based upon some starting guess for ε0.
One would then be reconciling two vectors by applying infinitessimal rotations to the opposite
member of the pair that would be used in the second method. However, one would still be left
with a computationally inferior method in some sense. To see this, consider the full problems
for the first and second methods as given in eqs. 5.13 and 5.22, respectively. Because of the
presence of the alignment parameters in both methods the minimization problem is nonlinear
and requires the use of iterative methods, which can be computationally challenging depending
upon the dimensions of d and x. One can see that in the first method all of the columns of
the Jacobian matrix are nonlinear functions of x, and hence, need to be recomputed at each
iteration in order to form, in this case, the normal matrix. However, in the second method
the part of the Jacobian correpsonding to p is A, which is constant, and so those parts of
the normal matrix correpsonding to p auto correlation terms need not be reevaluated at each
iteration. This is a significant savings given that dimp is usually very large. In contrast, dim ε
is usually relatively small and so only its auto and cross correlation terms with p need be
reevaluated in the normal matrix. Thus, from both a theoretical and computational viewpoint,
defining the observational equations of the least-squares cost functional in a known, non-VFM
coordinate system is superior to one in the VFM system.

5.3 Results of a model estimation in the VFM frame

This section demonstrates the disadvantage of using the VFM for model minimzation, using
synthetic Swarm data from Constellation # 4. The data were selected according to the usual
criteria to define geomagnetic quiet times for field modeling purposes: the global index of
geomagnetic activity Kp ≤ 1+ for the time of observation and Kp ≤ 2◦ for the previous three
hour interval; and the absolute value for the index of magnetospheric ring-current strength,
Dst, within 20 nT and its temporal variation less than 3 nT/hr. Data have not been selected
neither for local time nor for geomagnetic latitude.

1It is stated incorrectly in Olsen et al. [2006] that the model estimation is done in the magnetometer (VFM)
frame.
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Figure 5.3: Sensitivity matrix for internal field coefficients. See text for details.

Data from all three satellites have been used for the tests, and all sets of Euler angles have
been coestimated. A different set of Euler angles has been derived for each one of the three
satellites of the constellation. The true Euler angles that have been used to synthesize the data
are time-independent and the same for all three satellites: αtrue = +20 arcsec, βtrue = +15
arcsec, γtrue = +10 arcsec.

The different magnetic field contributions generated by the forward calculation scheme have
been added sequentially to generate diverse input data files in order to test the recovery of the
Euler angles. Toroidal fields have not yet been included in the current tests, i.e. only Laplacian
potential fields have been considered so far. The first tests involved synthetic data including
only contributions from the core up to spherical harmonic degree n = 13, rotated from the
NEC frame to the VFM frame using the true time-constant Euler angles. The model contained
only internal coefficients up to the same degree (the time dependence of which is described by
splines in the usual way) as well as the nine (three per satellite) Euler angles. The estimated
internal coefficients were in excellent agreement with the true ones (differences smaller than
a thousandth of nanoTesla) and the retrieved Euler angles were equivalent to the true Euler
angles up to the last significant decimal place.

A second test used as input data the synthesized full contribution for the internal (core
and crustal) field, i.e. up to degree n = 150. The purpose of this test was to check a possible
contamination of the high degree/high order spherical harmonic coefficients due to the co-
estimation of the Euler angles. The recovered coefficients are very close (differences of the
order of tenths of nanoTesla) to the ones used for synthesizing the data. Regarding the Euler
angles, the mean values for the (α, β, γ) Euler angles for all three satellites are less than 1 arcsec
different from the true Euler angles.

Nex, we included the magnetospheric primary and induced field contributions, and solve
for those. Figure 5.3 represents the sensitivity matrix for this case, and demonstrates that the
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inclusion of magnetospheric fields do not disturb the recovery neither of the Euler angles nor
of the high degree crustal coefficients, at least in this simulation.

However, a different situation occurred when also ionospheric fields (and their induced coun-
terpart) were included. From the preliminary results for that case we find that the Euler angles
have not been recovered properly. There is in fact a convergence in the solution for the Euler
angles but to wrong values. However, the recovery of the internal coefficients is only minimally
affected by the inclusion of the ionospheric fields, and the crustal field is recovered properly even
in this case. We need to do some more work to understand why the inclusion of the ionospheric
fields brings out a deficient recovery of the Euler angles, and also to check the effect of the
inclusion of the toroidal contributions newly generated for Constellation # 4. We expect that
a data selection that minimizes any preferred direction of ∆BVFM, combined with the selective
infinite variance weighting presented in chapter 4 will improve the results in order to minimize
the effects of the inclusion of the ionospheric field into the Euler angle recovery.

We have also considered the case of time-varying Euler angles. Although this will be not
the case for the Swarm mission (for which the Euler angles of the optical bench are required to
be stable within 5 arcsec, according to the System Requirements Document, we investigated the
robustness of the solution by introducing time-varying Euler angles. For this cases, data were
split into bins of 1 month length during which the three Euler angles (α, β, γ) were considered
constant, but they were allowed to vary sequentially by +1, -1, and +2 arcsec per bin, respec-
tively. Data were therefore synthesized using these different Euler angle values and recovered
afterwards by the algorithm.

A point to be emphasized is that the Euler angles were properly recovered without the
need for data from the whole mission. Some tests have been developed using only input data
for selected temporal intervals (the time span being chosen in order to have enough data for
the recovery of the main and crustal components of the field up to a high degree expansion).
Figure 5.4 shows the recovery of time-varying Euler angles for a particular test. In this case,
only data for the last year of the mission were used. The input data and the model field
contained internal contributions up to degree n = 30. The Euler angles were allowed to vary
at one month interval, so a total of twelve sets of three Euler angles were obtained. As shown
by the figure, the Euler angles were recovered with high accuracy. By averaging the differences
between the twelve individual estimates and the true Euler angles we obtain ∆α = 0.17 arcsec,
∆β = 0.33 arcsec, ∆γ = 0.31 arcsec, with standard deviations σ of 0.13, 0.2, and 0.16 arcsec
respectively, so the computed Euler angles are in very good agreement with the true ones.

Another important point is that there is apparently no influence on the value of the Euler
angles used as starting point for the inverse algorithm. After few iterations the Euler angles
are recovered with an accuracy of few tenths of arc second, no matter the initial values are
set either equal to the right Euler angles (for example, those that would come for a pre-flight
determination) or equal to zero. When ionospheric fields are included in the input data, however,
the solution for the Euler angles converge to wrong values in the iterative solution scheme even
when the initial values for the coefficients are set equal to the true ones.

These results clearly demonstrate the disadvantage of estimating the model in the VFM
frame. In section 6.1 we will report on the results of a model estimation in the CRF frame.
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Figure 5.4: Difference between true and recovered time-varying Euler angles for Swarm 1 (black
dots), 2 (blue dots), and 3 (red dots) satellites over one year. Each bin covers a time interval
of one month.
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This section discusses some important aspects concerning the recovery of the high-degree
lithospheric field that came out from the comparison between the results obtained from Constel-
lation 3 and Constellation 4. Involved in this task are the working packages WP-3100 “Mission
Performance Analysis”, and WP-3200 “Mission Performance Analysis, Support”.

6.1 Constellation 3 versus Constellation 4

During the first part of our project “Study of an Improved Comprehensive Magnetic Field
Inversion Analysis for Swarm”, different possibilities were considered for the configuration of
the Swarm mission following the indications provided by ESA. A number of constellations were
named after each change in the prerequisites of the mission. The results presented in the
Mid Term Report (MTR, June 2006) were mainly based on the so-called Constellation 3. The
fundamentals of this particular constellation were an inclination of 86.8◦ for both lower satellites
Swarm A and B, shifted 1.4◦ in longitude, and launch time 1997.0 for simulation purposes (in
order to have similar ambient conditions as for the case of the anticipated real launch time,
2008.0).

The need for a delay in the launch time, and some changes to the orbital parameters, required
a new configuration to be considered. The new Constellation 4, already presented in the MTR,
assumed a launch of the Swarm satellites on July 1, 1998 at 00:00 UT for simulation intentions,
i.e. approximately one solar cycle (11 years) before the expected launch in 2010. Start in July
1998 was also chosen since it set the end of the simulated mission before January 2003, so the
rather sophisticated model of magnetospheric contributions developed during Phase A could
be used. In order to get a 4.5 years durable mission in combination with a launch in July
1998, four maneuvers were included for the lower satellite pair. The orbits of Swarm B were
calculated from those of Swarm A including a shift of longitude by 1.4◦. An inclination of 87.4◦

was established for both Swarm A and B, whereas the inclination for Swarm C was chosen to
be 88.0◦, compared to the 87.3◦ for the higher satellite in Constellation 3.

Even though the delay in the start of the simulated mission involved a higher magnetic
external activity with respect to Constellation 3, as reflected in the observed and predicted
solar flux and geomagnetic activity for years 1980-2015 shown in Figure 2.5, it was not expected
neither this delay nor the different prerequisites adopted for Constellations 3 and 4 to become
a major problem for the recovery of the crustal field. Figure 6.1 (left) shows the sensitivity
matrix for the lithospheric field recovery for Constellation 3 when the input signal contains
core, lithospheric, and magnetospheric (primary and induced) contributions (no gradient data
used at this point). Surprisingly, the recovery for the same case for Constellation 4 (Figure 6.1,
right) was much noisier.

As can be seen from the sensitivity matrices, it appeared not possible to solve properly for
Gauss coefficients above approximately degree 130 for Constellation 4. In fact, the comparison
of the correlation coefficients for both models (the ones obtained from Constellations 3 and
4) with respect to the true model used in the forward calculation shows a clear worsening
for Constellation 4. The correlation coefficient stays above 0.9 up to degree n = 150 for
Constellation 3, whereas for Constellation 4 its value decays below 0.9 for n = 130, and it is
around 0.75 for n = 150.

Different tests were conducted in order to understand the nature of the problem. The mag-
netospheric contributions were removed from the input signal, in order to discard a possible
influence of a higher external contamination in the crustal field recovery for Constellation 3
compared to Constellation 4. The new sensitivity matrix continued presenting the same prob-
lems. So once the hypothesis about stronger external fields was abandoned, the only possible
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explanation to the problem was a bad distribution of the data. Since the problem was related to
the very high-degree crustal field coefficients, the explanation to the problem should be found in
the last part of the mission, when the altitude of the lower satellites is small enough to provide
a good representation of the high-degree crustal field.

Figure 6.1: Sensitivity matrices for the lithospheric field recovery for Constellation 3 (left),
and Constellation 4 (right) when core, lithospheric, and magnetospheric (primary and induced)
contributions are present in the data.

Figure 6.2 shows the temporal distribution of Constellations 3 and 4 data for the last three
months of the mission with respect to the altitude. The red line in the figure shows the
distribution of Constellation 4 data when the usual data selection criteria are applied, i.e. Kp
index lower or equal to 1+ for the time of observation and not higher than 2o for the three hour
interval previous to the measurement, and |Dst| lower or equal to 20 nT with a time variability
not above 3 nT/hr. These were the restrictions applied for Constellation 3 data (green line in
Figure 6.2). However, since the magnetic activity is much intense for the epoch of Constellation 4
than for Constellation 3, these selective restrictions made the quiet-time data for the last three
months of Constellation 4 to be limited to a total of only 6 out of 92 total days. This scarce
coverage of the Earth when Swarm A and B satellites are at their lowest altitude would then
explain the bad recovery of the high-degree crustal field. When the selection criteria were relaxed
and a criterion only based on Kp index not above 2o was imposed, the data distribution for
Constellation 4 followed the pattern presented by the black line in Figure 6.2, now covering 30%
of the last three months of the mission (a similar percentage as in the case of Constellation 3).
Figure 6.3 shows the new sensitivity matrix for Constellation 4 obtained when the input signal
contains measurements selected through the smoothed selection criteria (right), together with
the previous sensitivity matrix for Constellation 4 (left) already presented in Figure 6.1. The
correlation coefficient is now above 0.9 up to degree n = 150 as for Constellation 3.

The results presented in the last figures provide extremely important information for the
Swarm mission. We have seen that the last three months of the mission are crucial in the
recovery of the high-degree lithospheric field. It should be checked (out of the scope of this
Simulation Study) if a faster decay of the lower satellites would provide enough coverage of the
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Figure 6.2: Temporal distribution of Constellation 3 (green line) and Constellation 4 data with
respect to the altitude for the last three months of the mission. When the usual selection criteria
for quiet-time data was applied to Constellation 4, only a 6% of the data remained (red line).
After smoothing the restrictions by only applying a criterion based on the value of the Kp index
for the observation time (Kp <= 2o), the percentage of retained data for Constellation 4 (black
line) was similar to that for Constellation 3.

planet in order to obtain the same recovery. We have also seen that it is not necessary to exces-
sively relax the selection criteria for quiet-time data. Only a modification of the requirements
for the very last part of the mission, when the available quiet-time data was too low according
to the classical conditions, has been necessary to get a correlation coefficient for the recovered
model with respect to the true model above 0.9 up to degree n = 150.

6.2 Results for Constellation 4

Once the problem with Constellation 4 was solved, it was decided to include at the same time
all the possible contributions (core, crust, magnetospheric primary and induced, ionospheric
primary and induced, toroidal, and noise) in the input signal, to misalign the data by using a
constant set of Euler angles for the full mission (different for each one of the three satellites),
and to solve for all the possible sources including multi Euler angle bins (one set of Euler angles
per satellite each 30 days). We did not check in this case the effect of the sequential inclusion of
the different magnetic field contributions to the signal since this fact was already studied and
presented in previous reports. From this point, we will assume that Constellation 4 contains
quiet-time data selected according to the usual criteria for the first 4 years and 3 months of
the mission, and that the last three months of the mission have been selected according to
the relaxed criterion concerning only the value of the Kp index for the observation time. The
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Figure 6.3: Sensitivity matrices for the lithospheric field recovery for Constellation 4 when either
the usual selection criteria (left) or the smoothed selection requirement (right) are applied to
define quiet-time periods in order to select the data. Core, lithospheric, and magnetospheric
(primary and induced) contributions are present in the input signal.

obtained sensitivity matrix for Constellation 4 is presented in Figure 6.4 (right) together with
the equivalent one for Constellation 3 for comparison (left). Figure 6.5 shows the power spectra
(top) and the difference between true and recovered Gauss coefficients for both Constellations
(left), and the respective correlation coefficients with respect to the true model (right). The
correlation coefficient values are above 0.9 up to degree = 140 and above 0.8 up to degree = 150.

A difference map of the Br component between the obtained and the truth model for degrees
16− 150 is shown in Figure 6.6.

Figure 6.7 shows (from left to right, and from top to bottom) the respective recovery of the
α, β, and γ multi Euler angles for satellites Swarm A, B, and C. Although this will be not the
case for the Swarm mission (for which the Euler angles of the optical bench are required to
be stable within 5 arcsec, according to the System Requirements Document), we investigated
the robustness of the solution by introducing time-varying Euler angles in the recovered model.
Constellation 4 data were rotated using fairly significant constant Euler angle values, as can be
seen from the left most columns in Table 6.1. The recovered Euler angles were allowed to vary
at 30 days interval, so a total of fifty-five sets of three Euler angles for the full Constellation 4
simulation were obtained. After a couple of iterations the Euler angles were recovered with
an accuracy of few tenths of arc second (Figure 6.7), no matter the initial values were set
either equal to the right Euler angles (for example, those that would come for a pre-flight
determination), or equal to zero. Table 6.1 shows the mean difference and root mean square
(rms) for the recovered Euler angles for Constellation 4. The rms remains well below 1 arcsec
for all three angles, three satellites.
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Figure 6.4: Sensitivity matrices for the lithospheric field recovery for Constellation 3 (left) and
Constellation 4 (right) when all misaligned contributions are present in the input signal and
the model solves for multi Euler angle bins.

Real Euler angles Mean difference (arcsec) rms (arcsec)
α β γ ∆α ∆β ∆γ σα σβ σγ

Swarm A -1724 3488 -618 -0.21 -0.08 0.01 0.68 0.61 0.42
Swarm B 808 -434 -1234 -0.20 -0.05 0.01 0.68 0.61 0.42
Swarm C 2222 2991 3115 0.18 0.00 -0.01 0.69 0.47 0.45

Table 6.1: Real Euler angles used to misalign the input data, together with mean difference and
root mean square for the recovered Euler angles for Constellation 4 when the signal includes all
misaligned contributions.
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Figure 6.5: Top: Rn spectra of the true (black) crustal field for n > 13 and those of its
difference with the models obtained from misaligned Constellation 3 (red) and Constellation 4
(green) data. Left: Coefficient differences of the models obtained from Constellation 3 (red)
and Constellation 4 (green) misaligned data with respect to the true model. Right: Degree
correlation of the crustal field coefficients from the various models (same color scheme) with
respect to those of the true model.
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Figure 6.6: Crustal field difference maps in the Br component [in nT] at 50 km altitude.
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Figure 6.7: From left to right, and from top to bottom, difference between true and recov-
ered time-varying α, beta, and γ Euler angles for Swarm A, B, and C over the time span of
Constellation 4 simulation. Each bin covers a time interval of 30 days.
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Chapter 7

Failure and Imperfection Cases
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Based on a note written by ESA in response to AI-004 of PM1, and a telecon on May 9,
2006, it was agreed to study the following failure and imperfection cases:

1. Failure of VFM and/or STR on a single satellite

(a) Only scalar (no vector) data available for Swarm A
(b) Only scalar (no vector) data available for Swarm C

2. Impact of a S/C magnetic field on a single satellite (Swarm A)

(a) Constant S/C dipole moment (hard magnetization), corresponding to 2 nT at the
location of the ASM

(b) Induced S/C dipole moment (soft magnetization), corresponding to 3 nT at the
location of the ASM over the poles (i.e. the area of maximum Earth’s magnetic field
strength)

(c) Time dependent disturbance at ASM position of the form

1 sin(2πt/24) nT + 1 sin(2πT/24) nT (7.1)

where t is UT in hours, and T is Local Time in hours.

Note: These two scenarii concern the magnetometer calibration, which is not part of
the present study. Based on Ørsted and CHAMP experience, statistics of the magnetic
field residuals (e.g. Table 1 of the CHAOS field model Olsen et al. [2006], available at
http://www.dsri.dk/̃ nio/papers/CHAOS.pdf) can be used as a hint to see whether the
magnetic data of one satellite are relatively biased compared to the other satellites. In
other words: the present approach (single-satellite calibration) will in those cases tell us
that “something is wrong with the data” (with no possibility to treat the data correctly
and correct for the effect). Only a multi-satellite calibration approach (currently not
foreseen as part of the present study) will be able to deal with these cases properly.

3. Noise in the CRF attitude of a single satellite (Swarm A)

(a) Time dependent attitude noise (all components)

6 sin(ωot) arcsecs + 10 sin(2πT/24) arcsecs (7.2)

where t is UT, ωt is orbital frequency, and T is Local Time in hours.

4. Failure of one or more satellite

(a) Magnetic data from all 3 satellites (Swarm A, B and C)
(b) Magnetic data from (Swarm A and C) only
(c) Magnetic data from (Swarm A and B) only
(d) Magnetic data from (Swarm A) only

Three of these scenarii have already been studied during Phase A; however, in order to
obtain comparable results we decided to investigate all 4 cases using data of constellation
# 4.

In what follows we present the results corresponding to three of these failure cases (those
that do not involve the use of gradient data). In all cases the input data contains the full
misaligned signal, and the recovered model solves for multi-Euler angles.
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Mean difference (arcsec) rms (arcsec)
∆α ∆β ∆γ σα σβ σγ

Swarm A -0.22 -0.07 -0.01 0.79 0.70 0.48
Swarm C -0.24 0.01 -0.03 0.81 0.50 0.47

Table 7.1: Mean difference with respect to the true values (as in Table 6.1) and root mean
square for the recovered Euler angles for failure case 1.a for Constellation 4 (vector data for
Swarm A and C, scalar data for Swarm B) when the signal includes all misaligned contributions.

7.1 Case 1.a: Vector data available for one of the low satellites
and for the high satellite, but only scalar data available for
one of the low satellites

For this particular case, we considered Swarm B providing only scalar data for the full mission
interval. The non-linearity of the field in the coefficients of the model due to the use of scalar
data, required a major number of iterations (a total of four) to get convergence in the results.
Figure 7.2 presents the sensitivity matrix for the crustal field coefficients obtained from the
failure case data (right) together with the matrix for the perfect Constellation 4 case (left) for
comparison. The two central spikes are present in both cases for orders m=30-50 approximately,
and a strong contamination appears for high order coefficients involving degrees above n = 90.
Figure 7.3 shows the degree correlation of the model obtained for this particular failure case with
respect to the true model (right). The degree correlation of the model obtained from the perfect
Constellation 4 simulation with respect to the true model is also presented. The correlation
coefficient decays much faster for the failure case, its value above 0.7 only up to degree n = 130.
For what regards the recovery of the Euler angles, even though the obtained values are a bit
worse than for the perfect Constellation 4 presented in Table 6.1, they can be recovered with
an rms below 1 arcsec as shown in Figure 7.4 and Table 7.1 (Euler angles do not apply to the
satellite with only scalar data).

A difference map of the Br component between the obtained and the truth model for degrees
16− 150 is shown in Figure 7.1.

7.2 Case 4.b: Failure of one of the low satellites

This case considers a complete failure of satellite Swarm B. As expected, the sensitivity matrix
presents a noisy pattern for high degree crustal field, as shown in Figure 7.5 (right). Figure 7.5
shows also the perfect case (left) for comparison. It has been shown in the last section that the
last months of the mission definitively contribute to the proper representation of the high-degree
lithospheric field. The failure of one of the low satellites represents therefore a lack of coverage
that results in a bad definition of the crustal field coefficients above degree n = 80 for almost
all (but zonal) values of m. The comparison of the degree correlation with respect to the true
model for this failure case and for failure case 1.a (Figure 7.6) shows the importance of having
at least scalar data for one of the lower satellites to improve the definition of the high-degree
crustal field. The values for the recovered Euler angles are very similar to those obtained for
failure case 1.a, as shown in Figure 7.7 and Table 7.2.

A difference map of the Br component between the obtained and the truth model for degrees
16− 150 is shown in Figure 7.8.
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Figure 7.1: Crustal field difference maps in the Br component [in nT] at 50 km altitude for
failure case 1a.

Mean difference (arcsec) rms (arcsec)
∆α ∆β ∆γ σα σβ σγ

Swarm A -0.20 -0.06 0.01 0.74 0.66 0.46
Swarm C -0.23 0.01 -0.02 0.78 0.49 0.46

Table 7.2: Mean difference with respect to the true values (as in Table 6.1) and root mean square
for the recovered Euler angles for failure case 4.b for Constellation 4 (vector data for Swarm A
and C, complete failure of Swarm B) when the signal includes all misaligned contributions.
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Figure 7.2: Sensitivity matrices for the lithospheric field recovery for Constellation 4 for the
perfect simulation (left) and for failure case 1.a (vector data for Swarm A and C, and scalar
data for Swarm B; right) when all misaligned contributions are present in the input signal and
the model solves for multi Euler angle bins.

Figure 7.3: Degree correlation of the crustal field coefficients obtained from the perfect Con-
stellation 4 case (red) and from the failure case 1.a (green) with respect to those for the true
model.

7.3 Case 4.d: Failure of one of the low satellites and of the high
satellite

The final failure case here presented corresponds to the case in which only vector data for Swarm
A are available, and there is a complete failure of the second low satellite Swarm B and of the
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Figure 7.4: From left to right, and from top to bottom, difference between true and recovered
time-varying α, β, and γ Euler angles for Swarm A and C for the time span of Constellation 4
simulation for failure case 1.a (vector data from Swarm A and C, scalar data for Swarm B).

Mean difference (arcsec) rms (arcsec)
∆α ∆β ∆γ σα σβ σγ

Swarm A 0.02 0.20 -0.07 2.75 2.15 2.30

Table 7.3: Mean difference with respect to the true values (as in Table 6.1) and root mean
square for the recovered Euler angles for failure case 4.d for Constellation 4 (complete failure
of Swarm B and C) when the signal includes all misaligned contributions.

high satellite Swarm C. Figure 7.9 shows the sensitivity matrices for the lithospheric coefficients
for this failure case (right) and for perfect Constellation 4 simulation (left). When compared to
the failure case 4.b (vector data from Swarm A and C, failure of Swarm B), there is as expected
a worsening in the mid-degree lithospheric coefficients, as shown in the correlation coefficient
(Figure 7.10). Finally, for this particular failure case in which only one satellite is operative, the
recovered Euler angles differ more than 2 arcsec in rms from the true Euler angles (Figure 7.12
and Table 7.3).

A difference map of the Br component between the obtained and the truth model for degrees
16− 150 is shown in Figure 7.11.
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Figure 7.5: Sensitivity matrices for the lithospheric field recovery for Constellation 4 for the
perfect simulation (left) and for failure case 4.b (vector data for Swarm A and C, and complete
failure of Swarm B; right) when all misaligned contributions are present in the input signal and
the model solves for multi Euler angle bins.

Figure 7.6: Degree correlation of the crustal field coefficients obtained from failure case 4.b
(complete failure of Swarm B, red) and from failure case 1.a (vector data for Swarm A and C,
only scalar data for Swarm B, green) with respect to those for the true model.
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Figure 7.7: From left to right, and from top to bottom, difference between true and recovered
time-varying α, β, and γ Euler angles for Swarm A and C for the time span of Constellation 4
simulation for failure case 4.b (vector data from Swarm A and C, complete failure of Swarm
B).

7.4 Comparison of the results of the various failure cases

7.4.1 Performance related to lithospheric field

The black curve of the left panel of Fig. 7.13 shows the degree signal, i.e. the square root of
the degree variance, of the lithospheric vector field at ground. The result of the optimal field
recovery (not yet including gradient information), is shown in red. Also presented are the results
for the three failure cases considered so far.

7.4.2 Performance related to secular variation field

The black curve of the left panel of Fig. 7.14 shows the degree signal, i.e. the square root of the
degree variance, of the secular variation vector field at ground, for epoch 2000.5. The result
of the optimal field recovery (not yet including gradient information), is shown in red. Also
presented are the results for the three failure cases considered so far.
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Figure 7.8: Crustal field difference maps in the Br component [in nT] at 50 km altitude for
Failure case 4b.
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Figure 7.9: Sensitivity matrices for the lithospheric field recovery for Constellation 4 for the
perfect simulation (left) and for failure case 4.d (vector data for Swarm A, and complete failure
of Swarm B and C; right) when all misaligned contributions are present in the input signal and
the model solves for multi Euler angle bins.

Figure 7.10: Degree correlation of the crustal field coefficients obtained from failure case 4.d
(complete failure of Swarm B and C, red) and from failure case 4.b (complete failure of Swarm
B, green) with respect to those for the true model.
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Figure 7.11: Crustal field difference maps in the Br component [in nT] at 50 km altitude for
failure case 1a.
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Figure 7.12: From left to right, difference between true and recovered time-varying α, β, and γ
Euler angles for Swarm A for the time span of Constellation 4 simulation for failure case 4.d
(complete failure of Swarm B and C).

20 40 60 80 100 120 140
10

−1

10
0

10
1

degree n

[n
T

]

degree error at ground

 

 

signal
Optimal (non gradient)
Case 1a
Case 4b
Case 4d

20 40 60 80 100 120 140
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

degree n

de
gr

ee
 c

or
re

la
tio

n 
ρ n

degree correlation

 

 

Optimal (non gradient)
Case 1a
Case 4b
Case 4d

20 40 60 80 100 120 140

10
0

10
1

10
2

[n
T

]

degree n

accumulated error at ground

 

 
Optimal (non gradient)
Case 1a
Case 4b
Case 4d

Figure 7.13: Left: Degree error (at the Earth’s surface) of the lithospheric field recovery for
different satellite combinations and approaches. Black curve presents lithospheric signal as
given by the synthetic model swarm(06a/04). Right: accumulated error, i.e. the square root of
the sum (from degree 15 to n) of the degree variances.
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Figure 7.14: Left: Degree error (at the Earth’s surface) of the secular variation recovery, for
epoch 2000.5, for different satellite combinations and approaches. Black curve presents secular
variation signal as given by the synthetic model swarm(06a/04). Right: accumulated error, i.e.
the square root of the sum (from degree 2 to n) of the degree variances.
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