

Recent achievements in characterising the magnetosphere, ionosphere and thermosphere

H. Lühr¹⁾, S. Maus²⁾, C. Stolle¹⁾, H. Liu³⁾ and M. Rother¹⁾

¹⁾ GeoForschungsZentrum Potsdam
 ²⁾ Cooperative Inst. for Research in Environm. Sci., UC, Boulder, CO
 ³⁾ Earth and Planetary Science Division, Hokkaido University, Japan

First Swarm International Science Workshop Nantes, 3-5 May 2006

- Magnetospheric field contributions are well ordered in dipole coordinates. The amplitude scales with D_{ST}.
- Ionosphere currents at middle latitudes are negligible at night times.
- All ionospheric currents are confined in the E-layer (100-150 km) except for field-aligned currents.
- The dynamics of the thermosphere (density, winds) is driven by short-wavelength (EUV) solar radiation.

Magnetospheric contributions

External field from ring current in dipole coordinates (SM)

Magnetospheric contributions

External field from ring current in dipole coordinates (SM)

Magnetospheric contributions

External field from ring current in dipole coordinates (SM)

Magneto-tail field at NGK

GSM B-field at NGK

Magneto-tail field at NGK

GSM B-field at NGK

Model – Observatory comparison

- During quiet periods there is no indication of an asymmetric ring current (LT dependence).
- The D_{ST} index has to be decomposed into an internal and external part (I_{ST} and E_{ST}).
- Stable magnetotail currents cause a magnetic field at the Earth of about 13 nT, which exhibits diurnal and annual variations.

Spherical harmonic expansions of the magnetic field require measurements in a current-free space.

curl B = $\mu_0 j = 0$

- It has been widely assumed that this is true on the night side at satellite altitude.
- > CHAMP observations disprove this assumption.

Diamagnetic Effect of Plasma

Magnetic moment of charged particles

$$M = \pi R_g^2 I$$
$$M = \pi \frac{m^2 v_\perp^2}{e^2 B^2} \frac{e^2 B}{2\pi m}$$

Magnetic moment 1st adiabatic invariant

$$M = \frac{kT}{B}$$

Diamagnetic effect

23-27 Oct 2001, 20 LT

Bands of enhanced plasma density, Equatorial Ionisation Anomaly

Lühr et al., 2003

Diamagnetic effect

Lühr et al., 2003

GMT

Delta B [nT]

Small-scale density structures

Stolle et al., 2006

Small-scale density structures

Occurrence of plasma bubbles

Gravity-driven currents

Observations at two altitudes

Ørsted: ~700 km CHAMP: ~400 km

Gravity-driven currents

Observations at two altitudes

Ørsted: ~700 km CHAMP: ~400 km

Field magnitude

Ion density and current stream lines at 400 km

Maus and Lühr, 2006

GFZ

POTSDAM

$$\vec{j} = \sigma \left(\vec{E} + \vec{u} \times \vec{B} \right) + \left[nm_i \vec{g} \times \vec{B} - k\nabla \{ (T_i + T_e)n \} \times \vec{B} \right] \cdot \frac{1}{B^2}$$
drivers:
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$
E-field wind gravity pressure gradient

- In reality all the different ionospheric currents interact
- For the correction of the net magnetic field effect all the parameters have to be measured or estimated.
- A model-based approach is required to derive the correction values.

Deriving Thermospheric density and wind from the Accelerometer

$$\vec{a} = -\frac{1}{2m} C_d \rho A_{eff} V^2 \vec{v}$$

$$A_{eff} = A_x \cos \alpha + A_y \sin \alpha$$

 α : attitude deviation

CHAMP:
$$m = 510 \text{ kg}, C_d = 2.4,$$

 $V^2 = V_{orbit}^2 + V_{cross}^2$

Liu et al., 2005

Mid-latitude density enhancement

Air density features at high latitudes

Large differences are seen in the cusp and midnight sector, where strong small-scale field-aligned currents occur.

Percentage difference in polar regions

Thermospheric winds at night

- Modelling magnetospheric contributions in appropriate coordinate systems (SM, GSM) provides a more consistent picture.
- A number of additional ionospheric current systems have been identified. For their characterisation additional instruments are foreseen on Swarm.
- The geomagnetic field has been identified as an important driver also for the dynamics of the neutral air in the thermosphere.
- Based on these new findings and its advanced instrumentation we can expect from Swarm exciting results in all these fields.