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Introduction




The large-scale convection and currents in the
Earth’'s magnetosphere
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The magnetosphere field-aligned currents

2 main systems of field-aligned currents:

1. J,~-Region 1 provides coupling between the solar wind and the
magnetosphere-ionosphere system (direct in the dayside and indirect in the
nightside during substorm activity)

2. J,~-Region 2 provides coupling between the inner magnetosphere and the
lonosphere

Important Questions

* Changes of the large-scale field-aligned currents (position/intensity) with
respect to solar wind conditions

* Electrodynamics of small-scale structures (reconnected flux tubes in the
dayside, auroral arcs in the nightside)

* Discrimination between sheet and tube patterns for meso-scale structures
such as cusp injections




Method




Derivation of the parallel currents from measurements

along the orbit of a single satellite

At low-altitude (Drsted, Champ, FAST): |v. | >> |v|

1. Substracting the Earth’s internal magnetic

field: b= Bmeasured - Bmodel

2. Assumption: currents distributed in infinite
uniform sheets

3. Direction of the current sheet given by the
orientation of b

4. Intensity of the parallel current:
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with : v, =v_ sin A

- the method fails if the orbit is parallel to the current sheet



1. S

field: b=B

Derivation of the parallel currents from measurements
along the orbit of a single satellite

At mid-altitude (Cluster at perigee) : |v .| ~ |vg|

ubstracting the Earth’s internal magnetic
B

measured =~ =~ model

2. Assumption: currents distributed in infinite

u
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4. Intensity of the parallel current:
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Historical background




Initial determination of the large-scale field-aligned currents pattern
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* First statistical study by lijima and
Potemra (1976) from the TRIAD satellite

- First observation of the J,-Region 1 and
J,-Region 2 pattern

« Statistical study for all IMF conditions
(similar results for IMF-Bz < 0 conditions)

B Currents into ionosphere - downward
Currents away from ionosphere - upward



Dayside large-scale field-aligned currents distribution
for different IMF conditions
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lonospheric closure of the large-scale field-aligned currents
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 lonospheric convection: E=-V x B

 Large-scale field-aligned currents are closed in the lower ionosphere by horizontal
Perdersen currents J, (flowing parallel to the ionospheric convection electric field)

 Hall currents ... (flowing perpendicular to the ionospheric convection electric field)
are also generated by the medium anisotropy



Results (1)
Large-scale field-aligned currents:
position and intensity during a
geomagnetic storm




Region-1 of currents as a measure of the solar wind coupling with
the magnetosphere during a magnetic storm — 29-30/05/2003
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Region-1 of currents as a measure of the solar wind coupling with
the magnetosphere during a magnetic storm — 29-30/05/2003
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- Intensity of the J,-Region 1 deduced
from a series of successive passes of
CHAMP in the 1500 MLT sector

- Factor 7 between FAC intensity during
storm and during quiet period

- Location and width of the J,-Region 1
- 10-12° equatorward shift during storm

- Factor 3 between region width during
storm and during quiet period

- Dst index monitoring the magnetopause
and ring currents

- Delay of the Dst response with
respect to the J,-Region 1 response



Region-1 of currents as a measure of the solar wind coupling with
the magnetosphere during a magnetic storm — 29-30/05/2003

Conclusions

« J,-Region 1 properties during the magnetic storm:
(13 successive passes of CHAMP from 13:15 UT on May 29 - 07:40 UT on May 30)

typical intensity larger than 3,5 A/m

associated magnetic perturbations larger than 1000 nT
10-12° motion toward lower latitudes

10° width

s Dramatic quantitative changes of J,~-Region 1

- Dayside J,-Region 1: good monitor of the magnetic storm intensity

- initial response of the magnetosphere to the solar wind

Hanuise et al., Ann. Geophys., 2006



Results (2)
Electrodynamics of auroral
structures in the dayside and
nightside magnetosphere

1. Reconnected flux tube in the dayside
(see poster Cerisier et al.)

2. Auroral arc in the nightside




Electrodynamics of an auroral arc — 12/01/2000
convection and precipitation
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Electrodynamics of an auroral arc — 12/01/2000
Modelled latitudinal profile of Pedersen conductivity - @rsted pass
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Electrodynamics of an auroral arc — 12/01/2000
Modelled longitudinal profile of convection - FAST pass

FAST Precipitating electrons
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Electrodynamics of an auroral arc — 12/01/2000
Conclusions

* Full description and model for a meso-scale nightside arc

FAST:
1D structure of the arc — 1D model valid

Orsted:
2D structure of the arc — deficiencies of the 1 D model
— lack of FACs entries for the 2D model

SWARM could have solved the problem

« Electrodynamics

- FACs controlled jointly by conductivity and electric field gradients

- Divergence of the Pedersen currents maintained without
convection shear during the FAST pass

Marchaudon et al., Ann. Geophys., 2004



Results (3)
Test of the infinite current sheet
hypothesis in the field-aligned
currents calculation

(see also poster Cerisier et al.)




Test of the field-aligned currents determination for
dayside meso-scale structures (cusp injections)

Method: variance analysis of the
magnetic signal

Two parameters to discriminate between
sheet and tube structures :

1. Angle a: direction of the eigenvector
associated with the largest eigenvalue of
the covariance matrix

2. Ratio r: between intermediate and
largest eigenvalues

Infinite current sheet structure:
r =0 and a = cst

Current tube structure:
r >0 and a oscillating

Application on Cluster data in the

mid-altitude cusp (Cluster perigee)

10/09/2002 15:00-18:00 (T96)

IMF = [ 5.0 =5.0 =3.0 ] nT
Ram Press = 2.0 nPa
DST = —-SnT

Z GSM, Re

L Cluster2
L Cluster4

—5 1 1 1 1 [ 1 A A A 1 1 1 1 1 1 1
-5 0 5 10 15
X GSM, R

Parallel Currents calculation:
Jpart = Je- + Ji
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Test of the field-aligned currents determination for
dayside meso-scale structures (cusp injections)

Cluster- 4 (10/09/2002)
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* Cusp injectio\n/
sheet-like structure
» Sheet hypothesis valid
* V,, not zero and rotation

* Joa @nd J ., not consistent

(2)

» Cusp injecti(?ﬁ
tube-like structure
» Sheet hypothesis not valid

*Joar @nd J ., not consistent

3

* End of Cusp\iﬁjection
sheet-like structure

» Sheet hypothesis valid

* Joat @nd J; ., consistent

Marchaudon et al., to be submitted, 2006



Conclusions

Science point of view

* Region-1 of field-aligned currents is a good monitor (extremely sensitive)
of the solar wind activity

* Meso-scale auroral structures generate a large part of the convection
and of the currents existing in the magnetosphere-ionosphere system

* Tube-like current structures of the injections in the cusp region

Instrumentation point of view

* Properties of field-aligned currents at different altitudes with magnetic
conjunctions between low- and high-altitude satellites (drsted, Cluster)

 Field-aligned currents pattern with respect to IMF directions with
magnetic conjunctions between several low-altitude satellites (Champ,
Jrsted)

* Need plasma data in the magnetosphere and/or in the ionosphere to
complete the electrodynamics picture




Perspectives with the SWARM Mission

« Curlometer technique applied to field-aligned currents with
SWARM A and B:

2D reconstruction of the auroral electrodynamics
- 2D field-aligned currents with SWARM
- 2D electric field pattern with SuperDARN

« Symmetry and asymmetry of the field-aligned currents pattern
with SWARM A, B and C:

- dayside/nightside pattern
- dawnside/duskside pattern with respect to IMF conditions




