

Swarm Mission Concept

Yvon Menard, <u>Ralf Bock</u>, Emanuele Neri and <u>Roger Haagmans</u>

European Space Agency, the Netherlands

Courtesy EADS, Astrium

European Space Agency Agence spatiale européenne

First Swarm International Science Meeting, Nantes

- Project Phases & Milestones
- The Swarm System
 - System Elements
 - The Space Segment: Satellite Design and Instruments
 - Mission Analysis
 - Launcher
- Constellation concept and performanceStudies and scientific interaction

- Prime Contractor: EADS Astrium GmbH, Germany
 - Project Managemnt & Control, System Engineering, Electrical Engineering, Instruments, Procurement, Product Assurance
- Main Sub-Contractors:

esa

- EADS Astrium Ltd., UK Mechanical, Thermal, AIV
- GFZ Potsdam, Germany End-to-End System Simulator, Calibration & Validation

VFM Instrument

- DNSC, Denmark
 Level 1b Processor
- DTU, Denmark
 - First Swarm International Science Meeting, Nantes

Swarm System Elements

First Swarm International Science Meeting, Nantes

3-5 May 2006

Livina

- Electric field vector components
 Plasma density (in combination with GPS)
 Ion drift velocity vector (EFI)
 Ion and electron temperature (EFI)
- Air drag (ACC, GPS)
- Position, velocity, time, attitude (GPS, STR)

Optical Bench (Vector Field Magnetometer + Star Tracker Assembly) Electric Field instrument (COMDEV/UoC/IRF)

Accelerometer

Flight (+x)

GPS Patch

Antennas

First Swarm International Science Meeting, Nantes

Magnetic Cleanliness

- Setup Magnetic
 Budgets at ASM and
 VFM
- Model and Monitor Budgets during all development phases

Mass • Dry Mass ~400 kg • Cold Gas Propellant, 40- 100kg, N or CF4	Attitude and Obit Control 3-axes stabilised Thrusters Magnetorquers (air coil) Magnetometers GPS CESS	 Power 240 W total 95 W Instruments GaAs TJ Solar Cells Solar Panel positive grounding Li-Ion Battery
 <u>Dimensions</u> Length 9.4 m Width 1m (SC body) Height 0.85m Ram surface ~0.7m² 	 Data & Comms 1.5 Gbit/day 1 dump per day S-band 2 GHz band 1.3 or 6 Mbps downlink rate 	 Launcher Class Vega, Rockot, Dnepr (LEO, 1.5 – 2 tons)

Living

Swarm Orbits

Polar

- Circular
- Mission Duration
 - 3 months commissioning
 - 4 year nominal operations
 - Altitude Decay due to **Atmospheric Drag**
 - \rightarrow Launch into Solar Max
 - → Spacecraft Ballistic Coefficient
 - \rightarrow Station Keeping Manoeuvres

	Swarm A	Swarm B	Swarm C
Altitude, (R _e =6378 km)	450	450	530
Inclination	87.4	87.4	88.0
RAAN	Х	X+1.4 deg	Y

First Swarm International Science Meeting, Nantes

Mission Analysis

First Swarm International Science Meeting, Nantes

Launcher & Orbit Injection

Launcher Baseline

- Single Launch
- Compatibility with 3 different Launchers (2 after PDR)
 - → Total Mass
 - \rightarrow CoG
 - \rightarrow Accommodation

Injection Scenario Analysis

- Intermediate orbit: embark propellant for final orbit acquisition ; significant number of manoeuvres required
- Direct injection: re-ignitable upper stage; satellite CoG location

First Swarm International Science Meeting, Nantes

CSA Anticipated Signals at 400km

First Swarm International Science Meeting, Nantes

COMPARENT OF CONTROL OF CONTROL

Research objectives	Time range	Spatial range	Signal range	Signal at certain wavelength (wl)	Measurement (B = magnetic)
Core dynamics and geodynamo	static	3000 km to global	< 65000 nT	2.35 nT @ 3000 km wl	B-field vector, attitude and position
processes	3 months to decades	2500 km to global	±200 nT/yr	0.025 nT/3 months @ 2850 km wl	
Lithospheric magnetisation	decades to static	300 km to 3000 km	±25 nT	2.35 nT @ 3000 km wl 0.009 nT @ 360 km wl	B-field vector, attitude and position
3-D mantle conductivity	1.5 hours to 11 years	300 km to global	±200 nT	n.a. (modelled as conductivity)	B-field vector, attitude and position
Ocean circulation	12 hours to 2 years	600 km to 10000 km	±5 nT	0.5 nT @ 10000 km wl 0.01 nT @ 600 km wl	B-field vector, attitude and position

First Swarm International Science Meeting, Nantes

3-5 May 2006

Living

COST Anticipated Signals at 400km

First Swarm International Science Meeting, Nantes

3-5 May 2006

Living Planet

COMPARENT OF CONTROL OF CONTROL

Research Objectives	Time Range	Spatial Range	Signal Range	Measurement (B=magnetic E=electric)	
lonosphere- magnetosphe	0.1 sec to 11 years	1 km to global	B-field: ±1000 nT E-field: ±0.2 V/m	B-field, E-field, and ion drift velocity vectors,	
systems	10 sec to 3 months	10 km to global	lon drift velocity: ±4000 m/s	attitude and position	
Magnetic forcing of the upper atmosphere	10 sec to 2 years	20 km to global	Plasma density 1.10 ⁸ m ⁻³ to 5.10 ¹³ m ⁻³ Air drag: 1.10 ⁻⁵ m s ⁻²	B-field and E-field vectors, ion and electron temperature and plasma density, acceleration, attitude and position	
	10 sec to 3 months	200 km to global	lon and electron temperature: 1000-100000 K		

First Swarm International Science Meeting, Nantes

CONTROL CONTROL CONTR

First Swarm International Science Meeting, Nantes

CONTRACTOR OF CONTRACTOR OF CONTACTOR OF CONTACTOR OF CONTACTOR OF CONTACTOR OF CONTACTOR OF CONTACTOR OF CONTACT

10 days Changing Dst

First Swarm International Science Meeting, Nantes

3-5 May 2006

Living Pla

CONTROL CONTROL CONTR

First Swarm International Science Meeting, Nantes

COMPANIENT OF CONTRACT OF CONTRACT.

First Swarm International Science Meeting, Nantes

3-5 May 2006

Livina`P

CONSTRUCTION Requirements

21 SWARM

Livina

- 4 years operational phase
- Low altitude down to 300km (or lower) and pair of satellites for "zoom" in on crustal signal
- Altitude difference: higher (<530km) & lower satellites (< 450km)
- 24 hours LT coverage within 7-10 months to avoid seasonal or yearly periods ->inclination range between 86°-88°.
- Inclination difference: drift between orbital planes up to 9 hours LT after four years

Studies

Issue	Activity	Result	
"Ideal" Constellation and Mission Impact	Closed loop simulation: recovery of models related to primary objectives	3 satellites concept as baseline	~
Accelerometer necessary for air drag product ?	Air drag from single satellite precise orbit analysis against accelerometer data	Complementary information	~
Impact of joint use electric and magnetic field data	Coupled model simulation: check different current regimes & develop approaches for analysis	FAC estimation Horizontal currents Activity Indices	~
Quantify role of ocean circulation on performance	Forward modelling ocean circulation model effects on satellite data	Impact demonstrated	~
Improved Comprehensive magnetic field Inversion Analysis	Higher data sampling rate in measurement frame, lower pair "gradients", multi-satellite alignment	Data rate Rest ongoing	~

First Swarm International Science Meeting, Nantes

3-5 May 2006

Living P

e

End-to-End Approach

First Swarm International Science Meeting, Nantes

CS2 Example: lithosphere model performance

Phase A status

- Filter method is superior for n > 70
- CI superior at *n*<70, especially for near-zonal terms (*m* close to 0)

First Swarm International Science Meeting, Nantes

CS2 Assessment: Improved Lithospheric Field

First Swarm International Science Meeting, Nantes

CS2 Assessment: Improved Lithospheric Field

First Swarm International Science Meeting, Nantes

CONTRACTOR OF CONTRACTOR OF C

Before Ørsted ... N = 30, resolution: 1330 km

300 200 2000 1000 500 100 50 wavelength (km) 10 crustal signal global mod crustal signa regional compilation Swarm amplitude (nT) aeromagnetic and marine surveys 133 0.1 10 spherical harmonic degree 100 1000 with Ørsted & CHAMP N = 60, resolution: 670 km

and with Swarm > N = 133, resolution: 300 km

Magnetic field of Earth's crust radial component at 10 km altitude

First Swarm International Science Meeting, Nantes

Product levels

Level 0	Raw measurements and housekeeping data
Level 1b	Magnetic field magnitude and vector
	Magnetic field vector
	Ion drift velocity vector
	Electric field vector
	Plasma density
	Ion and electron temperature
	Acceleration vector, linear and rotational
	Precise position, velocity and acceleration and attitude of spacecraft
Level 2	Global models of sources of the geomagnetic field
	Maps of field-aligned currents and their variability
	Regional models of ionospheric current systems
	Satellite-based indices
	Improved global ionospheric and plasmaspheric models.
	Improved parametrisation of atmospheric models.
	Thermospheric density and cross track winds.
	Quality assessment of the products

Living P

1e

Develop procedures for correcting night time mid-low latitude ionospheric current and plasma effects

 Determination of thermospheric density information from constellation using ACC and GPS (current performance relates to a single satellite (CHAMP))

Enhancement of the Phase A procedure to a full 3D-mantle conductivity retrieval

 Determination of ionosphere/plasmasphere electron density distributions from EFI and GPS from constellation analysis (current performance relates to a single satellite (CHAMP))

Refinement of Ocean modelling/correction

Any other new possibilities offered by the Swarm constellation with multiinstrument package

Dedicated Swarm workshops (like 1st Nantes, France '06)

 Special Issue of Earth, Planets and Space on Swarm Vol. 58 (No. 4), pp. 349-496, 2006
 <u>http://www.terrapub.co.jp/journals/EPS/toc/5804.html</u>

Earth, Planets and (Study) reports available at Space http://www.esa.int/esaLP/LPswarm.html Announcements of Opportunity Phase B Phase C/D Phase E 2005 2010 2007 201_{-} Data AO Cal/Val AO Livina **First Swarm International Science Meeting, Nantes** 3-5 May 2006

