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Abstract

We present the in-flight scalar calibration and characterisation of the Swarm
magnetometry package consisting of the absolute scalar magnetometer (ASM),
the vector magnetometer (VFM), and the spacecraft structure supporting the
instruments. A significant improvement in the scalar residuals between the pairs
of magnetometers is demonstrated, confirming the high performance of these
instruments. The results presented here, including the characterization of a
Sun-driven disturbance field, form the basis of the correction of the magnetic
vector measurements from Swarm which is applied to the Swarm Level 1b
magnetic data.
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1 Introduction3

In November 2013 the European Space Agency (ESA) launched the three Swarm4

satellites named Alpha, Bravo, and Charlie with the objective to provide the best5

ever survey of the geomagnetic field and its temporal evolution (Friis-Christensen6

et al., 2006). Each spacecraft carries an Absolute Scalar Magnetometer (ASM)7

for measuring Earth’s magnetic field intensity, a Vector Fluxgate Magnetometer8

(VFM) measuring the direction and strength of the magnetic field, and a three-head9

Star TRacker (STR) mounted close to the VFM to obtain the attitude needed to10

transform the vector readings to an Earth fixed coordinate frame. Time and position11

are provided by an on-board GPS receiver. The payload also includes instruments12

to measure plasma and electric field parameters as well as non-gravitational ac-13

celeration. More information on the mission status after two years in orbit can be14

found in Floberghagen et al. (2016).15

16

One of the purposes of the scalar magnetometer (ASM) is to provide the nec-17

essary absolute magnetic data to calibrate the vector magnetometer (VFM). For18

this an approach similar to that adopted for the previous satellite missions Ørsted19

and CHAMP was foreseen (c.f. Olsen et al., 2003; Yin and Lühr , 2011) since those20

missions carried equivalent instrumentation. However, soon after launch of Swarm21

it became clear that the magnetic field vector measurements on all three space-22

craft were contaminated by unforeseen disturbances which could not be captured23

by the traditional in-flight calibration methods referred to above. Furthermore, the24

disturbances show systematic variation which could impact or map into scientific25

investigations based on Swarm magnetic data, The light blue symbols in Fig. 1 show26

mailto:lastec@space.dtu.dk


Tøffner-Clausen et al. Page 2 of 18

time series of the scalar residuals, which are the difference, ∆F = | ~BVFM| − FASM,27

between the modulus of the VFM data, | ~BVFM|, and the magnetic intensity mea-28

surements, FASM, taken by the ASM instrument. Based on experience with Ørsted29

and CHAMP scalar residuals with sub-nanotesla level were expected (rms value30

well below 0.5 nT), while for Swarm the scatter of the residuals was observed to31

reach several nT, resulting in an rms value approaching 1 nT, but crucially show-32

ing a very clear Local Time dependence. A task force was therefore established to33

investigate and mitigate the effect.34

35

Detailed investigations of the scalar residuals ∆F and of the ASM and VFM36

measurements separately indicated that :37

• the vector readings of the VFM are affected by a disturbance vector field;38

• the scalar readings of the ASM are much less, if at all, affected.39

Consequently the Task Force concluded to pursue models which assume the mag-40

netic disturbance to be affecting the VFM measurements only. Plotting ∆F as a41

function of the Sun incidence angles with respect to the spacecraft, reveals sys-42

tematic features of the disturbance, as shown in Fig. 3. At the start of section 2 we43

provide detailed definitions of the two Sun incidence angles α and β. This supports44

the hypothesis that a magnetic source in the vicinity of the VFM magnetometer,45

with strength and direction depending on the direction to the Sun (as seen from the46

spacecraft), is responsible. We refer to such a disturbance field vector, that depends47

on the direction to the Sun, as δ ~BSun.48

49

The purpose of this article is to document the details of in-flight calibration of the50

Swarm magnetometer package, including an empirical determination and removal51

of the Sun driven vector disturbance field δ ~BSun, based on a mitigation approach52

proposed by Vincent Lesur (Lesur et al., 2015).53

54

Section 2 describes the parameterisation of the model of the Sun-driven distur-55

bance – in following referred to as the characterisation of the disturbance field –56

and of the calibration of the VFM instrument, by which means determination of57

its intrinsic scale factors and their dependence on time and temperature, and58

determination of the sensor-axis non-orthogonalities. We document the adopted59

Iteratively Reweighted Least Squared (IRLS) estimation approach, that includes60

a truncated singular value decomposition (SVD) approach to solving the inverse61

problem. The results obtained for Swarm Alpha, based on data covering the period62

from launch (22. November 2013) until end of June 2015 (i.e. 19 months), are pre-63

sented in Section 3. Application of the scheme to data from the satellites Bravo64

and Charlie resulted in similar levels of residual improvement and statistics, and65

the estimates of the Sun driven disturbance δ ~BSun show generally similar behaviour66

and structural features as found for Swarm Alpha, although there are also some67

differences. Finally, Section 4 summarizes the findings and provides perspectives68

regarding further improvements of the method.69

70
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2 Characterisation and Calibration with Scalar Residuals71

The Sun incidence angles α and β are crucial in our approach to characterise the72

scalar residual. To clarify, in Fig. 2 we illustrate the definition of these angles with73

respect to the spacecraft and the Sun position. α is the azimuth in the spacecraft74

x-z plane (nominally the orbit plane) and β is the “elevation” out of the x-z plane75

positive towards left (looking in the nominal flight direction; i.e. positive opposite76

the spacecraft y axis). Considering how these angles vary over orbits of the Swarm77

spacecraft, we find the angle α varies rapidly: from 0◦ to 360◦ within one orbit (i.e.78

within ≈ 90 minutes) while the other angle, β, varies more slowly (by ≈ 1.5◦ in one79

day).80

• β = +90◦: Sun directly from −y (i.e. from the left during nominal flight)81

• β = −90◦: Sun directly from +y (i.e. from the right)82

• β = 0◦, α = 0◦ : Sun directly from +x (i.e. from the front)83

• β = 0◦, α = +90◦ : Sun directly from −z (above)84

• β = 0◦, α = +180◦ : Sun directly from −x (i.e. from the back – slightly above85

the boom)86

Considering how these angles vary over orbits of the Swarm spacecraft during nom-87

inal flight, we find that α varies rapidly: from 360◦ down to 0◦ within one orbit (i.e.88

within ≈ 90 minutes) while β, varies slowly up and down typically by ≈ 1.25◦ in89

one day (for Alpha and Charlie, 1.20◦ for Bravo).90

91

Although the observed scalar residuals clearly vary with the Sun incidence angles92

α and β (see Fig. 3) there is no direct mapping of ∆F in terms of these parameters.93

This is a consequence of the scalar residuals ∆F ≈ δ ~BSun ·~b0 being the projection94

of the magnetic disturbance vector δ ~BSun, onto the unit vector ~b0 of the ambient95

magnetic field direction (Earth’s main field). The former is oriented relative to96

the spacecraft while the latter is oriented relative to Earth, which results in the97

variations with the spacecraft local time (captured by β) as seen in Fig. 3. The98

spacecraft local time changes by 12 hours (corresponding to a change in β by 180◦)99

within approximately 4 1
2 months.100

101

To account for the projection on to the ambient field, we consider a vector mag-102

netic disturbance δ ~BSun(α, β), with each component depending individually on the103

Sun incidence angles. Mathematically, we describe each component of the distur-104

bance field vector by a spherical harmonic expansion in α and β i.e. we consider105

three independent spherical harmonic expansions in all.106

107

This model characterizing the Sun-driven disturbance is co-estimated together108

with a model of the temporal evolution of the VFM sensitivity and an adjustment109

of the pre-flight estimated non-orthogonality angles of the VFM sensor. For this we110

perform a scalar calibration via a least squares fit, minimizing the discrepancy (∆F )111

between the measurements from ASM and the modulus of the vector measurements112

from the VFM after our model has been applied. Huber weights are used iteratively113

to eliminate the effect of anomalous measurements (“outliers”) on the estimated114

models.115

116
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2.1 Model Parameterisation117

As outlined above, our model characterizing the Sun-driven disturbance vector118

δ ~BSun consists of three spherical harmonic expansions up to degree and order 25,119

one for each of the magnetic field components in the VFM magnetometer frame,120

with the position of the Sun with respect to the spacecraft parameterised by the121

Sun incidence angles α and β. It takes the form122

δ ~BSun =
25∑
n=0

n∑
m=0

(~umn cosmα+ ~vmn sinmα)Pmn (sinβ)

where ~umn and ~vmn are the spherical harmonic expansion coefficients, with one com-123

ponent for each component of the disturbance field, and Pmn are the Schmidt semi-124

normalized Legendre functions. Note that δ ~BSun includes static terms (n = m = 0),125

that describe a static (i.e. independent of the Sun position) disturbance vector.126

The disturbance field vector δ ~BSun is thus described by 3 × 262 = 2, 028 model127

coefficients.128

129

The model for re-scaling the vector measurements and taking into account any130

small adjustment of the non-orthogonality of the VFM sensors, which is required in131

order to obtain the fully calibrated and corrected vector field measurements ~BVFM,132

now takes the form133

~BVFM = P−1S−1 ~Bpre−flight − δ ~BSun

where ~Bpre−flight are the VFM measurements calibrated using the pre-flight param-134

eters and corrected for the pre-flight determined stray fields as described in Tøffner-135

Clausen (2015). S is a 3× 3 diagonal scaling matrix with elements136

sj = sB−spline(t) + sj,TsensorTsensor + sj,ββ

where sB−spline(t) is a quadratic B-spline in time with 3-month knot separation137

(common for all three components of the magnetic field), and sj,Tsensor, j = 1 − 3138

is an adjustment of the pre-flight estimated dependency of the VFM sensitivity on139

its sensor temperature, Tsensor, for each sensor axis j. sj,β is an empirical scaling140

parameter and β the Sun incidence angle, as defined above. The choice of quadratic141

B-splines with 3-month knot seperation is made to allow sufficient flexibility of the142

model. The estimated B-splines exhibit very moderate accelerations (in the case of143

the full model, see Fig. 6) and it may be possible to simplify the parameterisation144

of the time-dependence in future models.145

146

P is the non-orthogonality matrix that makes small adjustments to the pre-flight147

estimated non-orthogonalities of the VFM sensor (cf. Olsen et al., 2003)148

P =

 1 0 0
− sinu1 cosu1 0
sinu2 sinu3

√
1− sin2 u2 − sin2 u3


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Our in-flight calibration model comprises 18 parameters in all; together with the149

2,028 parameters describing δ ~BSun this results in 2,046 model parameters to be150

estimated, as listed in Table 1.151

2.2 Estimation of Model Parameters: Inversion and Regularisation152

In order to estimate the 2,046 model parameters from the scalar residuals we need153

to solve a nonlinear inverse problem. The nonlinearity arises from the the treatment154

of non-orthogonalities (Olsen et al., 2003).155

156

The forward relationship between the vector of the scalar residuals, d, (di = ∆Fi,157

the scalar residual of the ith data point) and the model parameter vector m, may158

therefore be written in the form159

d = g(m) + e

where g(m) is a nonlinear function of the models parameters and e is a small re-160

mainder, that cannot be explained by the model, which we seek to minimise.161

162

Linearisation of this problem is straightforward. A regularized, iteratively-163

reweighted, least squares solution to the inverse problem, is then obtained using164

the algorithm165

mk+1 = mk + (GT

k
W

k
G
k

+ λR)−1
(
GT

k
W

k
[d− g(m)]− λRmk

)
where at the kth iteration, G

k
= ∂g(m)

∂m

∣∣∣
m=mk

, is the appropriate Jacobian ma-166

trix, R is a regularization matrix discussed in detail below, and W
k

is a (Huber)167

weighting matrix.168

169

W
k

are updated at each iteration, and consists of diagonal elements

wi = min
(

1,
cσ

∆Fi

)
.

∆Fi =
∣∣∣ ~Bi,VFM

∣∣∣− Fi,ASM is the scalar residual of the ith data point, with ~Bi,VFM

calculated using the model parameters from iteration k, and FASM being the fully
calibrated and corrected scalar field measurements from the ASM scalar magne-
tometer, and

σ =

√∑
i (wi∆Fi)

2∑
i w

2
i

,

being a (robust) estimate of the standard deviation of the residuals at iteration k.170

We set c = 2, slightly higher than the value of 1.5 usually chosen, in order to ensure171

that the less numerous polar data are not overly downweighted in the determination172

of the calibration parameters.173

174
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It turns out that the full set of 2,046 parameters is not needed to obtain good re-175

sults and low data misfit, which is confirmed by inspection of the eigenvalues of the176

matrix (GT

k
W

k
G
k

+λR), as presented in Fig. 4 for Swarm Alpha. The magnitudes177

of the sorted eigenvalues (in order of decreasing magntitude) exhibit a distinct drop178

around 750-800 degrees of freedom, indicating the smaller eigenvalues contribute179

little to the solution. The inversion of this matrix was therefore finally performed180

using a truncated singular value decomposition (TSVD) procedure, retaining only181

750 degrees of freedom.182

183

A regularization matrix R is also included to help to stable the inversiom. This184

is necessary because the Swarm satellites operates in a tightly controlled attitude185

orientation which leads to a poor excitation of the VFM instrument along the axis186

perpendicular to the orbit plane (the East-West direction corresponding to the y-187

axis of the VFM sensor). Consequently, the parameters related to the y-axis are188

poorly determined in a scalar calibration. The regularization matrix R is there-189

fore defined so that it acts on the parameters s2,Tsensor, s2,β , u1, and u3 to force190

s2,Tsensor ' (s1,Tsensor + s3,Tsensor) /2 (to reflect the physical properties of the VFM191

sensor) and also to minimize the norms s2
2,β and u2

1+u2
3. λ is chosen to be sufficiently192

large to effectively impose the regularisation on the estimated model. Note that no193

regularisation is directly imposed on δ ~BSun but use of truncated SVD during the194

inversion automatically acts to suppresses structure in regions that are not well195

constrained by the input data.196

197

The starting model for the inversions is “unity”, i.e. P = S = I, where I is198

the identity matrix, and ~umn = ~vmn = ~0. The inversions typically converge within199

25 iterations.200

3 Results of Model Estimation for Swarm Alpha201

The model described above is estimated for Swarm Alpha using data from the begin-202

ning of the mission (22 November 2013) until June 2015. Fig. 1 shows the final scalar203

residuals, i.e. the residuals after application of the model (after “calibration and204

correction”) of the VFM measurements, (in green) as a function of time. together205

with the residuals of the un-corrected but re-scaled vector field measurements, i.e.206

~BVFM + δ ~BSun, in light blue; these data illustrate what can be achieved with the207

traditional scalar calibration methods. Note the excellent reduction of the scalar208

residuals achieved by the model; the Huber weighted rms of the residuals drops209

from 963 pT to 168 pT. Table 2 provides the corresponding numbers for Bravo and210

Charlie.211

212

Fig. 5 shows normal distribution plots for the scalar residuals. The top plot213

shows the distributions of all data for un-corrected (red) and fully corrected data214

(green) and demonstrates a transition from a non-Gaussian to Gaussian residual215

distribution when applying the model. The bottom plots show the distributions216

of the data split into 3-months periods, un-corrected to the left and corrected to217

the right. These also demonstrate the elimination of systemtatic and non-Gaussian218

effects.219

220
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Table 3 lists the estimated sTsensor and sβ parameters, and the non-orthogonality221

values for all three Swarm satellitestogether with their estimated pre-flight values222

for the VFM instrument itself for reference. I.e. the table shows the adjustments223

applied in order to reduce the scalar residuals to the level indicated above.224

225

Table 4 shows the increase in the weighted rms of the scalar residuals when omit-226

ting individual parts of the model – a full re-estimation of the remaining model227

parameters is carried out for each table entry. Particularly the omission of the228

non-orthogonalities drastically increases the misfit – the power (the mean-square)229

is more than doubled. Due to the stable attitude of the Swarm satellites, the230

small x-z non-orthogonality angle, u2, is equivalent to a small, relative timeshift231

between the ASM and VFM measurements – 1 arc-second corresponds roughly to232

a 3 ms timeshift, and it has been discussed whether it would be more reasonable233

to introduce such timeshifts rather than adjusting the pre-flight estimated non-234

orthogonalities. However, the variations in the u2 angles estimated by this model235

would imply time-shifts varying from −3 ms to +13 ms for the individual satel-236

liteswhich seems quite unlikely.237

238

The temporal evolution of the scaling of the vector field measurements, sB−spline,239

is shown in Fig. 6 for the various test models listed in Table 4. The full model,240

shown in green, shows a smooth behaviour in time, as expected from an instrument241

design perspective. The blue curve shows the model without sβ ; this exhibits some242

small oscillations, whereas the red (no sTsensor) and magneta (no δ ~BSun) curves243

show much higher level of oscillations indicating they are inadequate to capture244

the behaviour of the measurements. The cyan curve shows the model without non-245

orthogonalities; this is rather close to the curve of the full model and indicates the246

decoupling of the non-orthogonalities from any long-term temporal effect of the247

measurement disturbances and instruments.248

249

Maps of the three components of the estimated disturbance fields from the full250

model as function of Sun incidence angles α (abscissa) and β (ordinate) are given251

in Figs. 7, 8, and 9 for Swarm Alpha, Bravo, and Charlie respectively. During nom-252

inal flight, the Sun incidence angles traverse these plots horizontally from right253

to left, and move up or down in β as the orbit plane moves through local time.254

The Sun induced disturbance is observed to have temporal characteristics that are255

observed in the plots as horizontally stretched features, these are attributed to256

thermal capacitance: The Sun induced disturbance exhibits characteristic warm-up257

and cool-down effects, i.e. the disturbance increases when the spacecraft is exposed258

to the Sun, and decreases when the Sun exposure terminates. The time constants259

for these effects are up to tens of minutes (corresponding to several tens of degrees260

in the α angle). This effect is captured by the spherical harmonic model expansion261

of δ ~BSun and yields the horizontally stretched features in Figs. 7-9. Note also the262

regions of nightside data (eclipse), the circled areas to the left of the figures, which263

generally show less disturbance; this is not imposed by the model or any regulari-264

sation, rather it is simply a result of the data itself, and thus another indicator of265

the ability of the model to describe the observed disturbances. The plots also show266



Tøffner-Clausen et al. Page 8 of 18

both the similarities and the differences in δ ~BSun between the three satellites.267

268

4 Conclusions269

We have established a predominantly empirical model for the calibration and cor-270

rection of the magnetic vector field measurements of the three Swarm spacecraft.271

The model is based on detailed studies of the observed scalar residuals between the272

measurements of the absolute scalar magnetometer, ASM, and the modulus of the273

measurements of the vector field magnetometer, VFM. The model has proven to be274

quite robust as more data are incorporated into the estimation of the model parame-275

ters, although the ambiguity of determining vector disturbances from a pure scalar276

calibration affects the estimated correction vectors; these corrections do change277

non-negligibly (by a few tenths of a nT) as more data are added.278

279

The estimated models reduce the scalar differences between the Swarm magne-280

tometers to generally below 0.5 nT with rms values well below 200 pT for all three281

satellites, and have been in operational use since April 2015 to produce corrected282

Swarm Level 1b magnetic field vector data (as of version 0401).283

284

Future evolutions of the model presented here are foreseen to include changing285

the model of the temporal evolution of the VFM sensitivity from B-splines to an286

exponentially decaying function. Analysis of δ ~BSun also indicates that this vector is287

generally confined to a few, distinct directions which may be incorporated in future288

models. Finally, it may be possible to model the effect of the thermal capacitance289

using appropriate temporal filter functions which would lead to a significant reduc-290

tion of the number of parameters of the model.291

292

Data Availability293

The estimated disturbance vectors, δ ~BSun, are included in the operational Level 1b294

magnetic Swarm data products as dB Sun.295

296

Uncorrected data are available at ftp://swarm-diss.eo.esa.int/Advanced/ (login297

required, access can be requested via https://earth.esa.int/Swarm).298
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Figures328

Figure 1 Scalar residuals of uncorrected (light blue) and corrected (green) measurements versus
time. Local Time of the ascending node is shown in red (right axis).

Figure 2 Illustration of Sun incident angles α and β that are defined w.r.t. the spacecraft. α is
the ‘azimuth’ from x about the y-axis, β is the ‘elevation’ from the x-z plane.
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Figure 3 Uncorrected scalar residuals between ASM and VFM magnetometers, ∆F , plotted
versus Sun incident angles α and β. The β angle oscillates slowly in time, hence the un-folded β
angle corresponds to season which is indicated in blue on the right hand side. Local Time of the
ascending node is shown in red (axis on top).
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Figure 4 Eigenvalues ofreplacedGTGGTG+ λR) matrix (blue, left axis), sorted decreasingly. In

green (right axis), the decrease per eigenvalue is plotted.
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Figure 5 Normal distribution plots of scalar residuals. Top: all data, uncorrected (red) and
corrected (green); the limits corresponding to the Huber weights (for corrected data) are shown by
the vertical dashed lines. Bottom: distibutions split in quarters, uncorrected (left) and corrected
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Tøffner-Clausen et al. Page 14 of 18

Jan14 Apr14 Jul14 Oct14 Jan15 Apr15 Jul15
-160

-140

-120

-100

-80

-60

-40

-20

0

sB
-s

pl
in

e
 [1

0
-6

]

Swarm Alpha, Scale Evolutions

All parameters
 

No s
β

No s
Tsensor

No non-orthogonality
 

No δB
Sun
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except adjustment of VFM sensor non-orthogonalities. Magenta: full model, except disturbance

(δ ~BSun). B-spline knots are marked with crosses.
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Figure 7 Maps of estimated δ ~BSun for Swarm Alpha component-wise as function of Sun incident
angles α and β (x- and y-axes respectively). The circled area indicates the approximate region of
the satellite being in eclipse.
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Figure 8 Maps of estimated δ ~BSun for Swarm Bravo similar to figure 7.
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Figure 9 Maps of estimated δ ~BSun for Swarm Charlie similar to figures 7 and 8.
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Tables329

Table 1 Model parameters

Description Parameters Dimension

δ ~BSun ~u,~v 2,028
Sensitivity, time dependent sBspline 9
Sensitivity, β dependency ~sβ 3
Sensitivity, sensor temperature dependency ~sTsensor 3
Non-orthogonalities u1, u2, u3 3

Total 2,046

Table 2 Scalar Residual Statistics, Uncorrected and Corrected Data.

For Swarm Charlie two sets of numbers are given; one set for which the ASM was still working
(FASM, until 5. November 2014) and one set using the scalar data from Swarm Alpha mapped to the
position of Swarm Charlie (FAC,map). For data from 1. May 2014 through 5. November 2014 the
weighted rms of FASM − FAC,map is 572.6 pT.

Satellite Weighted rms [pT]
Uncorrected Corrected

Alpha 962.6 168.3
Bravo 710.3 164.2
Charlie FASM 632.1 172.3

FAC,map 862.1 527.7

Table 3 Estimated values for selected model parameters for all three Swarm satellites. The
nT-equivalents of the adjustments in a 50, 000 nT ambient field are: sTsensor = 10−6/◦C ∼ 1.25 nT
(25◦C temperature swing), sβ = 0.1× 10−6/deg ∼ ±0.45 nT (±90 deg),
u = 1 arc-second ∼ 0.242 nT .

Sat
Sensitivity/sensor

temperature, sTsensor,
[10−6/◦C]

Sensitivity/β angle, sβ ,
[10−6/deg]

Non-orthogonalities,
u1,2,3, [arc-seconds]

Pre-flight Adjustment Pre-flight Adjustment Pre-flight Adjustment

Alpha 28.5 0.616 – -0.125 102.386 -0.601
28.8 0.780 – 0 217.403 -3.960
28.3 0.945 – 0.012 -179.318 0.149

Bravo 28.3 1.168 – -0.132 350.880 -0.558
29.0 1.385 – -0.003 62.432 -2.453
28.8 1.602 – -0.198 -147.060 1.608

Charlie 27.7 1.521 – -0.090 139.140 0.094
29.1 1.300 – -0.038 -248.890 1.042
28.4 1.076 – -0.167 -109.960 0.805

Table 4 Weighted rms values for various models, Swarm Alpha

Model weighted rms [pT] Residual power (normalized)

Full model 168.3 100%

No sβ 176.1 107%

No sTsensor 181.7 116%

No non-orthogonalities 250.2 221%

No δ ~BSun 962.6 3,269%
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