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Plan

« Historical core field
— General morphology (400 years)

e Core fluid motions

— Effect on Earth’s spin rate

o Retrieval of core motions
— The frozen flux hypothesis
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Declination 1590

Contour interval = 25

-200.0 -175.0 -160.¢ -126.0 -180.0 -76.0 -50.0 -2B.0 H 4 H 100.0 125.0 160.c 175.0 R200.0




Declination 2000

Contour interval = 25
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Historical database
Over 80,000 data from 17t & 18th centuries

Trading Companies used in data compilation

Declinations 1700-1799
Compagnie des Indes 1664-1795 E—
Danske Asiatiske Compagnie 1732-1844
East India Company 1600-1834
Hudson’s Bay Company 1670-present
Real Companania de Filipinas 1785-1834
Vereenigde Oost-Indische Compagnie 1602-1799

Manila Galleon ~1571-1813

Declinations 1800-1899

240° 270" 300" 330° 0 30° 90"

Frequency

0 0 o 0 90" 120°

Jonkers et al 2003
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Navigation

 Prior to the introduction of the marine
chronometer by Harrison, longitude
determination was by a process of “dead-
reckoning”

* Relied on estimation of velocity and heading




Navigational Corrections

Drunkard (Bud) takes same number of random steps per

minute.

Generally Bud’s root mean square deviation increases with
time 7 as \/1.
6 =
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Analysis of MNavigational Errer versus Voyage Duraticn
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Brownian Bridge Covariance Matrix

Position 2




Simple Error Budget

Major Contributions:

e Observational Errors:

In a declination measurement, o = 0.46°

e Positional Errors:
One day increment in longitude has o ~ 0.4°

Effect on declination varies locally

e Errors due to magnetized crust:

Typically causes o ~ 0.5°




400 year animation of radial magnetic field
1590 (gufmi)




Current work (see poster/talk)

*Update of gufm1 to 1590-2005
(Finlay et al)

*New type of regularisation by Maximum Entropy
(Gillet et al)




Example of flow retrieved for 1970

1970 Geostrophic Velocity




Inner core
tangent cylinder

Core-mantle
——  boundary ~—_

~ Solid
inner core

Liquid outer core




Observed Length of Day
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Observed and Predicted Excess Length cf Day
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Jault, Gire &
®* LeMouel {1988}

This study
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Geomagnetic predictions
(dots) of length-of-day are

. o tantalizingly good
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Can we do
better?
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Complexity versus time




Residuals to 1880 dataset
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Calculation of core velocities

e To find core velocities v, we use the frozen flux approximation

and global models of B and 0;B
8?‘37' = _vh : (VB/>

e But the models of B and 0;B don’t satisfy constraints

demanded by the physics

e There 1s a problem of a lack of self-consistency

Are observations back in time compatible with necessary
conditions for self-consistency?




Consequence of Frozen Flux

Integral constraints on field

E :i/ B, dQ =0
dt /s

and
Ba=\J'onidS;

Backus (1968)

Null-flux curve (B =0)




Flux
conservation:
Two different
times




e Horizontal Lorentz force vanishes on 0.5,

e Therefore null-flux curves move geostrophically, even in the

magnetostrophic limit

e Null flux curves are material curves

Kelvin’s theorem for inviscid fluids applies

to patches bounded by null-flux curves

1.e. Area of patch projected onto equatorial plane 1s invariant with

time.




Radial vorticity
conservation:

Two different
times




Reference Model: Oersted satellite data




Inverse Problem Methodology (1)

e Fit data using x? criterion, which assumes each datum d; is

contaminated with Gaussian noise with variance o?.

If e; is the difference between observed and calculated values,

we minimise

N
2 979
X E Ci/(f;

=1

and aim to find x?/N = 1.

Perform nonlinear optimisation using Newton-type method to

iteratively improve fit to data and constraints.

Starting model supplies topology, which is automatically
retained during the iterative improvement by solving
bounded-value least-square problem using algorithm BVLS of
Stark and Parker (1988).

In areas where flux is required to remain positive we impose a
lower bound on B, of |¢|, and in negative flux regions supply an

upper bound of —|e|.




Inverse Problem Methodology (2)

e At each iteration the Frechet derivatives for the data and the
constraints with respect to the model parameters are

recomputed, until convergence is reached.

e We regularise the inversion by minimizing

= / |V, B,|*d?s
S

This means we find the smoothest model (in the sense defined

above) compatible with the data and constraints.

e Have to impose the additional no-monopole condition

/ B,d’s =0
S




Model Calculations subject to constraints

» For each epoch 1980, 1945, 1915, 1882, attempt to fit
datasets with same topology, fluxes and radial
vorticities as in 2000 reference model

« Data taken from 10 year intervals; each dataset
contains ~ 10-20,000 global observations

e Minimise
Data misfit Roughness Flux misfit

(B;(b) — B;(b"))

Radial vorticity misfit
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1945

Flux and Radial Vorticity Constrained Models
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Model Misfit M Roughness R

2000
1980
1945
9115
1882

1.010
0.994
0005
0.976
1.071

0.484 yT/km
0.431 uT/km
0.337 uT/km

0.325 uT/km
0.370 uT/km




Spheri%ol Harmonic Power Spectra of Magnetic Field Models
10"
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* No problem in satisfying the constraints back in
time at individual epochs

* Next stage — develop time dependent model

with constraints implemented




Summary

o Gufml and its extensions are good representations of the SV over the
last 400 years
— Large data set; sophisticated error budget

 Still some open questions
— Effect of increase in complexity in the model
— More accurate descriptions of error distributions?
— Effective way to integrate with satellite data

e Current core motions results are encouraging
— Real or "apparent’’ diffusion doesn’t affect results too badly
— Might we do better using self-consistent models of main field/SV?







1915 Unconstrained Z residuals



