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ABSTRACT 

The CHAMP satellite, launched in 2000, has provided 
an enormous increase in accuracy of global satellite-
only gravity field models. It is equipped with a GPS 
receiver for continuous 3-D positioning and an 
accelerometer to measure the non-gravitational forces. 
The three Swarm satellites are very similar to CHAMP. 
Therefore they are, in principle, also usable for gravity 
field recovery. Actually the expected accuracy cannot 
compete with the dedicated gravity field missions 
GRACE (launched in 2002) and GOCE (to be launched 
in 2007). Still it is worthwhile to investigate the 
potential of Swarm, especially considering the time 
line of the different missions. We will present general 
ideas on how to use Swarm for gravity field 
determination and results of error simulations based on 
a formal error propagation and a closed-loop 
simulation using the energy integral. 
 
1. INTRODUCTION 

The satellite mission CHAMP was the first satellite to 
carry both a GPS receiver for precise continuous 3-D 
positioning of the satellite and an accelerometer to 
allow the separation of gravitational and non-
gravitational forces. This way CHAMP provided an 
enormous increase in the accuracy of global satellite-
based gravity field models. The mission can thus be 
seen as a proof of concept for the following missions 
GRACE (in orbit since 2002) and GOCE (to be 
launched in 2007). All of these satellite missions fly in 
low altitude (around 450 km in case of CHAMP and 
GRACE and around 250 km in case of GOCE) in polar 
or near polar orbits. GRACE consists of two CHAMP-
like satellites, which follow each other in the same 
orbit with a distance of about 200 km. In addition to 
GPS receivers and accelerometers  the satellites are 
equipped with a microwave ranging system (K-Band 
ranging = KBR), which allows the measurement of the 
inter-satellite range with μm-accuracy. This way 
GRACE provides a much higher accuracy and spatial 
resolution of the derived gravity fields as CHAMP. The 
primary goal of GRACE is the detection of temporal 
variations of the long wavelength part, up to about 
degree l ≈ 20-30 (spatial resolution around 1000 up to 
700 km). These variations are due to mass transport in 

the Earth system, e.g. changing water storage over the 
continents. The primary goal of GRACE is to monitor 
such variations. In contrast to this, GOCE is designed 
to determine a static field only, but with a much higher 
spatial resolution as GRACE, i.e. up to l ≈ 250 
corresponding to resolutions below 100 km. The 
GOCE satellite carries three pairs of very precise 
accelerometers. In differential mode they allow to 
derive gravity gradients in three orthogonal directions. 
GRACE and GOCE are complementary missions, 
improving both the temporal and the spatial resolution 
of the gravity field. For further details on these 
missions we refer to [1]. 
The Swarm mission consists of three CHAMP-like 
satellites. Each carries a GPS receiver and an 
accelerometer. Two of the satellites fly in low orbit 
(altitude of 450 km, similar to CHAMP and GRACE) 
next two each other (line of nodes of the respective 
orbital planes differ for about 1 degree). The third 
satellite orbits the Earth in 530 km altitude. In the 
beginning of  the mission all three orbit panes will be 
more or less identical. Due to a slightly different 
inclination the orbit plane of the third satellite will drift 
away from the others, reaching a separation of  around 
130 degrees after 5 years mission duration (see [2]). 
Using space-borne differential GPS one can determine 
the relative position vector between each of the three 
Swarm satellites. These GPS baselines can be used as 
observations for gravity field recovery. Just as pointed 
out in [1] this allows to derive a gravity field model 
tied to the Swarm mission allowing to derive optimal 
orbit positions and non-gravitational accelerations for 
atmospheric density studies. The objective of this paper 
is to give an estimate for the gravity field accuracy, 
which can be expected from Swarm GPS baselines. 
These relative positions can be determined with about 
one order of magnitude higher accuracy, than the 
absolute positions derived, e.g. for CHAMP (absolute 
position accuracy of some few centimeters). In [1] it is 
shown that GPS baselines between the two GRACE 
satellites (relative position) can be derived with mm-
accuracy. 
In the next section we will give some general ideas and 
considerations regarding the orbit constellation and 
observation geometry for Swarm. Based on this, the 



 

methodology for the simulation studies is presented in 
section 3. Finally the results are discussed in section 4. 
 
 
2. GENERAL ASPECTS ON GRAVITY FIELD 

RECOVERY FROM SWARM 

As stated in the introduction, gravity field recovery 
from Swarm is based on the GPS baselines between the 
three satellites. Fig. 1 shows the Swarm constellation 
with satellites A and B in low orbit next two each other 
and satellite C about 80 km above these two. The red 
lines indicate the GPS baselines. It is obvious from Fig. 
1, that the baseline A-B gives cross-track information, 
while A-C and B-C give radial information. In general 
observations in different directions are sensitive for 
different parts of the spherical harmonic spectra. This 
will be shown in more detail in section 4. In contrast to 
the cross-track and radial geometry of Swarm, the 
GRACE-mission gives along-track information (the 
two satellites follow each other in the same orbit, one 
behind the other).  
 

 
 
Figure 1. GPS baselines between the 3 Swarm 
satellites. 
 
 
The satellite constellation of Swarm will not stay fixed 
during the mission life time. This is due to (1) the 
different orbital altitudes and (2) slightly different 
inclinations of the orbit planes of satellites A and B as 
compared to C. Issue number (1) results in different 
orbital velocities of satellites A/B and C. Therefore the 
baselines A-B and B-C will not always be in radial 
direction. This is indicated in Fig. 2. The baseline will 
in general be a combination of radial and along-track 
components (in extreme cases pure radial or pure 
along-track). At certain epochs it will even not be 
possible to determine the GPS baseline at all, since 
about 5-6 GPS satellites need to be in common view. 

One might be able to derive the A-B and A-C baselines 
only during ¼ of the mission. At least this holds for the 
beginning of the  mission, when all three orbit planes 
are close. Since the plane of satellite C will drift away 
from the others during the mission life time, the visibi- 
 

 
 

Figure 2. Time varying observation geometry. 
 
lity will be further reduced. In addition the A-C and B-
C baselines will then also contain a cross-track 
component. In contrast the A-B baseline will not 
change during the mission and there should always be 
enough GPS satellites in common view. In this respect 
the Swarm A-B situation is very similar to the GRACE 
constellation with two close satellites.  
As indicated in section 1 the GRACE baseline can be 
determined with an accuracy of about 1 mm, as 
compared to the very precise KBR measurement. 
Therefore one can assume a similar accuracy for the 
Swarm baseline A-B. Until now there are no results for 
such high-low GPS-baselines as Swarm A-C and B-C. 
Therefore, we use the same mm-accuracy as for the 
cross-track baseline. Pre-Swarm studies for such a 
constellation could be done using e.g. CHAMP and 
GRACE data or future GRACE and GOCE data. 
  
 
3. METHODOLOGY OF THE ERROR STUDY 

In order to give an estimate on the accuracy level, that 
can be expected from Swarm, two different strategies 
were used: 

(1) a pure error propagation 
(2) a full closed-loop simulation. 

Both strategies should give comparable results, where 
(1) gives formal errors, i.e. error variances per 
spherical harmonic coefficient and (2) gives empirical 
errors, i.e. differences of potential coefficients between 
input model and the retrieved field. Both strategies are 
explained in more detail in the following subsections. 
The results are shown in section 4. 
 
3.1. Error propagation 
 
The gravitational potential can be expressed as a series 
of spherical harmonics. In orbit coordinates this reads 
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with  being the orbit coordinates geocentric 
radius, argument of latitude and Earth fixed longitude 
of the ascending node, respectively; 

),,( Λur

lmK are the 
spherical harmonic coefficients (the unknowns in our 
case); )(IFlmk  is the so called inclination function (due 
to a rotation of the set of spherical harmonics to the 
orbit frame); R is the Earth’s radius and (l,m) denote 
the spherical harmonic degree and order. Following [3] 
we can write equation (1) in form of a 2D Fourier 
series 
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where  are linear combinations of potential 
coefficients of the same order m, the so called lumped 
coefficients 
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and  are the transfer or sensitivity coefficients of a 
specific gravity field functional, in this case the 
gravitational potential V, for which they read 
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Observing, e.g. the potential V one gets the lumped 
coefficients by way of a Fourier analysis (equation 2). 
Equation number (3) is then the linear model for the 
determination of the unknown potential coefficients 

lmK . The design matrix contains the transfer 
coefficients. If a noise model is available for the 
observations one can perform a pure error propagation. 
This can be done not only for the potential V, but for 
arbitrary gravity field functionals, say orbit 
perturbations, potential gradients, gravity gradients or 
ranges between satellites. The latter two cases can be 
used to simulate the expected accuracy for the GOCE 
and GRACE mission, respectively. Further details on 
the error propagation can be found in [4]. 
In the sequel we will make use of potential gradients to 
perform the error propagation for Swarm, i.e. we use 
the components of the gravitational acceleration vector 
in different observation directions. This is done, 
because we will use the so called energy integral 
method (see section 3.2.) in the closed loop simulation. 
This method gives potential differences VΔ  from the 
inter-satellite GPS baselines. For short baselines, as it 
is the case for GRACE and at least also for Swarm A-
B, VΔ is proportional to potential gradients, e.g. for 
the along-track component it holds 
 

xVxV ≈ΔΔ / ,                              (5) 
 

Where xΔ is the length of the along-track baseline. In 
case of GRACE, e.g., one can derive the along-track 
potential gradient , from Swarm A-B one gets the 
cross-track gradient . Swarm A-C and B-C can be 

approximated by the radial component z . Especially 
the latter approximation can only give qualitative 
information, since the A-C and B-C baselines might be 
considerably long and are in general combinations of 
along-track, cross-track and radial directions. Still the 
error propagation for potential gradients reveals 
interesting aspects of the error characteristics (see 
section 4). 
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3.2. Closed-loop simulation 
The closed-loop simulation is based on a “true-world” 
model of the global gravity field. This is used to 
integrate orbits of the three Swarm satellites. The 
resulting positions of the satellites A, B and C at 
identical epochs are then used to compute the GPS-
baselines, which in reality are the basic observations. 
Using these baselines, one can try to recover the “true-
world” model. In our computations the gravity field 
recovery is based on the energy integral method, 
already successfully applied to real CHAMP (see [5], 
[6]) and GRACE data (see [7]). The method (as applied 
to GRACE or Swarm) gives potential differences 

VΔ between two satellites from the relative velocity 
vector, i.e. from the first temporal derivative of the 
GPS-baseline (=relative position) vector. The energy 
integral is described in more detail below. In order to 
study the error behavior of Swarm, the GPS-baseline is 
contaminated with error time series, both for the 
baseline itself as well as for the relative velocity vector. 
In both cases white noise is used. Of course this 
scenario is not necessarily realistic, especially for the 
velocity, but we use white noise here as a first guess to 
estimate the order of magnitude one can expect. In 
future studies a more realistic error spectra will be 
used. 
 
Energy integral method 
The energy integral method is based on the energy 
conservation law, which states, that the sum of 
potential and kinetic energy is constant. The kinetic 
energy is proportional to the square of the satellite’s 
velocity, while the potential energy contains the 
desired gravitational potential V. In an Earth fixed 
reference frame the energy integral of a single satellite 
reads 
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where Z is the centrifugal potential, C is an unknown 
constant and the line integral in equation (6) sums up 
the effect of all non-conservative forces like air drag 



 

(measured by the onboard accelerometer) or tidal 
effects of Sun and Moon. All these forces are not 
subject to the current study. Therefore neither air drag 
nor tidal forces are included in the present simulations. 
However, in reality they can simply be included using 
equation (6). For reasons of simplification (neglecting 
the constant C for a moment) we may only consider the 
velocity vector and state, at the potential is a function 
of th

th
e absolute velocity  (and centrifugal potential), 

e. 
 

x&
i.

ZV −= 2

2
1 x& .                              (7) 

tes A
nd B) as function of the relative velocity vector

 
In a similar sense we can give the following equation 
for the potential difference (e.g. between satelli  
a  BA,x&Δ  
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several constellations 
re discussed in the next section. 

. SIMULATION RESULTS 

t very sensitive to the sectorial 
structures of the field.  

 
The potential differences between several points are 
used in an inversion step as pseudo observations to 
recover the potential coefficients of the gravitational 
field. The difference between the true-world model and 
the recovered field is the empirical error of the 
analyzed baseline. The results for 
a
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4.1.  Potential gradients 
Before we show the characteristics of the error spectra, 
let’s first take a look at the observations themselves. 
Fig. 3 (a-c) shows the along-track, cross-track and 
radial component of the potential gradient, 
respectively. It is obvious, that they reveal different 
parts of the gravity field. While the radial component 
seems to be more or less isotropic (no clear preference 
for different direction – only the high frequencies are 
amplified) the along-track and cross-track components 
show different sensitivity for different directions. The 
along-track component reveals East-West structures of 
the field (like the Himalaya massive), while the cross-
track contains mostly North-South structures (like the 
Andes – the Himalaya is hardly visible). For an 
intuitive explanation let’s consider an ellipsoidal 
gravity field (e.g. one like the normal reference field 
GRS80) with variations in latitude direction only: two 
satellites in cross-track mode (like Swarm A-B) would 
measure the same signal and therefore the gradient 
between them vanishes. Such a constellation is not 
sensitive to the zonal part of the spectra (coefficients 
with order m=0).  In contrast a GRACE-like along-
track constellation is no

As already discussed in section 3.1, the potential 
gradients shown in Fig. 3 are only approximations for 
the observed potential differences along GPS baseline 
vectors between different satellites. Still, Fig. 3 gives a 
qualitative description of what can be expected from 
different constellations. The actual error characteristics 
as derived from the pure error propagation as well as 
the closed-loop simulation are presented in the next 
section.  

 
 

 
(a) along-track gradient Vx 

 

 
(b) cross-track gradient Vy 

 

 
(c) radial gradient Vz 

 
Figure 3. Different components of the potential 
gradient. 

 
 
4.2. Qualitative description of error characteristics 

from potential gradients and potential 
differences 

 
To derive a qualitative description of the spherical-
harmonic error characteristics both, a pure error-
propagation (based on transfer coefficients of potential 
gradients) as well as a closed-loop simulation (based 
on the relative energy integral between two satellites) 
were performed. Fig. 4 shows the results in a matrix of 
triangle plots of the complete spherical harmonic error 
spectra. According to [3] only the radial component of 
the gradient is isotropic (only dependent on the 
spherical harmonic degree l; no preference for different 



 

directions), while the cross-track and along-track 
components are direction dependent. This is clearly 
visible from the triangles in the top line of Fig. 4. As 
already indicated in section 4.1, the along-track 
component is not very sensitive to the sectorial 
structures (coefficients at the left and right edges of the 
triangles), while the cross-track component is not sen-
sitive to the zonal part of the spectra (vertical line in 
the center of the triangles). The mid row of the triangle 
matrix shows the results of the closed-loop simulation. 
Even though the picture is not that clear as in the top 
row, the error characteristics are in principle the same. 
For comparison the bottom row shows the estimated 
errors of the EIGEN-GRACE02s model [8], derived by 
GeoForschungsZentrum Potsdam (GFZ) from real 
GRACE data, i.e. from an along-track constellation. It 

shows the same error structure, with less sensitivity for 
the higher sectorials. Apart from the different 
sensitivity of different constellations for different parts 
of the spherical harmonic spectra it is also worthwhile 
to notice, that the along-track and cross-track  
components are complementary and their combination 
reveals the same signal content in all parts of the 
spectra as the radial component alone.  
Comparing the different rows of the triangle matrix, 
one must take into account, that the spectra is shown 
with different resolution: while the error propagation 
(top row) was performed up to degree l=200, the close-
loop simulation was performed only up to l=70; the 
real model EIGEN-GRACE02s is shown complete up 
to degree l=150.

 
Figure 4. Qualitative comparison of sh-error characteristics for (a) error propagation, (b) closed-loop simulation and 

(c) real error estimates of GFZ’s EIGEN-GRACE02s model. The triangles show the number of significant digits, 
with red indicating high numbers (accurate result) and blue indicating only a low number of significant digits 
(recovered coefficients close to signal-to-noise ratio, SNR=1:1). Estimates which are not significant (SNR<1) 

 are not plotted at all. 
  

4.3. Quantitative analysis of GPS-baselines for 
gravity field recovery 
 
Based on error estimates for the GPS baseline vector a 
quantitative description of the expected accuracy of the 
recovered gravity field was performed. The error 
estimates for the relative position vector is 1 mm/s, 
which corresponds to the accuracy obtained by 
different groups (see [1] and [9]) for the GRACE GPS-
baseline. The accuracy in case of GRACE is verified 
against the microwave link between the satellites, 
which is about a factor 1000 more accurate that the 
GPS derived range. In case of CHAMP, the numerical 
differentiation of positions with cm-accuracy led to 
absolute velocities of about 0.1 mm/s accuracy. The 
CHAMP data sampling is 30 seconds, so the accuracy 
holds for smoothed values rather than for point values. 

Now for GRACE the relative position accuracy is 
about one order of magnitude higher than the absolute 
CHAMP positions. Therefore we assume in the 
simulation also an increase of one order of magnitude 
between the absolute and relative velocities, i.e. we 
assume the baseline velocity to have errors in the order 
of 0.01 mm/s. This is about 2 orders of magnitude 
worse, that the range-rate derived from GRACE KBR.  
The results of the full closed-loop simulation are 
shown in Fig. 5 by means of degree RMS values. The 
figure contains the Kaula-curve, indicating the gravity 
signal, along with several error curves for different 
observation scenarios. The ‘CHAMP’-curve is derived 
from a simulation with one satellite in an altitude of 
450 km and an absolute velocity accuracy of 0.1 mm/s. 
The ‘along’- and ‘cross’-curves show the results 
derived from two-satellite constellations also in 450 km 

 Along-track Cross-track Along + cross-track Radial 

(a) 

    

(b) 

    

(c) 

 

   



 

altitude but with relative velocity accuracy of 0.01 
mm/s. the ‘along’-constellation corresponds to GRACE 
(without KBR) and the ‘cross’-constellation 
corresponds to Swarm A-B. The combination of ‘cross’ 
and ‘along’ leads to the same accuracy as a pure radial 
constellation. This was already shown in section 4.3. 
Of course the radial component is sensitive to the orbit 
altitude: lower constellations will lead to a higher 
resolution of the gravity field than higher ones. The 
curve denoted ‘radial’ corresponds to a constellation 
with one satellite in 450 km and another in 300 km 
altitude, which might fit to the Swarm A-C or B-C 
baselines at the end of the mission life time. At the 
beginning of the mission, the lower pair is in an 
altitude of 450 km and the third satellite is in an 
altitude of 530 km. This constellation leads to the curve 
denoted ‘Swarm’. Obviously the swarm constellation is 
more sensitive to the higher degrees of the gravity field 
at the end of the mission life time as compared to the 
beginning. Unfortunately the orbit planes of the lower 
pair and the upper satellite will drift apart, leading to a 
decreased observability of the   A-C and B-C GPS-
baselines. Therefore there will be only less epochs 
available for gravity field recovery. In Fig. 5 all curves 
are scaled to one month of data. For comparison there 
are also two GRACE-KBR curves included. The 
‘KBR’ curve corresponds to a full simulation using 
KBR range-rates and indicates the GRACE baseline 
errors. This baseline is not yet reached with real data. 
The ‘GRACE’ curve is computed from the standard 
deviations given for GFZ’s model EIGEN-GRACE02s.  
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Figure 5. Degree errors for different constellations 

 
5. CONCLUDING REMARKS 

Each of the Swarm satellites is very similar to 
CHAMP. Therefore they can, in principle, be used for 
gravity field recovery. In contrast to CHAMP, where 
absolute GPS positions are the basic observations, 
Swarm allows to observe GPS-baselines between the 
three satellites, thus increasing the accuracy of the 
derived gravity field. The quality of the gravity field 
solution depends on the constellation (which baselines 

are used) and the altitude of the satellites. Close to the 
end of the mission life-time, the quality will profit from 
the low altitude, but suffer from bad observation 
geometry. The simulation contains this bad geometry 
only roughly: constraints were put on the spherical 
distance between satellites and the baselines were only 
used when this distance was not larger than a given 
limit. In order to make the whole simulation more 
realistic, a full GPS-simulation should be included.  
Of course Swarm cannot compete with the KBR-
accuracy of GRACE, neither with the projected 
baseline accuracy nor with the currently achieved 
results (which will probably converge towards the 
baseline in the future). But Swarm might become 
interesting considering the life-time of the different 
missions. GRACE might continue till 2010 or 2011, 
while CHAMP will probably last only till 2008. The 
GOCE mission is planned for the period 2007-2009. 
This means, that the launch of Swarm (planned for 
2010) is close to the end of the decade of dedicated 
gravity field missions. Without any direct follow-on 
missions, Swarm could continue this decade – of 
course with reduced accuracy. Further investigations 
need to be carried out to see, if Swarm could contribute 
in some way to temporal variations in the gravity field, 
such as semi-annual, annual or secular changes in the 
low spherical harmonics.  
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