Swarm and Gravity

Possibilities and Expectations for Gravity Field Recovery

Christian Gerlach (1)

P.N.A.M. Visser (2)

- (1) Institute for Astronomical and Physical Geodesy, TU Munich
- (2) Department of Earth Observation and Space Systems, TU Delft

Representation of the Gravity Field and Spaceborne Observations

Methodology for Error Analysis

- error propagation using transfer coefficients
- full simulation based on ...
- energy integral method

Use of Swarm for Gravity Field Recovery

Simulation Results

Gravity Field and Spaceborne Observations

Representation of the gravity field in terms of spherical harmonics (sh)

On the sphere:

Gravity Field and Spaceborne Observations

Along the orbit:

$$V(r,u,\Lambda) = \frac{GM}{R} \sum_{l=0}^{L_{\text{max}}} \left(\frac{R}{r}\right)^{l+1} \sum_{m=-l}^{l} \sum_{k=-l}^{l} \overline{K}_{lm} \overline{F}_{lmk}(I) e^{i(ku+m\Lambda)}$$

orbit coordinates:

- r geocentric radius
- *u* argument of latitude
- Λ longitude of asc. node
- I inclination

Gravity Field and Spaceborne Observations

Representation along the orbit for arbitrary functionals f^{*} :

$$f^{\#}(r,u,\Lambda) = \sum_{m} \sum_{k} A^{\#}_{mk} e^{i(ku+m\Lambda)}$$

with lumped coefficients $A_{mk}^{\#} = \sum_{l} H_{lmk}^{\#} \overline{K}_{lm}$ for example: *f*: cionts $H_{r-k}^{\#}$ $H_{lmk}^{\#} = \frac{GM}{R} \left(\frac{R}{r}\right)^{l+1} \overline{F}_{lmk}(I)$

Vwhere # can be, e.g., gravitational potential gravity gradients V_{ii} (GOCE) orbit perturbations Δx (CHAMP) range, range rate $\rho, \dot{\rho}$ (GRACE)

Representation of the Gravity Field and Spaceborne Observations

Methodology for Error Analysis

- error propagation using transfer coefficients
- full simulation based on ...
- energy integral method

Use of Swarm for Gravity Field Recovery

Simulation Results

Methodology – Error Propagation

- based on error models of the observations
- using specific transfer coefficients $H^{\#}_{lmk}$

Methodology – Full Simulation

- based on energy integral \implies pseudo observation V, ΔV
- using time series of observation errors

Methodology - Energy Integral (one satellite)

Energy conservation law

$$E_{kin} + E_{pot} = const.$$

iapg

Methodology - Energy Integral (proof of concept)

Global gravity models by IAPG using CHAMP data (empirical errors wrt. EIGEN-GRACE02S)

Methodology - Energy Integral (two satellites)

Relative motion between satellites

Representation of the Gravity Field and Spaceborne Observations

Methodology for Error Analysis

- error propagation using transfer coefficients
- full simulation based on ...
- energy integral method

Use of Swarm for Gravity Field Recovery

Simulation Results

Swarm and Gravity - Constellation

Observation: GPS-baseline between satellites Ζ **Geometry:** along-track (KBR, scalar) **GRACE A-B:** Β cross-track (GPS, vector) Swarm A-B: ~ radial (GPS, vector) Swarm A-C: С Δ/B

Swarm and Gravity Use of GPS-Baseline Observations

(1) Error propagation using transfer coefficients for potential gradients V_x , V_y , V_z

For short baselines:

$$\Delta V / \| \Delta x \| \approx V_x$$

(2) Full simulation using energy integral for potential differences

 $\Delta V_{along-track}$ $\Delta V_{cross-track}$ ΔV_{radial}

Swarm and Gravity Along-Track Gradient vs. Potential Differences

Approximate gradient

potential difference along simulated orbit

Along-track gradient

sh-synthesis using transfer coefficients $H_{lmk}^{\#}$

Representation of the Gravity Field and Spaceborne Observations

Methodology for Error Analysis

- error propagation using transfer coefficients
- full simulation based on ...
- energy integral method

Use of Swarm for Gravity Field Recovery

Simulation Results

Gravity Field Gradients

SH-Error Characteristics from Different Observation Directions

iapg

SH-Error Characteristics from Different Observation Directions

along-track

cross-track

SH-Error Characteristics Along-track simulations vs. real data (GRACE)

error propagation

full simulation

EIGEN-GRACE02s (GFZ)

GPS inter-satellite baseline Test case: GRACE

High-pass filtered GRACE inter-satellite ranging From KBR From GPS

1. Swarm Science Meeting May 3-5 2006, Nantes

iapg 👽

GPS inter-satellite baseline Test case: GRACE

1. Swarm Science Meeting May 3-5 2006, Nantes

iapg **DEOS**

Simulation results

Time line of geopotential missions

Data distribution during the mission life time

Concluding Remarks

- Gravity field recovery with Swarm is possible
- Continuation of decade of gravity field mapping possible (but, with reduced accuracy)
- Radial component most sensitive at end of mission (but, bad visibility)
- Simulation must include full GPS-simulation (visibility)
- Realistic error estimates for GPS?
- Different analysis methods possible (not necessarily energy integral)

