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ABSTRACT/RESUME 

Recently developed data assimilation techniques have 
improved time-dependent estimates of the neutral 
atmospheric density, making it possible to better 
estimate the drag perturbation force on low-Earth-
orbiting satellites. These new systems primarily use 
surveillance of a satellite’s orbital parameters to 
determine the neutral density along the satellite’s flight 
path. A limitation to satellite surveillance comes from 
the need to observe each satellite over long periods 
(hours) to determine the satellite’s average acceleration 
change. This limitation in temporal and spatial 
resolution translates into limited resolution in the data 
assimilation solution. In situ data, on the other hand, 
provide density measurements with a substantially 
increased temporal and spatial resolution. Evaluations 
show that, even though the global coverage from in situ 
sources is typically limited (usually 2 or fewer satellites) 
as compared with a constellation (50+) for satellite 
surveillance, the higher temporal and spatial resolution 
of in situ data minimizes errors and increases the 
resolution of the data assimilation output. Furthermore, 
the higher temporal and spatial resolutions of in situ 
data are shown to be especially important during 
geomagnetic storms when changes in the neutral density 
can occur on a minute-to-minute basis. Results of the 
data assimilation system are used to compare the use of 
satellite surveillance and in situ data with emphasis on 
CHAMP data. 
 
1. INTRODUCTION 

After the oblateness of the Earth, atmospheric drag is 
the second most significant natural perturbation force 
affecting satellite trajectories for low-Earth-orbiting 
(LEO) (<1000 km) satellites [1].  Further more, since 
the neutral atmosphere (95 to 500 km altitude) is 
constantly changing, estimating the drag perturbation 
has the largest uncertainty.  The total neutral density 
affects a satellite’s trajectory through the drag force 
described as 
 
 mAC relrelDdrag vva ρ−= 2

1  (1) 
 
where  is the perturbing acceleration, Cdraga D is the 
dimensionless value for the drag coefficient and 
dependent on the shape of the satellite, A is the 
satellite’s cross-sectional area, and m is the mass of the 
satellite.  The vector, , represents the satellite’s 

velocity relative to the atmosphere, and ρ is the total 
mass density of the atmosphere.  Although difficulties 
arise in estimating all of the terms in the drag force 
equation (1), the density term, ρ, is often among the 
largest sources of uncertainty.  Any improvement in 
estimating of ρ would significantly improve the drag 
estimate and consequently improve one’s estimate of 
the other orbital parameters, as tests have shown [2,3].  
One should note that equation (1) is a simplification of a 
much more complicated process of translating the 
atmospheric density into the amount of force 
experienced by the spacecraft.  At the altitudes 
discussed in this paper, equation (1) is complicated 
when applied to rarified and ionized gases.  Spacecraft 
shape and constantly changing orientation further 
complicate the translation from density to drag.  The 
research presented here will only discuss estimating the 
density, ρ.  Translating ρ to perturbing acceleration is 
beyond the scope of this paper. 

relv

Empirical, or static models, of the upper atmosphere, 
like the Jacchia 70 [4], Jacchia 77 [5], the Mass 
Spectrometer and Incoherent Scatter Extension (MSIS-
E-90) [6, 7, 8] and the Naval Research Laboratory 
MSIS (NRLMSIS-00) [9] models, are a convenient way 
to represent ρ.  These models provide a quickly 
calculable empirical solution according to a 
combination of defined and observed parameters, based 
on a statistical representation of the neutral atmospheric 
density obtained from years of satellite, rocket, and 
ground observations.  Unfortunately, because the 
empirical model is statistical representation of the 
climate over a long period of time (years, months), they 
may not appropriately represent unusual, short-term 
features (hours, minutes) in the upper atmosphere.  The 
complex process of heating in the upper atmosphere, 
which is further complicated during geomagnetic 
storms, often produces unusual features that may not be 
aptly described empirically.  Recent studies [10] 
indicate that the required density correction for 
NRLMSIS-00 has reached 30% at 200 km altitude and 
70% at 600 km altitude, for example. 

The simulation presented in this research uses MSIS-E-
90 to provide the nominal state vector in the batch least 
squares process.  Both empirical models, MSIS-E-90 
and Jacchia 70, provide temperature, from which the 
density at a given altitude can be obtained [11].  For the 
scope of this study, either model could have been 
chosen.  Although Jacchia 70 is used in the High 
Accuracy Satellite Drag Model (HASDM) [11], MSIS-



 

E-90 is chosen to represent the nominal state due to its 
ease of use in the least squares solution software. 

One should keep in mind that, although empirical 
models may be imperfect, these models still provide the 
best representation of the neutral density without recent 
observations.  With recent observations, however, the 
current best representation can be further improved my 
implementing a least squares solution, which calculates 
a solution for the state based on the minimization of the 
sum of squares of the observation errors [12, 13, 14], to 
make the statistically optimal correction.  The results 
will show that the neutral atmospheric density can be 
specified to a high accuracy by making corrections to an 
empirical model using either ballistic coefficient 
estimation or in situ measurements through the batch 
least squares solution.  The two observing platforms, 
ballistic coefficient estimation and in situ 
measurements, will be compared by quantifying how 
well each can reproduce a defined ‘truth’ neutral 
atmosphere according to each observing platform’s 
mechanics and satellite definitions.  The quality of the 
least squares solution in reproducing the ‘truth’ file will 
be scored on its root mean square error, to provide a 
globally averaged error as an indication of how well the 
solution matches the true neutral density structure. 
 
2. OBTAINING THE DENSITY THROUGH 

BALLISTIC COEFFICIENT ESTIMATION 

Based on the concept of making corrections to an 
empirical model using observations, a data assimilation 
system, called the High Accuracy Satellite Drag Model 
(HASDM) [3, 11, 15, 16, 17, 18, 19] is currently in use.  
HASDM has demonstrated the ability to significantly 
reduce the error in total density in the empirical model 
during quiet geomagnetic conditions. 

As in all data assimilation systems, the state must be 
observed to be corrected.  The HASDM system infers 
the density specification by space surveillance of the 
orbits of a given constellation of satellites.  By 
estimating the acceleration parameter of each satellite, 
an estimated ballistic coefficient, BBest, can be obtained 
from the drag force equation (1).  The ballistic 
coefficient portion of the drag force equation is written 
as 
 mACB Dest = , (2) 
which is estimated for each satellite.  The estimated 
ballistic coefficient is compared to each satellite’s 
‘known’ ballistic coefficient, BBknown, which is known 
within a small error [17, 18].  From this comparison, a 
correction to the empirical model total density is made 
by adjusting the model solution, ρ (t), according to the 
ratio between the estimated, Best

*

B , and known, BBknown, 
ballistic coefficients.  The corrected state, ρ(t), 
representation of neutral density at a given time, t, can 
be described as 
 . (3) ( ) ( ) knownest BBtt /*ρ=ρ

As the neutral atmospheric density changes with time, 
these changes are reflected in the satellite’s acceleration 
term.  New observations of this term provide updated 
estimates of the estimated ballistic coefficient and 
subsequent corrections to the neutral atmospheric 
density solution, allowing for a time-dependent 
representation of the density. 

HASDM uses an empirical model to provide a nominal 
state and subsequently estimates the deviation from the 
nominal state, based on the densities obtained from the 
drag force equation (1) and the ballistic coefficient 
estimates.  The estimated deviation is added to the 
nominal state to provide the statistically best estimate of 
the neutral density through a batch least squares 
solution.  HASDM’s use of a large satellite constellation 
as an observation platform improves the total coverage, 
ensuring that observations from many regions of the 
globe are included in the solution process.  Results, as 
will be shown later, demonstrate that the higher global 
coverage provides greater accuracy for the first order 
estimate of the neutral atmospheric density.  Results, in 
this paper and in another study [19], show that, when 
using ballistic coefficient estimation from a large (60) 
satellite constellation as the observing scenario, the 
batch least squares will provide a well-conditioned 
solution with a spherical harmonic resolution of degree 
and order 2 to 3. 

Although ballistic coefficient estimates from 60 
satellites provide a large global coverage of the neutral 
atmosphere, resolving the density structure from these 
estimates is difficult.  The difficulty comes from 
observing the satellite’s trajectory over long periods, 3 
segments of 6 hours each, 18 hours total, to reduce noise 
in the observation data set.  To discriminate the ballistic 
coefficient from the noise, a spline is computed over the 
18-hour observation interval, which is divided into three 
6-hour parts [11, 16].  In HASDM, the middle 6 hours 
has 2/3 of the weighting, and the 6-hour segments on 
either end of the interval have 1/6 of the weight.  The 
time-dependent neutral atmospheric structure within 
each 6-hour period is obtained from the corrected time-
dependent empirical model. 

In order to compare with other techniques, the 
HASDM-type system is reproduced here.  This study 
assumes that the HASDM-type system obtains the 
ballistic coefficients from the 60 satellites.  This system 
is the control case for comparison against the in situ 
observing technique.  The parameters for the 60 
satellites used for ballistic coefficient estimation, are 
identical to those used in HASDM [19]. 

Various levels of noise in observing the ballistic 
coefficients were examined in this research, but the 
noise level showed little effect on the solution accuracy 
since the spline removes much of the observation noise 
before the observations are ingested by the least squares 
solution.  The spline fit is basically an averaging 
technique, and different noise levels still have the same 



 

mean as long as no bias exists.  It is this mean that is 
used as the ingested observations used by the least 
squares method.  In this research, however, it is 
assumed that a 1% observation error exists in the 
ballistic coefficient estimate.  Various error levels, up to 
20%, were tested, but each solution provided almost 
identical results.  The low error of 1% is chosen since it 
represents a ‘best case’ representation of a data 
assimilation system using ballistic coefficient estimates, 
although the error has little effect on the solution 
accuracy. 
 
3. SOLUTION METHOD 

A data assimilation system, similar to the mechanics of 
HASDM, is constructed based on the technique of batch 
least squares.  In HASDM, the state vector, containing 
the spherical harmonic coefficients, can describe either 
the total neutral density or the temperature at a given 
location and altitude, since density, temperature, and 
altitude are functionally related.  The current version of 
HASDM observes the neutral density through ballistic 
coefficient estimates.  However, the data assimilation 
system applied in this research may acquire 
observations of the density through either ballistic 
coefficient estimates via space surveillance or in situ 
measurements.  When using ballistic coefficient 
estimates as the observation set, the system operates 
similarly to HASDM and acts as the control case.  The 
batch least squares equations, described in this section, 
are equivalent for both observing platforms with the 
exception of the observation equations. 

Least squares, in summary, calculates a solution for the 
state based on the minimization of the sum of squares of 
the observation errors.  The batch least squares solution 
[12, 13, 14] is generalized for the problem presented 
here as 

( ) [ ] [ ]( **1*1111ˆ
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  (4) 
where yk represents the observation data, and  
contains the expected observations based on the defined 
nominal state.  The state vectors include the following:  

*
ky

kX , the a priori, or best estimate of the state before the 
least squares calculation is performed; , the nominal 

state; and , the new least squares estimate for the 
state for a given batch of observations at a given epoch, 
k.  The a priori state, 

*
kX

kX̂

kX , can contain either the initial 
conditions, which are usually obtained from the defined 
nominal state, or the current state estimate based on a 
previous batch of data.  Associated with the a priori 
state is the a priori error variance-covariance matrix, 

kP , whose diagonals are an indicator of the amount of 
error variance in the state.  The off-diagonal terms in kP  
indicate the amount of covariance between any two 
elements in kX .  kP  is initialized based on the 

expected amount of error in the nominal state.  The 
error variance-covariance matrix can be updated with 
each new batch of data as 
 ( ) 111 −−− += kkk

T
kk PHRHP  (5) 

where  is the new state error variance-covariance 
matrix based on the new state from least squares result.  
After the new state, , and its associated error 

variance-covariance matrix, , are calculated, this 
state and associated error matrix replace the a priori 
state, 

kP

kX̂

kP

kX , and the a priori state error variance-
covariance matrix, kP , in equations (4) and (5).  The 
least squares solution may be recalculated to provide an 
improved solution.  The solution can be further 
improved by iterating this process.  No substantial 
improvement is seen in the least squares solution after 
about 2 to 3 iterations. 

As defined earlier, the observation vector, yk, contains 
all observations in a given batch, whether ballistic 
coefficient estimates or in situ measurements.  
Associated with the observation vector, Rk is the 
observation error variance-covariance matrix that 
contains an estimate of the variance uncertainty in yk.  
Rk is estimated before the least squares method is 
applied.  The diagonals of Rk represent the error 
variance in the observations defined by the instrument 
and observation system accuracy.  The off-diagonals in 
Rk are assumed to be 0.  The expected observation 
vector, , contains the observations that one would 
expect given the nominal state at the epoch, k. 

*
ky

If the state vector and the observation can be related in a 
linear manner, the state may be translated, or mapped, 
back to the observation vector through the matrix, Hk, 
which is often referred to as the ‘mapping matrix’.  Hk 
contains the linearized observation equations and 
describes the relationship between the observation and 
the state estimate as  
   kkkk H εXy += ˆ

where εk is the error on the observation.  Although  
is the same for both observing platforms, y

kX̂

k is 
observation platform dependent since it contains either 
the ballistic coefficient estimates or density inferred 
from the ultra-violet airglow emissions.  Hk must be 
accordingly representative of the relationship between 

 and the different observation vectors for ykX̂ k.  Other 
than Hk, yk, and Rk, the batch least squares vectors, 
matrices, and equations are the same for both observing 
platforms. 

The elements in  represent the coefficients of a series 
of spherical harmonics representing the neutral 
atmospheric temperature or total density.  The value for 
the neutral density, ρ, for example, at a specific latitude, 

kX̂



 

ψ, and longitude, λ, expanded in spherical harmonics 
[20], may be written as 
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  (6) 
The spherical harmonic equations and the estimates of 
the associated coefficients allow for a functional 
representation of the density at any point on the globe.  
Although the structure of the neutral atmospheric 
density is varied, the neutral density structure is also 
naturally continuous, and therefore, implementing the 
continuous function using the spherical harmonics is an 
ideal representation. 
 
4. EVALUATING THE TWO OBSERVING 

PLATFORMS 

To evaluate the two density observing techniques, a 
simulated ‘truth’ neutral atmosphere is defined using the 
Coupled Thermospheric-Ionospheric Model, CTIM [21, 
22, 23, 24].  This ‘truth’ neutral atmosphere is sampled 
according to the satellite and instrument mechanics for 
the observing platform under consideration, 60 satellites 
for ballistic coefficient estimation or 2 in situ satellites, 
using a satellite/instrument simulation algorithm [25]. 

The physical model used to create the ‘truth’ neutral 
atmosphere, CTIM, is a combination of two 
independently developed physical models driven by a 
Foster-type electric field [26].  The first part of CTIM 
contains a global, non-linear, time-dependent neutral 
atmospheric model developed at University College 
London [21, 22, 23, 24].  The second part contains a 
mid- and high-latitude ionospheric convection model 
that originated at Sheffield University [24].  The high 
latitude electric field and auroral particle precipitation 
are the two main high latitude inputs for the 
ionospheric-thermospheric coupled model, and these 
inputs determine the amount of Joule heating.  The other 
main input is the solar ultraviolet and extreme 
ultraviolet radiation which provide the bulk of the 
thermospheric heating and ionozation. 

CTIM was chosen to simulate the ‘truth’ neutral 
atmosphere since the code solves the non-linear 
equations of momentum, energy, and continuity to 
provide a time-dependent structure of the wind vector, 
temperature, and density in the neutral atmosphere.  As 
a result, the simulation from a physical model would 
provide a more varied, detailed, and realistic structure in 
comparison to the statistically averaged structure 
provided by empirical models.  This difference in 
structure between the empirical and physical model 
types would resemble the expected differences between 
the empirical models and reality.  From this type of 
comparison, a more stringent and realistic test is created 
for the two observation platforms and the data 
assimilation system. 

For results comparison, the batch least squares solution 
for both observing platforms is scored on how well it 

reproduces the CTIM ‘truth’ set through a standard root 
mean square error.  The RMS error between the truth 
file and the least squares estimated state is calculated as 
 ( )∑

=

ρ−ρ=
n

i
i

CTIM
ii nAA

1

2]/ˆ[RMS  (7) 

where iρ̂  is the estimated density at a particular grid 

point, i, and  is the corresponding iCTIM
iρ

th grid point of 
the CTIM-defined truth density.  Ai is the area 
associated with grid point i, based on a 91x20 lat-long 
grid - 2 degrees latitudinal and 18 degrees longitudinal 
spacing.  A  is the average area of all of the grid points 
and is included to normalize the RMS error result, and n 
is the total number of grid points. 
 
5. ILLUSTRATIVE EXAMPLE 

A 2-day period, March 21-22, is simulated to provide 
the test case.  An equinox scenario provides a 
thermosphere where roughly equal heating of the 
Southern and Northern Hemispheres exists.  The test 
case simulates a 24-hour period of low geomagnetic 
activity with an energy input of about 10 GW, which is 
approximately equal to an Ap index of about 7.  After 
the 24-hour quiet period, a 12-hour geomagnetic storm 
with a power input of about 260 GW follows, equivalent 
to an Ap index of approximately 300.  After this 12-hour 
storm period, another 12-hour quiet time period, with an 
Ap of 7, follows.  The total simulation period covers 48 
hours.  The results, during the quiet period from 0 to 24 
hours, demonstrate the quiet-time accuracy of the least 
squares solution under undisturbed conditions.  At 24 
hours, the geomagnetic storm commences.  During the 
12-hour storm period, from hour 24 to 36, the data 
assimilation system must then react to a rapidly 
changing state.  The final 12 hours of quiet, from hour 
36 to 48, demonstrate the recovery characteristics of the 
least squares solution, during which the composition is 
still changing as it recovers from the storm to quiet 
conditions. 

The first test of the data assimilation system provides a 
control case and resembles HASDM in that the data 
assimilation system estimates the neutral density from 
ballistic coefficient estimates.  This first portion of the 
simulation uses the 60 LEO satellites, which have the 
same orbital parameters as in HASDM. 

The second observation platform type uses in situ 
measurements.  The in situ platform considers various 
combinations of two satellites at separate local time 
crossings.  Both in situ satellites are simulated to take 
one measurement every 10 seconds.  The measurement 
error of the temperature is assumed to have a standard 
deviation roughly 1% for both in situ satellites. 

In all of the examples, MSIS-E-90 is defined as the 
nominal state, unless specified otherwise.  Differences 
from this nominal state are estimated using the batch 
least squares method.  These differences are then added 



 

to the nominal state to obtain the neutral density 
specification. 

To quantify the average global accuracy of the data 
assimilation system, the RMS over the entire globe is 
computed, according to equation (7), for both observing 
platforms.  The results, using the ballistic coefficient 
estimates, are shown in Fig. 3. 

 
FIG 3.  Time-dependent RMS errors for ballistic 
coefficient estimation using 60 satellites for varying 
spherical harmonic resolutions. 

Varying spherical harmonic resolutions are shown for 
the least squares solution for the ballistic coefficient 
estimation platform in Fig. 3.  The ballistic coefficient 
estimation results, in Fig. 3, show similar error levels in 
comparison to HASDM [15], and the accuracy does not 
significantly improve when the degree and order of the 
spherical harmonic resolution is increased beyond 
degree/order 2.  The best results for the ballistic 
coefficient platform show an RMS error consistently 
below 4% during geomagnetic quiet times but also show 
about a 3% increase in the RMS error, to 6%, by the end 
of the 12-hour storm.  This sudden increase in the RMS 
error during the geomagnetic storm may be the result of 
the poorer temporal resolution of the ballistic coefficient 
platform.  Although the global coverage is high, sudden 
storm-induced changes in the neutral atmosphere occur 
more rapidly than can be estimated by the least squares 
solution when ballistic coefficient estimation is used. 

The RMS errors for the in situ observing platform are 
shown in Fig. 4.  The figure shows that the RMS errors 
also decrease as the spherical harmonic degree and 
order increase beyond 2, indicating that the higher 
temporal resolution of in situ measurements allows for a 
better conditioned solution for the least squares 
inversion.  In situ measurements demonstrate low RMS 
errors despite having a coverage of only two satellites.  
For degree/order 4, the in situ platform results show 
errors consistently below 3% during geomagnetic quiet 
times.  Perhaps more importantly, the geomagnetic 
storm errors do not rise as sharply as in Fig. 4, when 

compared to the ballistic coefficient storm results in Fig. 
3.  RMS Errors, for the in situ platform for degree/order 
4 in Fig. 4, remain below 4% throughout the 12-hour 
storm.  The lower RMS error, during the storm period 
for the in situ measurements, shows that, although the 
global coverage for 2 satellites is poorer, the higher 
temporal resolution outweighs the loss in coverage by 
capturing the storm-induced sudden changes in a timely 
manner. 

 

FIG 4.  Time-dependent RMS errors for the in situ 
simulation using a two sun-synchronous satellites at 
09:30 and 13:30 LT crossing for varying spherical 
harmonic resolutions. 

Figure 3 verifies the results found in the HASDM 
analyses, demonstrating that using ballistic coefficient 
estimation does not significantly improve after 
degree/order 2.  The same result is not necessarily true 
for the in situ platform according to Fig. 4 as 
improvements in the resolution continues to increase 
beyond degree and order 2.  This result may be 
explained by the conditioning of the least squares 
solution.  If the observation sampling is sparse in 
comparison to the number of parameters to be solved, a 
linear dependence occurs in the system of equations 
whose solution is required in the determination of the 
spherical harmonic coefficients [27, 28].  Under these 
conditions, the problem is considered ill-conditioned, 
and the solution may be inaccurate for increasingly 
higher order terms in the spherical harmonic 
representation.  Although the 60 HASDM satellites have 
a uniform distribution over the globe, obtaining the 
ballistic coefficient estimate from an 18-hour track of 
these satellites can make the system ill-conditioned as 
the number of spherical harmonic coefficients to be 
solved increases.  The inclusion of higher order 
coefficients beyond degree/order 2, makes the matrix, 

11 −− + k
T PHRH , to be inverted in equation (4), 

increasingly more linearly dependent, and numerical 



 

errors are introduced as the degree and order increase.  
The state error variance-covariance matrix, kP , helps 
stabilize the inversion, but for ill-conditioned systems, 
the solution is very sensitive to the choice for kP  [29].  
Providing an accurate estimate for kP  may be difficult, 
particularly if kP  is constantly changing with the 
dynamic neutral atmosphere.  On the other hand, despite 
the poorer global coverage from only 2 in situ satellites, 
the least squares equation is still well-conditioned when 
higher order terms are included due to the higher 
temporal resolution.  In effect, the higher temporal 
resolution leads to a higher spatial resolution in the least 
squares solution representing the neutral atmospheric 
density structure. 

For the first order correction to the empirical model of 
degree/order, observing the neutral density using 
ballistic coefficient estimation provides a lower RMS 
error of about 7-8.5%, as shown in Fig. 3 - as opposed 
to 8-9% in Fig. 4 when in situ measurements used.  
When using ballistic coefficient estimation, the first 
order correction to the empirical model, degree/order 0, 
the results are more accurate since the global coverage 
is more uniform when 60 satellites are used.  
Consequently, a more accurate global mean is 
calculated as compared to the two satellites in in situ.  
The first order correction using ballistic coefficient 
estimation is shown in the middle panel in Fig. 5 in the 
form of exospheric temperature.  Hour 18 is chosen to 
illustrate the differences between the degree/order 0 
RMS errors, in Fig. 3 and Fig. 4, for the ballistic 
coefficient estimation and in situ platforms, 
respectively.  The ‘truth’ neutral temperature is shown 
in the top panel.  The bottom panel provides the 
absolute error between ‘truth’, top panel, and the least 
squares result in the middle panel.  The absolute error, 
in the bottom panel, indicates a maximum temperature 
deviation of about 220 K at about 290 degrees to 10 
degrees longitude and between + 45 degrees latitude.  In 
most other regions, however, the error in the bottom 
panel is low, between 0 and 50 K. 

Even though, for in situ, the global distribution of 
observations is poor, the simulation results using in situ 
measurements show comparable, and sometimes 
slightly better, results compared to ballistic coefficient 
estimation when higher order terms are used in the 
spherical harmonic representation.  The temporal 
resolution of in situ measurements, as already 
mentioned, is significantly higher, and the spatial 
resolution of the region under observation is therefore 
significantly increased, making the inverse in equation 
(4) well conditioned beyond degree/order 2 despite the 
limited global coverage.  The differences between the 
two observing platforms are illustrated in Fig. 5 and Fig. 
6 where best ballistic coefficient resolution and the best 
in situ resolution, degree/order 4, are shown 
respectively, at the geomagnetic storm’s end at hour 36. 

 
FIG 5.  Exospheric temperature by ballistic coefficient 
estimation using 60 satellites for degree/order 4 
spherical harmonic resolution at hour 36. 

 
FIG 6.  Exospheric temperature by in situ using two 
sun-synchronous satellites at 09:30 and 13:30 LT 
crossing for degree/order 4 spherical harmonic 
resolution at equinox at hour 36. 

 
The middle panels of Fig. 5 and Fig. 6 respectively 
show the ballistic coefficient estimation and in situ least 
squares results with their respective absolute errors in 
the bottom panels of both figures.  The ‘truth’ neutral 
atmosphere representations, in the top panels of Fig. 5 
and Fig. 6, are by definition identical.  The differences, 
however, between the ballistic coefficient estimate and 
in situ platforms are shown in their least squares 
solution results, in the middle panels, and their absolute 
errors, bottom panels.  The middle panel of Fig. 5, 
illustrating the solution using ballistic coefficients, also 
shows an underestimate of the high latitude temperature.  
The true temperature, shown in the top panels, above 



 

+50 degrees latitude, ranges between 1,200 and 1,300 
K.  The least squares solution, for the ballistic 
coefficient estimation platform in the middle panel of 
Fig. 5, ranges between 1,100 and 1,200 K above +50 
degrees latitude.  This error is reflected in the bottom 
panel of Fig. 5 where the absolute error at the higher 
latitudes is often above 200 K as indicated by the large 
red areas.  The ballistic coefficient estimation result 
may have larger errors at the higher latitudes since the 
coverage is not uniformly distributed.  Although, most 
of the HASDM satellites are beyond +50 degrees 
inclination, 11 of the 60 satellites are within +50 
degrees inclination.  Satellites with a high inclination 
angle can cover most latitudes, but smaller inclination 
angles limit satellite coverage to only the middle 
latitudes.  Therefore, the accuracy may be slightly 
higher in the middle to low latitudes for the ballistic 
coefficient estimation results. 

The middle panel of Fig. 6 shows the least squares 
result when using two sun-synchronous in situ satellites 
at 09:30 and 13:30 LT crossings.  The in situ results 
seem to capture the neutral atmospheric structure with 
slightly better accuracy in the higher latitude regions.  
The middle panel shows a better representation, with 
temperature ranges between 1,150 and 1,250 K, of the 
true neutral atmospheric structure in top panel, with a 
temperature range of 1,200 and 1,300 K.  The least 
squares result using in situ measurements is still 
underestimating the true temperature, but the absolute 
error is lower as reflected in the bottom panel of Fig. 6.  
The areas, having errors consistently above 200 K as 
shown in the bottom panel of Fig. 5 for the ballistic 
coefficient solution, are noticeably reduced in the 
bottom panel of Fig. 6 for the in situ case. 

The least squares solutions for both observing 
platforms, in the middle panels of Fig. 5 and Fig. 6, 
show a very ‘smooth’ representation of the more varied 
‘truth’ neutral atmosphere in the top panels.  This 
smooth appearance comes from the inability to increase 
the least squares solution resolution by increasing the 
degree and order of the spherical harmonic 
representation because of the numerical errors discussed 
earlier.  Obtaining a higher global resolution would 
require either an increase in the temporal resolution of 
the ballistic coefficient estimation technique or an 
increase in in situ coverage. 

In summary, the in situ results provide more than a 1% 
improvement, at the storm’s end, as compared to 
determining the neutral density using ballistic 
coefficient estimates from the 60-satellite constellation.  
This improvement for in situ over ballistic coefficient 
estimation indicates that the higher temporal resolution 
of in situ measurements are more influential in reducing 
these errors during geomagnetic storms.  During 
geomagnetic quiet conditions, with the exception of 
storm recovery, both observation platforms perform 
similarly. 
 

6. CONCLUSIONS 

The research presented here demonstrates the 
effectiveness of estimating the total density using the 
two observing techniques:  ballistic coefficient 
estimation and in situ.  Both methods demonstrate the 
ability to significantly reduce errors in the total neutral 
density specification by correcting an empirical model.  
For the ballistic coefficient platform, errors remain 
consistently below 4% during quiet times and below 6% 
throughout a 12-hour simulated geomagnetic storm.  
When determining the total neutral density through 
ballistic coefficient estimation, the results verify the 
capability of the HASDM system, with a similar 
spherical harmonic resolution limit of degree and order 
2.  The limit in spatial resolution is an artifact of the 
reduced temporal resolution in the observation from 
having to observe the satellites over a long period to 
obtain their ballistic coefficients with sufficient 
precision.  Although the global coverage is higher with 
60 satellites, the ill-conditioning of the least squares 
solution is apparent when one attempts to increase the 
spherical harmonic representation beyond degree/order 
2. 

The use of 2-satellite in situ for obtaining the total 
neutral density showed improvement, over ballistic 
coefficient estimation, with errors consistently below 
3% during geomagnetic quiet times and typically below 
4% error during storm times.  Overall, in situ showed a 
1 to 2 % decrease in RMS error.  However, although the 
global coverage is much less uniform for 2 in situ 
satellites as compared to 60 satellites for ballistic 
coefficient estimation, the higher temporal resolution 
for in situ allows a better least squares solution for the 
calculation of higher order spherical harmonic 
coefficients through the least squares solution without 
introducing numerical errors.  Observing the density via 
in situ allows one to obtain an accurate specification, 
although variations in the RMS errors indicate that some 
features, particularly during geomagnetic storms, may 
remain unobserved. 
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