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ABSTRACT 

We present a global 1-D conductivity model which is 
obtained by analysis of five years (2001-2005) of 
simultaneous magnetic data from the three satellites 
Ørsted, CHAMP and SAC-C. After removal of core and 
crustal fields as predicted by a recent field model we 
used non-polar scalar and vector observations from the 
night-side sector. These field residuals are interpreted in 
terms of a large-scale contribution from the 
magnetospheric ring current and its induced counterpart.  
We then derive transfer functions between internal 
(induced) and external expansion coefficients of the 
magnetic potential and provide globally-averaged C-
responses in the period range between 14 hours and 3 
months. Inverting the responses yields a 1-D 
conductivity model which is rather similar to those 
derived from ground-based data.  
 
1. INTRODUCTION 

Temporal variations of the Earth's magnetic field have 
long been used to infer global conductivity-depth (1-D) 
profiles of the Earth's mantle, mostly from continental 
geomagnetic observatories (cf. [1], [2], [3]). In contrast 
to the data from observatories, which are sparse and 
irregularly distributed (with only few in oceanic 
regions), data collected by satellites (such as Magsat, 
Ørsted, CHAMP and SAC-C) provide full coverage of 
the Earth's surface. This enables to derive a globally-
averaged conductivity profile which is not biased 
toward continental regions (as is probably the case for 
most observatory-based models). However, satellite 
data analysis is more difficult compared to observatory 
data for two reasons: First, low-orbit satellites move 
typically with a speed of 7-8 km/s and thus measure a 
mixture of temporal and spatial changes of the magnetic 
field. Second, satellites pass over both continents and 
oceans, and therefore the magnetic satellite data are 
affected by induction in the oceans [4]. In spite of these  
difficulties, a number of successful attempts have been 
made to probe mantle electric conductivity from space 
([5], [6], [7], [8], [9]). However, the results of previous 
satellite data analysis are generally more scattered than 
those obtained from observatory data. One of the 
reasons for this is shorter length of the satellite time-
series (1 year or less in most previous analyzes), which 
yields more noisier results compared to an analysis of 

the several decades of data that are available from 
ground observatories. 
 
In this paper we estimate C-responses (and a 1-D model 
of mantle conductivity) from a considerably extended 
satellite data set which includes five years of 
simultaneous magnetic field recordings from Ørsted, 
CHAMP and SAC-C satellites. 
 
2. DATA PROCESSING 

We use five years (2001-2005) of scalar and vector 
magnetic field measurements from the Ørsted and 
CHAMP satellites, and scalar magnetic field 
measurements from the SAC-C satellite. These data 
have been processed as follow. First, the core and 
crustal contributions as predicted by the CHAOS model 
[10] have been removed from the observations. As part 
of the CHAOS model, an improved alignment of the 
CHAMP vector data (i.e., the transformation from the 
instrument frame to the geocentric frame) was 
performed; for our study we used these improved 
CHAMP vector data.  In order to reduce the influence of 
ionospheric currents we only use night-side (magnetic 
local time between 18:00 and 06:00) and non-polar 
(dipole latitude equatorward of 50º) data.  The thus 
obtained magnetic field residuals, δB , are considered 
to contain the large-scale contribution from the 
magnetospheric ring-current and its induced 
counterpart. These residuals, Vδ ∇B = - , can be 
described via a magnetic scalar potential V , which is 
expanded in spherical harmonics 
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where = 6371.2 km is the mean radius of the Earth, a ϑ  
is geomagnetic colatitude,  are the associated 
Schmidt semi-normalized Legendre functions of degree 

 and order , 
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1ε  and  are the Gauss coefficients 

describing sources internal and external to the Earth, 
respectively, and  is the maximum degree of the 
expansion.  For this representation we assume an axially 
symmetric field (in dipole geometry), i.e. the expansion 
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only contains spherical harmonics of order . 
 

0m =

Estimation of the coefficients on an orbit-by-orbit basis 
is the usual approach when analyzing single satellite 
data. In this case the sampling interval of the recovered 
time series of 0

1ε  and  is given by the orbit period 
(approximately 1.5 hours). This approach is, however, 
not suitable for the analysis of simultaneous data from 
more than one satellite due to the lack of a common 
natural time basis (e.g., the satellites do not pass the 
equator simultaneously). This difficulty can be 
overcome by parameterizing the time dependency of the 
coefficients by cubic B-splines. This was previously 
done by [8], and the present study is an extension of this 
work, using essentially the same approach but a much 
larger data set. Spacing of the spline knots is 4 hours. 
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If available we used all three vector components; scalar 
data were only used if vector data were not available.  
Sampling interval of all data was 1 minute.  We 
estimated 4 external expansion coefficients, 0

1ε , and 4 
corresponding induced coefficients  ( ) using 
iteratively reweighted least squares with Huber weights 
[11]. As expected, the coefficients 

0
1i 1 4n = −

0
1ε  and  are the 

largest; only these coefficients will be used in the 
following analysis. However, we include an estimation 
of the higher degree terms in order to obtain unbiased 
values for the degree-1 coefficients 
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3. RESPONSE FUNCTIONS ESTIMATION 

1-D electromagnetic (EM) response functions are 
estimated as the frequency dependent transfer function 

( )Q ω  between the Fourier transformed time series 0
1ε  

and  
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where ω  is angular frequency.  We used the section 
averaging approach [3] to estimate 1( )Q ω . For 
comparison we also estimated the responses using the 
multi-taper spectral estimation technique [12] and found 
good agreement when using a fixed number (20) of 
tapers.  1( )Q ω  is finally transformed to the C-response 
[13] by means of 
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Tab. 1 lists our response estimates and squared 
coherency, coh2, between  and 0

1i
0
1ε . Fig. 1 shows these 

C-responses estimates together with results obtained by 
other studies.  The values of [3] are average responses 
from European observatory data; those of [14] are 

essentially the responses of [15] corrected for the ocean 
effect. (The initial responses of [15] have been derived 
from electric potential variations observed with 
submarine cables across the North Pacific Ocean, and 
magnetic field variations observed at nearby coastal 
observatories.)  Finally, the values of [9] are global 
response functions estimated from Magsat satellite data. 
 
Table 1. C-responses (in km) and squared coherencies 
coh2  for 17 periods (in seconds), derived from 5 years 
of CHAMP, Ørsted and SAC-C magnetic data. 
  

 
 
The responses are rather similar in the period range 
between 2 and 20 days, but reveal systematic 
differences outside this interval.  At periods greater than 
one month, the C-responses of [9] correspond to higher 
conductivity in the lower mantle, compared to the other 
presented responses. For periods less than a few days 
the responses of [14] exhibits a behaviour that suggests 
a rather resistive upper part of the mantle. On the 
contrary, our new satellite C-responses suggest 
increased conductivity at shallow depth, most probably 
due to induction in the oceans. A possible way to 
correct for the ocean effect is discussed in [16]. 
 
4. 1-D CONDUCTIVITY MODEL ESTIMATION 

Using the limited memory quasi-Newton (QN) 
algorithm of [17] we derived spherical 1-D conductivity 
models from the various C-response estimates. The 
spherical layer thicknesses increase with depth as a 
geometric series of step size 1.1, starting from a top 
layer thickness of 0.5 km.  Each model terminates with 
a infinitely conducting core at a depth of 2900 km. To 
efficiently calculate the misfit gradients we obtained 
analytical expressions for the derivatives of the 1-D 
response functions (see Appendix). The solution is 
stabilized by requiring minimum first derivative of 

T   Re C           Im C            Cδ           coh2

50700 
71600 

100900 
142300 
200600 
282900 
398900 
562400 
793000 

1118100 
1576600 
2222000 
3134400 
4419500 
6231500 
8786300 

   248           -266               24            0.83 
   407           -268               28            0.83 
   496           -221               31            0.83 
   614           -162               27            0.90 
   685           -149               30            0.91 
   734           -105               28            0.96 
   728           -134               37            0.93 
   764           -134               42            0.93 
   779           -187               50            0.93 
   801           -242               56            0.94  
   831           -259               62            0.93 
   892           -294               97            0.92 
   898           -239             148            0.86 
 1130           -281             194            0.83 
 1155           -237             201            0.91 
 1323           -269             253            0.84 

12388700  1310           -321             337            0.82   



 

log(conductivity) with respect to log(depth).   
 
For the considered 1-D problem this QN algorithm 
produces results that are very similar to those obtained 
with the Occam algorithm of [18]. However, we prefer 
to use the QN approach since it allows for imposing 
constraints on the model parameters (in our case 
log(conductivity)). In addition, we believe that the 
limited memory QN scheme is suitable for the 
(efficient) solution of the three-dimensional (3-D) 
inverse problems (cf. [19]) that we plan to perform in 
future. 

 
 
Figure 1. Satellite C-responses of this study together 
with results obtained by other studies. Symbols refer to 
response estimates, whereas the solid lines present 
responses of the respective models shown in Fig. 2.  
 
 
The regularization parameter α  of our inversion 
scheme describes the trade-off between model misfit 2χ  
and model smoothness.  α  is found by means of a 
cooling approach; starting from a large value of α , 
several inversions are performed with decreasing α  
until the model 2χ  reaches its target value (which 
depends on the assumed data errors). However, due to 
different ways of calculating data errors when deriving 
the various data sets we used a heuristic approach and 
selected α such that similar model smoothness is 
obtained. 
 
Fig. 2 shows the result of the inversion. Below 400 km 
depth the conductivity obtained from our satellite C-
responses is rather similar to that derived from ground-
based data. All models show a monotonic increase of 
conductivity from 0.03-0.08 S/m at z = 400 km depth to 

1 - 2.5 S/m at z = 900 km depth.  However, conductivity 
based on our new satellite responses is slightly (but 
systematically) higher at all depths below 400 km. 
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Figure 2.  1-D conductivity models derived from the 
various data sets shown in Fig. 1.  
 
Below 900 km the conductivities recovered from 
ground-based and our satellite responses are almost 
constant, as opposed to the large increase reported by 
[9]. To investigate this further, we inverted our satellite 
data in the time domain by estimating a 1-D 
conductivity model by direct inversion of 5 years of 
time series of the induced coefficients, , rather than 
the transfer function 

0
1 ( )i t

( )C ω . The thus obtained 
conductivity profiles appeared to agree well with those 
obtained from an inversion of the C-responses (see Fig. 
2). 
 
We also looked at the RMS misfit between the observed 
time series, , and predictions,  
where “*” stands for convolution, for various 
conductivity profiles from which we calculated the 
convolution kernel . All described profiles gave 
misfit values between RMS = 2.07 nT and 2.11 nT; only 
the conductivity model of [9] resulted in a larger misfit 
(RMS = 2.38 nT), which indicates that this model is less 
compatible with our satellite time series. 
 

0
1 ( )i t 0, 0

1 1( ) ( )= ∗predi t Q ε1 t

1Q

Above 400 km our conductivity model is more 
conducting compared to the other profiles. Note, 
however that correction of the data for induction in the 
oceans removes this difference [16].  
 
5. CONCLUSIONS 

We estimated C-responses in the period range between 
14 hours and three months from five years (2001-2005) 
of simultaneous magnetic data collected by the three 
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satellites Ørsted, CHAMP and SAC-C. 
 
Interpreting these responses in terms of mantle 
conductivity leads to values that are similar to those 
derived from ground-based data, at least for depths 
greater than 400 km. All models show a monotonic 
increase of conductivity from 0.03-0.09 S/m at z = 400 
km to 1 - 2.5 S/m at z = 900 km. However, our new 1-D 
model is slightly (but systematically) more conducting 
at all depths below 400 km. 
 
Inversion of our data does not favour an increase in 
conductivity (up to 100 S/m or higher) at depths greater 
than 900 km, as reported by [9] from an analysis of 
Magsat satellite data. 
 
At periods shorter than 7 days, satellite responses are 
most probably influenced by induction in the oceans and 
correcting the data for this effect is needed. A possible 
way to correct the data for the ocean effect is discussed 
in [16]. 
 
The results reported here are based on the assumption 
that mantle conductivity only varies with depth. Work is 
ongoing to detect lateral variations of mantle 
conductivity. The results of this effort will be the 
subject of a forthcoming publication. 
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APPENDIX 
 
We obtain in the Appendix analytical expressions for 
the derivatives of the 1-D response functions with 
respect to conductivities. We assume a spherical 
symmetric (1-D) conductivity section consisting of  
shells; within each shell the conductivity varies as  

N
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where 1 1 1, ,l l Nr r r r a r+ 0+< ≤ = = . The radial 
dependency of (A1) (e.g. [20]) is chosen to simplify the 
calculations. Since  can be taken as large as 
necessary, (A1) allows essentially the approximation of 
any radially symmetric conductivity section. For such a 
section the recurrence for calculating the response 
function (admittance), 

N

(lY Y r r )l≡ = , is given by the 
expression [21] 
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Here oμ  is the vacuum magnetic permeability, 1i = − , 

2 /Tω π=  is angular frequency, Т is period; we assume 
also that the time factor is i te ω− . Note that  at the 
Earth’s surface and  are connected to  as     
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By representing  Eq.  (A2) as 
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and using the chain rule we can write /l mY σ∂ ∂  as 
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with , 1,..., 1l l Nγ = + − , and where  
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Note also that / /N N NY rσ∂ ∂ = . For /nQ mσ∂ ∂  and 

/nC mσ∂ ∂  we have 
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Finally, derivatives 0

1 ( ) / mi t σ∂ ∂  (that are needed to 
invert ) can be obtained from  0
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by means of an inverse Fourier transform. 
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