Heritage

The Suprathermal Ion Imager (SII) is comprised of
(i) a hemispherical electrostatic analyzer that forms 2-D maps of low-energy ion distribution functions [Whalen et al., 1994],
(ii) a high-resolution CCD-based detector with a resolution of up to 256×256 pixels [Knudsen et al., 2003], 375 mm

The Canadian Electric Field Instruments on Swarm
D. J. Knudsen ${ }^{1}$, J. K. Burchill¹,2, L. Sangalli¹, M. Slaman ${ }^{1}$

1 - Department of Physics and Astronomy, University of Calgary, Alberta, Canada

Error Analysis
SII images allow estimates of:

- ion drift velocity \mathbf{v}_{i}
- ion temperature T
- ion density n
- anisotropies
- sensor-to-plasma potential $\left.\Phi_{\mathrm{S} / \mathrm{c}}\right\}$ using two ion species
- composition ratio

Velocity/electric field comparison (sub-orbital):

Orbital example: Freja Cold Plasma Analyzer
FREJA Mar 7, 1994 1657:00.000 Orbit 6838 PASS

Data reduction, radial/ram direction, orbital velocity:

The relations between ion signal position, bulk velocity, and sensor potential, and between ion signal width and ion temperature are determined through forward modeling using a Monte Carlo simulation and trajectory tracing through an electrostatic model of the sensor.

Velocity errors arising from non-uniform detector gain:

Above: Fitted cross-track velocity error as the SII O^{+}signal passes over a Gaussian-shaped gain depletion. $\mathrm{v}_{\mathrm{x}}=7.6 \mathrm{~km} / \mathrm{s}, T_{\mathrm{i}}=0.1 \mathrm{eV}$
Velocity errors arising from detector pixellation:

Above: Fitted cross-track velocity error as the SII O^{+}signal passes over a 16×16 pixel detector array. $\mathrm{v}_{\mathrm{x}}=7.6 \mathrm{~km} / \mathrm{s}, T_{\mathrm{i}}=0.1 \mathrm{eV}$.

Above: Total r.m.s. error including statitical errors from particle counting for O^{+}ions with density $10^{4} \mathrm{~cm}^{-3}, \mathrm{v}_{\mathrm{x}}=7.6 \mathrm{~km} / \mathrm{s}$, and $T_{\mathrm{i}}=0.1 \mathrm{eV}$. Integration time $=10 \mathrm{~ms}$

Primary Science:

- Lithospheric magnetization

3-D electrical conductivity of the mantle

- Magnetospheric and ionospheric current systems

Mission
Flight: 2010-2014

circular polar orbit
2 satellites at $\sim 400 \mathrm{~km}, 10$'s km cross-track separatio can measure full vertical component of $\nabla \times B$

- 1 satellite at 530 km 3-9 hours away in IT

Performance of the Electric Field Instrument (SII-based):

$\mathrm{I}_{\mathrm{i}}, I_{\mathrm{e}}$
ExH
references
万,

Knudsen, D. J., J. H. Clemmons, and J. E. Wahlund, J. Geophys. Res, 103 , p4171, 1998.
Whalen, B. A. et all, The Freja Cold Plasma Analyzer, Space Sci. Rev, 70, p541-561, 1994. CKNOwLEDGEMENTS: The SII/FI development has been made possible through

 ment development team: J. Aase, K. . Bers, T. Cana
E. P. King I. . Wevers, R. A. King, and A. W. Yau.

