

Derivation of local crustal magnetization using multiple altitude magnetic data

Yoann Quesnel, Benoit Langlais and Christophe Sotin

1st SWARM International Science Meeting

Thursday, May 4th, 2006

Outline

- · Method
- Aeromagnetic case (synthetic and raw data)
- Satellite case (MGS martian data and Swarm simulated)
- Conclusions

Method

A priori parameters

Method

Forward models: uniformly magnetized spheres, cylinders (Blakely, 1995) and prisms (Plouff, 1976; Talwani, 1965).

Generalized non-linear inversion (Tarantola and Valette, 1982)

Input: B_r , B_{θ} , B_{ϕ} or ΔB anomaly

Unknown parameters : moment (mx, my, mz or m) and location (x, y, z) of one or several dipoles

Process: generalized non-linear inversion (Tarantola et Valette, 1982) $\rightarrow a \ priori$ parameters and associated Standard Deviations (SD)

Criterion: convergence and smallest χ^2

A posteriori tests: rms residuals, gaussian distribution

Synthetic aeromagnetic data

Quesnel, Y., Langlais, B. and Sotin, C.

Synthetic aeromagnetic data

Inversion of synthetic 1 dipole profile

A priori depth SD = 0.1 km

A priori depth SD = 1 km

Other results:

 \rightarrow A priori data SD must be proportional to the measurement noise

 \rightarrow Other *a priori* parameters SDs need to be large enough

Raw aeromagnetic data

Area: metamorphic complex of Champtoceaux (Armorican Massif, Western France)

Data: total-field 120 m magnetic measurements (summer 1998, BRGM, GéoFrance3D Armor2 program)

1st SWARM International Science Meeting

Raw aeromagnetic data

Comparison between forward and inverse models for profile A

	Lat. (°N)	Lon. (°E)	z (km)	M* (A/m)	Fit			
	47.47	-1.91	3.8	5.8				
Spheres	47.38	-1.92	9.8	-1.5	82 %			
	47.60	-1.89	9.8	-1.5				
	47.46 / 47.48	-1.91 / -1.89	1.8 / 4.0	8.0				
Prisms	47.30 / 47.38	-1.95 / -1.85	8.0 / 12.0	-2.0	83 %			
	47.57 / 47.67	-1.95 / -1.85	8.0 / 11.6	-2.0				
Cylinders	47.47	-1.90	4.0	3.0				
	47.35	-1.90	10.0	-1.5	84 %			
	47.63	-1.90	10.0	-1.5				
Dipoles	47.45	-1.91	3.4	4.4*				
	47.38	-1.92	10.8	-1.8*	95 %			
	47.60	-1.89	8.9	-1.3*				

* : magnetizations if the 3 dipoles correspond with the 3 spheres (r1=1.5 km, r2=r3=4 km).

Other results:

Comparison between measured and predicted magnetic anomaly field.

Interpretation of a seismic cross-section (Bitri et al., 2003)

 \rightarrow 4 to 8 A/m and 3.4 to 6.5 km from East to West \rightarrow same results as previous studies (Bitri et al., 2003 ; Gumiaux et al., 2003)

 \rightarrow mainly induced magnetization

1st SWARM International Science Meeting

Quesnel, Y., Langlais, B. and Sotin, C.

Martian satellite data

Rms observations compared to rms residuals of each model

rms		rms residuals (nT)							
			AB	Inversion					
	measurements		forward	AB-A	MO-A	AB-A + MO-A	All AB and		
(nT)		models	subset	subset	subsets	MO subsets			
	br	353	98	90	223	125	123		
AB	bt	278	112	99	181	108	112		
	bp	96	77	85	61	80	78		
	br	54	37	38	16	20	23		
MO	bt	37	33	36	14	24	27		
	bp	36	30	31	17	18	19		

 \rightarrow combined AB+MO data inversion gives the best fit to the AB and MO signals

Quesnel et al., 2006, PSS

 \rightarrow Other results: large magnetization (~50 A/m) and depth (~55 km) of investigated magnetized sources

Synthetic Swarm data

Minimum space interval to distinguish 2 adjacent lithospheric magnetized sources?

Lat. (°N)	Lon. (°E)	z (km)	r (km)	M (A/m)	I (°)	D (°)
45.0	0.0	40.0	35.0	40.0	63.4	0.0
46 ± 1	0.0	40.0	35.0	40.0	64 ± 2	0.0

10°

0

340"

350

10

15

20°

Thursday, May 4th, 2006

25

20

20*

nT

1st SWARM International Science Meeting

 B_{ϕ}

340

350

Synthetic Swarm data

Inversion parametrization:

- input data = B_r , B_{θ} and B_{ϕ} anomaly components
- 1 nT a priori data SD (= gaussian noise)

	Lat. (°N)	Lon. (°E)	z (km)	r (km)	M (A/m)	I (°)	D (°)	
Tuitial and all	45.0	0.0	40.0	35.0	40.0	63.4	0.0	
Initial model	47.7	0.0	40.0	35.0	40.0	66.5	0.0	
Suuran C	45.2	-1.4	35.7	35.0	-259.0	58.0	0.0	
Swarn-C	45.2	-1.2	47.0	35.0	325.0	65.0	0.0	
	44.9	1.2	38.7	35.0	31.2	62.0	-0.1	Inversior
owarm-A or B	47.2	-0.2	41.2	35.0	39.0	73.0	0.1	(results
Swarm-	44.9	1.2	37.8	35.0	33.4	63.0	0.0	
A (or B) + C	47.4	-0.4	41.0	35.0	37.3	74.7	0.0	

$\lambda_1 = 45^{\circ}N \ \lambda_2 = 47.7^{\circ}N \rightarrow \Delta \sim 300 \text{ km}$

Synthetic Swarm data

Inversion parametrization:

- input data = B_r , B_{θ} and B_{ϕ} anomaly components
- 1 nT *a priori* data SD (= gaussian noise)

	$\lambda_1 =$	45°N	$\lambda_2 = 46$	5°N −	$\rightarrow \Delta \sim 2$	170 km		
	Lat. (°N)	Lon. (°E)	z (km)	r (km)	M (A/m)	I (°)	D (°)	
Twitial model	45.0	0.0	40.0	35.0	40.0	63.4	0.0	
Initial model	46.5	0.0	40.0	35.0	40.0	64.6	0.0	
Swarm (44.9	-0.8	45.6	35.0	295.1	63.9	0.1	
Swarn-C	44.8	-1.2	35.5	35.0	230.5	60.4	-0.1	
	44.7	-1.0	35.9	35.0	-301.2	60.1	-0.1	Inversio
Swarm A or B	44.8	-0.8	45.6	35.0	365.3	63.4	0.1	(results
Swarm-	46.5	-0.6	39.0	35.0	35.6	69.2	0.0	
A (or B) + C	44.7	1.3	37.9	35.0	34.5	64.2	0.0	

Conclusions

• the method works for aeromagnetic and/or satellite altitude magnetic measurements

- needs for realistic a priori parameters and SDs
- it can be used with Swarm measurements to detect sources as close as ~ 170 km

Future work...

perform more tests to confirm these preliminary results

application to real Orsted, CHAMP or Magsat measurements