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ABSTRACT 

Numerical geodynamo models have been focused on 
understanding qualitatively the mechanisms of 
generating and maintaining a magnetic field in the 
Earth’s core.  In this paper, we discuss our effort on 
using surface geomagnetic observations to constrain the 
numerical model, with the approach of data 
assimilation, aiming at understanding how do the 
models respond to the constraints. Using an optimal 
interpolation algorithm with 100 years of surface 
observations and with synthetic data for a much longer 
period (one magnetic free decay time τd), we found that 
the poloidal field in the core responds positively to the 
observational constraints: the errors between the truth 
and the prediction near the core-mantle boundary 
decrease with the spin-up time.  Other physical 
variables also respond to the constraint.  However, 
appropriate assessment of the response needs further 
research in geomagnetic data assimilation, in particular 
on more optimal algorithms to create an analysis from a 
model prediction and  surface observations.  
 
 
1. INTRODUCTION 

Over the past decade, numerical dynamo models have 
been developed to simulate convective processes in the 
Earth’s fluid outer core, which is believed to generate 
and maintain the core magnetic field (hereafter we call 
this intrinsic field the geomagnetic field). For a recent 
review on the work in this field, we refer the reader to 
[1]. 
 
However, most of the numerical modeling efforts have 
been towards the qualitative understanding of the 
properties of the field and flow with respect to give 
parameters that describe the physical and geometric 
properties of the model system. These include the 
Rayleigh number Rth (that describes the buoyancy force 
strength relative to the Coriolis force), the magnetic 
Rossby number Ro that measures the fluid inertia respect 
to the Coriolis force, and the Ekman number E that 
measures the fluid viscosity relative to the Coriolis 
force.   
 
Regardless the values of these parameters and other 
approximations applied in the model, all models  
display some characteristics of the observed 
geomagnetic data, e.g. a dominantly dipolar poloidal 
field at the core-mantle boundary (CMB), a consistent 

“west-ward drift” of the poloidal field, and occasional 
reversals of the field.   
 
But, numerical model results also show that, despite the 
similarity of the poloidal field at the CMB, it, and other 
variables can be very different inside the core [2].  This 
result, in addition to deserving further numerical 
investigation, indicates the importance and the urgency 
of applying surface geomagnetic observations to 
constrain numerical geodynamo models.  
 
We intend to address this issue via data assimilation,  
which has been widely used in atmospheric [3] and 
oceanic modeling [4]: using observations to improve 
numerical models so that better estimation of the true 
physical states can be made.   Our goals are clear: by 
examining the error (the difference between the model 
output and the true physical state in the core) variations, 
we wish to identify appropriate physical approximations 
applied in numerical models.  We also wish to use the 
improved numerical model, together with the past and 
current surface observations, to better predict future 
geomagnetic secular variation. 
 
The particular technique we intend to use for our study 
is the sequential data assimilation technique.  The 
simplest explanation is as follows.  Assume x is the 
state variable vector of the system in consideration.  At 
time tk, when the observation xo and the model forecast 
xf are made, an analysis xa is constructed via the 
formulation 
 

    ( )fofa HxxKxx −+= ,               (1) 
 
where K is the gain matrix, and H is the observation 
operator.   The analysis xa is then used as the initial state 
at tk for numerical simulation.  The simulation results in 
the subsequent time are the model forecast based on the 
initial state xa at tk. The process (1) shall be repeated at 
the next time tk+1, when another observation is made.  
By repeating this process, the model output should be 
pulled closer to the true state of the system.  
 
 There are many problems remain to be solved. It is not 
clear whether the sparse surface observation (in terms of 
the spectral coefficients of the state variables and of the 
observation history) could be sufficient to influence the 
whole model (e.g. whether the observation constraint is 
sufficiently strong to change the model output).  In 



 

addition, due to orders of magnitude differences 
between parameters used in the numerical models and 
those appropriate for the Earth’s core, it is not certain 
whether the models can be pulled at all closer to the true 
physical state in the Earth’s core.  Furthermore, to 
obtain an optimal gain matrix K (e.g. via ensemble 
covariance analysis),  the computing resource required 
for such simulation can be several orders of magnitude 
more than that for purely numerical dynamo modelling 
(which can easily reach beyond the capacity of the 
currently available computing systems).  
 
Given the limitation of the surface geomagnetic 
observation and of the numerical modelling, and the 
extremely demanding computing resource, creative 
approaches are necessary for us to make progress in this 
research.  In the following sections, we shall report our 
progress in this research and the potentials for the on-
going effort in geomagnetic data assimilation.   
 
 
2. OPTIMAL INTERPOLATION AND 

ENSEMBLE COVARIANCE ALGORITHMS 

There are different algorithms to calculate the gain 
matrix K. In our study, we choose two methods: One is 
the optimal interpolation algorithm (OI). The other is 
based on ensemble covariance analysis. The philosophy 
of our approaches is simple. We wish to start with a 
simple algorithm which is mathematical consistent, e.g. 
ensuring continuity of the state variables and their 
spatial derivatives. But it does not depend on model 
details, e.g. numerical techniques, resolutions, 
parameters, etc. This could permit us to analyze 
responses of the model to the constraints from surface 
observations without substantial increase in 
computation demand. However, this simple approach is 
likely not optimal, since it does not incorporate 
available model information.  
 
The ensemble covariance analysis is more sophisticated. 
It depends on the details of the model used for data 
assimilation, thus, in comparison with the first approach 
it is more “optimal”. However, this algorithm depends 
on ensemble sizes in analysis. In general, the ensemble 
size can be above 100, thus increasing the CPU time by 
two orders of magnitude.  For this reason, we intend to 
implement this approach after better understanding of 
the error dynamics of the system.  
 
We introduce two parameters in the assimilation 
algorithms: one is the magnetic field scaling factor α 
and the other is the spatial correlation length rc.   The 
scaling factor α is defined such that the analysis is made 
with the scaled observations, e.g. (1) is modified as 
 

   ( )fofa HxxKxx −+= α .               (2) 
 

The length scale rc is introduced such that correction 
from the surface observation is applied to the model 
forecast in the areas within the distance rc from the top 
of the D’’-layer rd, i.e.  
 

0K =  if  .cd rrr >−                (3) 
 
The numerical dynamo model used in our study is the 
MoSST core dynamics model developed at NASA 
GSFC [5], which is based on the original model 
developed by Kuang and Bloxham [6]. In this model,  
the magnetic field in the core is divided into the toroidal 
and poloidal components: 
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where 1r  is the radial unit vector, Tb and Pb are called 
the toroidal scalar and the poloidal scalar, respectively. 
In the MoSST core dynamics model, the two scalars are 
expressed in spherical harmonics, 
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where and are called the poloidal and toroidal 
spectral coefficients,  and C.C. means the complex 
conjugate.  The spectral coefficients and their first order 
radial derivatives are defined on the radial grid points 
{r

m
lb m

lj

i | i = 0, 1, 2… N}.  
 
The details of the optimal interpolation algorithm and 
the ensemble covariance algorithm shall be reported in 
separate manuscripts.   
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Figure 1. The radial distribution of the model forecast 
(red) and the analysis (blue) defined by (2).  In (a) are 
the real (the solid line) and the imaginary (dashed line) 
parts of the coefficient; and in (b) are the corresponding  
first order radial derivatives. 
 
The OI developed in our model is very simple, and does 
not depend on the details of the model.  An example for 



 

the spectral coefficient of the poloidal field in the 
core is shown in Fig. 1. 
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In this example, rc ≈ 0.07rcmb (rcmb is the mean radius of 
the CMB). The scaling factor α is the ratio of the axial 
dipole coefficient  of the forecast and of the analysis. 
The examples of the covariance curves are shown in 
Fig. 2. 
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Figure 2. Examples of spatial covariance arrays in 
radius for the poloidal spectral coefficients. The 
correlation distributions are those between the 
coefficient  inside the core and itself on the CMB.  1

1b
 
Obviously the two distributions are very different.  In 
particular, one can observe from Figure 2 that the 
correlation is significant throughout the entire outer 
core. 
 
Our initial effort is focused on responses of the 
numerical model solutions to the constraints from the 
surface observations.   
 
 
3. FIRST RESULTS OF GEOMAGNETIC DATA 

ASSIMILATION WITH THE OBSERVATIONS 
OVER THE PAST 100 YEARS 

We have first tested the response of the numerical 
model to the constraints from the surface geomagnetic 
observations starting from 1900.    
 
Geomagnetic field models [7] can provide poloidal 
spectral coefficients from surface (and near surface) 
observations. These coefficients can be downward 
continued to the top of the D’’-layer rd.  In the MoSST 
model, a 20km-thick D’’-layer is imposed at the top of 
the CMB rcmb, i.e. rd = 20+ rcmb.  
 

In our test, we only consider the field from the first 8 
degree coefficients. For example, the radial component 
of the field is 
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Also the magnetic free decay time τd is used for time 
scaling, i.e. the scaled time τ ≡ t/τd for the observations 
matches that in the numerical model.  For example, in 
the Earth’s outer core, τd   ≈ 20000 years.  Therefore, a 
real time interval ∆t = 200 years implies ∆τ = 0.01. 
 
 

 

 
 

 
 

 
 

Figure 3. Snapshots of the modified radial component of 
the magnetic field  (data provided by T.  Sabaka).  rB~

 
The scaling factor α in the numerical experiment is 
determined by the ratio of the axial dipole coefficients 
of the observation and of the forecast: 
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Thus the axial dipole component is not assimilated , and   
since the dipole component is dominant in both surface 
observations and in numerical model outputs, the 
scaling (7) ensures that there is no significant field 
energy change before and after the analysis (2).  
Rescaling of state variables and/or observations is a 
standard practice in atmospheric data assimilation as a 
means to deal with complications in assimilation [8]. 
 
 

 
 

 
 

 
 

Figure 4.  Similar to Fig. 3, but are the snap shots of the 
free model run (no assimilation). But the color scale in 
this figure is  different from that in Fig. 3. 
 
In Fig. 3, we show the snapshots of the modified 
(dipole-less) radial component of the magnetic field at 
the top of the D”-layer:  
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From the figure one can observe clearly the small scale 
flux patches near the equatorial region.  
 
The numerical model outputs without data assimilation 
(also called the free model runs) at the same epochs are 
shown in Fig. 4.  From the figures one can easily 
observe that the free model runs are not at all similar to 
the observed field.  In particular, the field morphologies 
are completely different.  It should be pointed out here 
that the color scales in the figures are different, mainly 
to highlight the field configuration details.  
 
 

 
 

 
 

 
 

Figure 5.  Similar to Fig. 3, but are the forecast results. 
The color scale is identical to that in Fig. 3. 
 
The assimilation (2) is carried out at the interval ∆τ = 
0.001 (or every 20 years for the Earth’s core). The 
analysis is then used as the initial state for the model 
simulation between the two assimilations. Between the 



 

two assimilations, 4 forecasts are made for comparison 
with the observations.  The examples of the forecast are 
shown in Fig.5. 
 
From the figure one can observe clearly that the model 

he similarity between the forecast and the observation 

forecasts are very different from the free model runs 
shown in Fig. 4.  In particular, as the assimilation 
proceeds, the forecast is more similar to the observation.  
For example, the small scale field flux patches shown in 
the observation (Fig. 3) appear also in the forecast.  This 
is  particularly significant in the last panel of  Fig. 5.   
 
T
can also be demonstrated by the r.m.s. of rB~ at the top 
of the D’’-layer, as shown in Fig. 6. 
 

 
 

Figure 6.  The r.m.s. of for the observation (blue 
st

hile we can observe clearly the (positive) responses of 

. SYNTHETIC ASSIMILATION EXPERIMENTS 

Figure 7.  The differences between the poloidal field 

ur synthetic assimilation experiment shows that spin-

Fig he 

riables that cannot be observed at the 
 constraints on the surface 

 rB~

squares) and for the foreca  (red circles) at the top of 
the D’’-layer rd. 
 
W
the model to the surface observations from Figs. 5 and 
6, we could not assess the responses of the model 
solutions inside the core to the observations,  because 
the state variables inside the core are not observable, 
thus there is no reference for comparison.  In addition, 
the surface observation record is too short in 
comparison with the geological time, thus perhaps 
insufficient for examining the spin-up time for the OI 
(e.g. the history of assimilation).  To address these 
questions, we turn to synthetic assimilation. 

 
 
4

The synthetic data are created from a free model run 
with a different Rayleigh number. For example, in one 
experiment, the numerical solutions with R2 = 15000 are 
assumed to be the truth, and “synthetic” data are made 
from the solutions.  The model with the Rayleigh 
number R1 = 14500 is used for the forecast.  The details 
of the synthetic data assimilation shall be reported 

separately.  In this manuscript, we report some of the 
results related to our discussion. 

 
 

forecast and the truth in the vicinity of the CMB.  The 
red line is the r.m.s. of the difference between the free 
model runs and the truth; the green line is that between 
the forecast (with noise added to the observation) and 
the truth; the blue line  is that between the forecast 
(without noise in the observation) and the truth 
 
O
up time does affect the forecast significantly.  In Fig. 7 
we show the differences between the forecast and the 
truth of the poloidal field over the entire time domain.   
One can observe clearly that the difference between the 
forecast and the truth decreases with time, and is smaller 
than that between the free model run (no assimilation) 
and the truth.  In addition, the longer the spin-up time, 
the smaller the difference, as shown in Fig. 8. 
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observation.  For example, in Figure 9 are the 
differences between the forecast of the toroidal field to 
the free model run, and between the forecast and the 
truth.   From the figure we can observe that the 
difference between the forecast and the free model run 
increases in time.  However, the difference between the 
forecast and the truth also increases in time,  though at a 
slower rate.   Thus the test results are insufficient to 
assess the responses of other state variables to the 
observed poloidal field. 
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 ensemble covariance 
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