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ABSTRACT

We assess the possibilities of obtaining improved low
frequency electromagnetic response functions for Earth’s
mantle by using robust multi-taper spectral estimation to
analyze long time series of satellite magnetic field obser-
vations. These responses are used to determine the 1-
dimensional electrical conductivity profile of the mantle,
and the longest period estimates provide constraints for
the deepest part of the mantle. A test data set is used to
show that outliers in the time series can have a deleterious
impact on response estimates. Bias introduced as a result
of inadequate knowledge about the relative noise distri-
butions between internal and external field contributions
is most significant at short periods and elsewhere when
the coherence is low. When used on the same test data
set multi-taper response estimates produce essentially the
same results as section averaged spectral estimates, but
improvements are still needed in estimating uncertainties
for the multi-taper response functions.

1. INTRODUCTION

Satellite magnetometer data from Magsat, Ørsted,
CHAMP and SAC-C have been used to determine the
one-dimensional electromagnetic response in the Earth
to variations in large scale magnetospheric sources ([1],
[2], [3], [4], [5]). The electromagnetic responses are esti-
mated in the form of a frequency dependent transfer func-
tion Q(f) between the external magnetospheric ring cur-
rent variations and the corresponding induced part. The
usual representation has been

I(f) = Q(f)E(f) (1)

or the equivalent in the time-domain,

i(t) = q(t) ∗ e(t). (2)

The external source field of interest is usually taken to
be P 0

1 in geomagnetic coordinates aligned with Earth’s
dipole axis and, along with its internal counterpart, is
isolated either by a global time-varying internal/ external
field separation (often involving additional terms) or on a
pass by pass basis. This provides the sampled time series

of i(t) and e(t). A variety of cross spectral methods have
been used to estimate the complex and frequency depen-
dent Q(f), which is generally transformed to Weidelt’s
[6] C-response prior to interpretation in terms of electri-
cal conductivity. The conversion for a 1D, spherically
symmetric conductivity distribution responding to a sin-
gle spherical harmonic variation field of degree l is given
by

cl(f) = a
l − (l + 1)Ql

l(l + 1)(1 + Ql)
=

a(1− 2Q1(f))
2(1 + Q1(f))

(3)

2. A TEST DATA SET

We use a test data set kindly supplied by Nils Olsen, from
an early analysis of 2001 CHAMP, Ørsted and Ørsted-
2 (SAC-C) data described in [4], who modeled e0

1(t)
and i01(t), in a global model with the temporal variation
parametrized in cubic B-splines with knots at 4 hour in-
tervals. The time series for e0

1 and i01 are shown in Fig. 1.
Although these data series have since been substantially
improved and extended [7], they are adequate to illustrate
the methodology described here.

To calculate the C-response, Olsen et al. subdivide the
record into sections, derive L independent estimates for
the auto Sii, See and cross spectra Sie, Sei between in-
ternal and external contributions and then compute Q(f)
using averages of the L sections, before transforming to
C(f). If the external field time series e(t) were assumed
to be noise free and all the noise attributed to the internal
estimate, then the equivalent least squares estimate of the
transfer function would be just

Q(f) =
< Sie >

< See >
. (4)

However both e(t) and i(t) are contaminated with noise,
and in this case Eq. (4) leads to a biased estimate for
Q(f). A total least squares approach is preferable. When
the relative noise fraction in each power spectrum is
known, Olsen [8] discussed how to correct this bias. If

ζi =
σ2

i

Sii
and ζe =

σ2
e

See
(5)



Figure 1. Time series for e0
1 and i01 used as a test data set

Figure 2. C-response estimates for the test data set de-
scribed in Section 2 (dark red symbols are from [4]), re-
sults from Magsat using the same method (green, [1]),
and multitaper estimates from Magsat data (blue, [2]).

then the relative noise in the two series can be written as

η =
ζe

ζi
, (6)

and the estimate given by Eq. (4) can be corrected for the
influence of noise in e(t), yielding

Q(f, η) =
Q(f)

2

{
1− η +

√
(1− η2) +

4η

γ2

}
(7)

with γ2 the frequency dependent coherence between e(t)
and i(t)

γ2(f) =
< Sie >< Sei >

< See >< Sii >
(8)

When η = 1, corresponding to equal relative noise in the
external field and induced response, Eq. (7) reduces to
the geometric average of the response given in Eq. (4)
with the equivalent response obtained with the roles of
the internal and external field time series reversed. That
is

Q(f, 1) =
√

< Sie >< Sii >

< See >< Sei >
(9)

as used by [4]. Q(f,1) is then transformed to C(f) and
shown as the dark red symbols in Fig. 2.

3. WHY USE MULTI-TAPER SPECTRAL ANAL-
YSIS?

A remaining challenge in 1-dimensional induction stud-
ies is to extend response estimates to the longest peri-
ods possible, as these provide information about electri-
cal conductivity structure of the deep mantle. The longest
periods attainable are set by the length, T , of the time
sections used, which in the section averaging approach is
determined by the number L of independently analyzed
sections. The frequency resolution ∆f is proportional
to 1

T . Multitaper spectral analysis uses orthogonal ta-
pers to sample the whole time series; each tapered sam-
ple provides an independent spectral estimate, these are
then averaged to reduce the variance of the spectral esti-
mates. The frequency resolution depends on the number
and spectral properties of the tapers used. Averaging esti-
mates from many tapers will give a smooth spectrum with
lower frequency resolution (and the possibility of spectral
leakage or bias), few tapers yield a high resolution esti-
mate at the cost of greater uncertainty.

Two kinds of multitaper spectral estimation are in com-
mon use: one based on minimizing broadband bias advo-
cated by Thomson [9] uses the prolate spheroidal family
of tapers; the second [10] has been used in an approxi-
mate data adaptive fashion to minimize local loss (bias
squared plus variance). The tapers for the second ap-
proach are closely approximated by sine functions which
are easy to calculate.



3.1. Adaptive Estimation and Frequency Resolution

Use of a locally adaptive method means that both the res-
olution and the error can vary in the frequency domain.
When k sinusoidal multi-tapers are used in the estimate
the frequency resolution for the estimate Ŝ(f) is

∆f = kfN/Nf (10)

with fN the Nyquist frequency, and Nf the number of
frequencies estimated. The adaptive part of the procedure
is the optimal choice of k. Riedel & Siderenko (1995)
give an asymptotic result for minimizing the local loss
(bias squared plus variance) of

kopt ∼
[
12S(f)N2

S′′(f)

]2/5

. (11)

S′′ can in principle be determined from a quadratic fit to
a pilot estimate of the local power spectral density, but
the above expression must be modified to restrict the rate
of growth of the number of tapers near regions where
S′′ vanishes. The spectra from the individual sine ta-
pers are averaged, with parabolic weighting that tapers
to zero beyond the kth spectral estimate. This weight-
ing scheme ensures a smooth spectrum as the number of
tapers changes with frequency (Robert Parker, personal
communication, 2006). In practice this has proved hard
to implement for cross spectral analysis, the resulting re-
sponses have poor frequency resolution and we have in-
stead used a fixed number of tapers. Constable & Con-
stable [2] opted to use 20 tapers to analyze the Magsat
data series, yielding a uniform frequency resolution of
∆f = 20/(2188*7200)= 1.3 µHz. The blue and green
symbols in Fig. 2 show a comparison of multi-taper re-
sponses to section averaged responses, respectively, for
Magsat. There are some minor differences between re-
sponse estimates from the section averaging and multi-
taper methods at both long and short periods. One goal
of this work is to elucidate the source of these differences
by testing methods on exactly the same data series, some-
thing which has not previously been done. A second goal
not yet achieved is to assess whether it is possible to re-
duce the rather large uncertainties in the section averaged
estimates.

4. EXPERIMENTS WITH THE TEST DATA

We computed a multi-taper response estimate using the
test data series of Fig. 1, using the same assumption about
the distribution of noise between i and e as used in [4],
namely η = 1.0. The estimates are plotted in blue in
Fig. 3 and are in good agreement with the section averag-
ing results except at the very shortest period. Other differ-
ences are that the multi-taper estimates extend to longer
period, and have smaller nominal uncertainties. These
should not be considered reliable, especially at long pe-
riods where they are based on standard deviations among
averages across frequency bands containing individual
estimates that must be correlated, based on our expected
frequency resolution.

Figure 3. Comparison of section averaged response (SA,
dark red) with multi-taper (MT, blue). Orange and green
symbols show the effect of eliminating data for which
| i(t)
e(t) | > 1.0 and | i(t)

e(t) | > 0.5, respectively. In all cases
η = 1.0.

4.1. Influence of outliers in the time series

The average ratio for | i(t)
e(t) | is about 0.3, although it varies

widely along the time series as can be seen from Fig. 4.
We tested the effect of eliminating all data pairs for which
| i(t)
e(t) | > 1.0 on the grounds that the induced field should

always be smaller than the external field. This eliminates
slightly < 10% of the data and has a substantial influence
on the response estimates which appear to have been bi-
ased upwards by the presence of this noise, especially in
the 105−106s period range. More drastic measures, elim-
inating all | i(t)

e(t) | > 0.5 have little further impact (Fig. 3)
in this particular data set.

4.2. Assumptions about noise in i(t) and e(t).

We also tested the possible influence of bias due to incor-
rect assumptions about the relative noise levels in i(t) and
e(t) (by varying η in Eq. (7). We computed response es-
timates under the assumption of (i) no noise in e(t), cor-
responding to η = 0.0, (ii) equal relative noise in e(t) and
i(t), η = 1.0, and (iii) η = 0.25, internal estimates have
twice the relative standard error of external. As expected
from Eq. (7) the effects are most pronounced in those
frequency bands where the coherence is lowest. Effects
are relatively small except at periods near one day and its
harmonics where departures from assumptions about the
source field are likely to be most significant (Fig. 5).

4.3. What to do about uncertainty estimates

Improved uncertainty estimates are needed for the multi-
taper response estimates, especially at long periods. A



Figure 4. Scatter plot of internal i01 versus external e0
1

field contributions at the same time points for the test data
set of Fig. 1.

Figure 5. Comparison of responses computed under var-
ious assumptions about partitioning noise between i and
e. In all cases data with | i(t)

e(t) | > 1.0 have been rejected.

jackknife approach based on the individual taper esti-
mates is under investigation. As in section averaging
method the individual spectral estimates can be regarded
as independent, and can be expected to provide more re-
alistic estimates than calculated to date.

5. SUMMARY

These experiments suggest that it is important to use ro-
bust processing to compensate for outliers in the time se-
ries and avoid bias in electromagnetic response estimates.
The results do not appear very sensitive to knowing the
exact relative distribution of noise between internal and
external time series, unless the coherence is low. Electri-
cal structure in the deep mantle is controlled by the long
period variations in the response (especially the imagi-
nary part), making it important to provide realistic error
bars in this regime. This is the subject of ongoing efforts.
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