Space-borne gravimetry: progress, predictions and relevance for *Swarm*

Pieter Visser

First Swarm workshop, Nantes, France, 3-5 May, 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

1

Delft University of Technology

Contents

- Space-borne gravimetry: missions & technology
- Global Earth gravity field modeling:
 - Recent progress
 - Challenges
- Role of LEO satellite formations
- Outlook

First Swarm workshop, Nantes, France, 3-5 May 2006

- CHAMP:
- DLR
- Launch 15/7/2000

- Lifespan > 6 years
- Inclination 87.3°
- Altitude 416-476 km

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

GRACE: - NASA/DLR - Launch 17/3/2002

- Lifespan > 5 years
- Inclination 89°
- Altitude 400-500 km

First Swarm workshop, Nantes, France, 3-5 May 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

Temporal gravity from GRACE

Tapley et al., Science, 2004

First Swarm workshop, Nantes, France, 3-5 May 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

- GOCE:
- ESA
- Launch 2007

- Lifespan 1.5-2 years
- Inclination 96°
- Altitude 240-250 km

"Piece de resistance"

First Swarm workshop, Nantes, France, 3-5 May 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

Space-borne gravity gradiometry

First Swarm workshop, Nantes, France, 3-5 May 2006

Spatial and temporal scales of geophysical process

First Swarm workshop, Nantes, France, 3-5 May 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

12

Scales and required

accuracies

Required Mission

Requirements after GRACE and GOCE

Source: Earth, Moon, and Planets, 94(1-2), April 2004

First Swarm workshop, Nantes, France, 3-5 May 2006

GPS-based accelerometry

First Swarm workshop, Nantes, France, 3-5 May 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

Consistency GRACE baseline by differential GPS and KBR (reduced-dynamic relative POD)

First Swarm workshop, Nantes, France, 3-5 May 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

High-pass filtered GRACE inter-satellite ranging

From KBR

From GPS

Low-low range-rate

First Swarm workshop, Nantes, France, 3-5 May 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

GPS based GRACE radial (left) and cross-track (right) baseline perturbations (high-pass filtered)

First Swarm workshop, Nantes, France, 3-5 May 2006

Department of Earth Observation and Space Systems Astrodynamics and Satellite Systems

Outlook

Enabling technologies for GRACE and GOCE follow-ons:

- low-low satellite-to-satellite tracking by laser ("LDI"): precisions of nm/s feasible or even pm/s?
- s/w upgrades (much higher numerical precision required)
- new/upgraded methodology: separation of static and temporal gravity field sources, separation/ elimination of parasitic effects (a.o. on-board perturbations)

Spin-offs of satellite constellations: a.o. COSMIC, Swarm!

First Swarm workshop, Nantes, France, 3-5 May 2006

