

By: DTU

Date: 2019-02-26

Abstract and Conclusion

The processes and tests applied in the intermediate validation of the MLI_SHAi2C product

and the conclusions on the product quality drawn herefrom are described in this document.

The DTU SIL's opinion is that the MLI_SHAi2C product is successfully validated and therefore suitable for release.

© DTU, DK, 2019. Proprietary and intellectual rights of DTU, DK are involved in the subject-matter of this material and all manufacturing, reproduction, use, disclosure, and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by accepting this material agrees that this material will not be used, copied, or reproduced in whole or in part nor its contents (or any part thereof) revealed in any manner or to any third party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

CM:

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_00000000T000000_99999999999999990501

Table of Contents

1	Int	erm	ediate Validation Report of MLI_SHAi2C	5
	1.1	Inp	ut Data Products	5
	1.2	Мо	del Parameterization and Data Selection	5
	1.3	Out	put Products	5
	1.4	Val	idation Results	6
	1.4	.1	Spatial Power Density	6
	1.4	.2	Normalized Spherical Harmonic Coefficient Differences	7
	1.4	.3	Visualisation of Spatial Differences	8
	1.4	.4	Visualisation of Radial Field	9
	1.4	.5	Statistics of Model Residuals	9
	1.5	Crit	teria	10
2	Ad	ditio	nal Information	11
	2.1	Мо	del Configuration and Data Selection Parameters	11
	2.2	Cor	nments from Scientists in the Loop	12
	2.2	.1	Derivation of Model	12
	2.2	.2	Conclusion	12
A	nnex	A	Definitions of Tests	13
	A.1	Me	an square vector field difference per spherical harmonic degree	13
	A.2	Cor	relation per spherical harmonic degree	13
	A.3	Vis	ualisation of coefficient differences	13
	A.4	Vis	ualisation of spatial differences	14

Intermediate validation of Swarm Level 2 Lithospheric Field Product	
SW_OPER_MLI_VALi2C_000000000000000000000000000000000000	Page 3 of 14

Table of Figures	
Figure 1-1: Spatial power densities and degree correlations	6
Figure 1-2: Normalized coefficient differences in percent	7
Figure 1-3: Spatial visualization of Br differences between CIY4 and LCS-1 models	8
Figure 1-4: Spatial visualization of Br of the CIY4 model	9

Table of Tables

Table 1-1: Input data products	5
Table 1-2: Statistics of model residuals	10
Table 1-3: Validation criteria	10
Table 2-1: Model Configuration	12

Abbreviations

Acronym	Description
CI	Comprehensive Inversion
CIY4	Comprehensive Inversion, Year 4
CIY5	Comprehensive Inversion, Year 5
L2PS	Level 2 Processing System
MLI	Magnetic Lithospheric field
SHA	Spherical Harmonic Analysis
SIL	Scientist in the Loop
STR	Star Tracker
VAL	Validation
VFM	Vector Field Magnetometer

- [Finlay et.al., EPS, 2016] Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model; Finlay, Christopher C.; Olsen, Nils; Kotsiaros, Stavros; Gillet, Nicolas; Tøffner-Clausen, Lars; Earth, Planets and Space, Vol 68, 112 (2016). doi: <u>10.1186/s40623-016-0486-1</u>
- [Maus et.al., G3, 2010] Magnetic field model MF7; Maus, Stefan, G3 (2010)
- [Olsen et.al., GJI, 2017] LCS-1: A high-resolution global model of the lithospheric magnetic field derived from CHAMP and Swarm satellite observations; Olsen, Nils; Ravat, ; Finlay, Christopher C.; Kother, Livia K.; Geophysical Journal Int., Vol 211(3) (2017),. doi: <u>http://dx.doi.org/10.1093/gji/ggx381</u>
- [Sabaka et.al., GRL, 2016] Extracting Ocean-Generated Tidal Magnetic Signals from Swarm Data through Satellite Gradiometry; Sabaka, Terence J. ; Tyler, Robert H. ; Olsen, Nils in journal: Geophysical Research Letters (ISSN: 0094-8276, 2016), doi: <u>10.1002/2016GL068180</u>
- [Sabaka et.al., EPS, 2018] A Comprehensive Model of Earth's Magnetic Field Determined From 4 Years of Swarm Satellite Observation; Sabaka, Terence J. ; Tøffner-Clausen, Lars; Olsen, Nils; Finlay, Christopher C. Earth Planets and Space, in preparation (2018).

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_00000000T000000_999999999999990501

1 Intermediate Validation Report of MLI_SHAi2C

1.1 Input Data Products

The following input data products were used for the estimation of the MLI_SHAi2C lithospheric field model

Products	Туре	Period	Comment
SW_OPER_Q3D_CI_i200000000T000000_999999999999999999_0101	Q-matrix of Earth's (1-D mantle + oceans)	-	Used for computing induced part of ionospheric field
SW_OPER_AUX_OBS_220130101T000000_20131231T235959_0117 SW_OPER_AUX_OBS_220140101T000000_20141231T235959_0117 SW_OPER_AUX_OBS_220150101T000000_20151231T235959_0117 SW_OPER_AUX_OBS_220160101T000000_20161231T235959_0117 SW_OPER_AUX_OBS_220170101T000000_20171231T235959_0117 SW_OPER_AUX_OBS_220180101T000000_20181231T235959_0117	Observatory hourly mean values	2013-11-25 _ 2017-10-31	A total of 163 observatories are included
SW_OPER_AUX_DST_219980101T013000_20190115T233000_0001 SW_OPER_AUX_F10_220060101T000000_20190115T000000_0001 SW_OPER_AUX_KP_219990101T023000_20190117T133000_0001	Indices	As indicated by the file names	
SW_OPER_MAGA_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_vvvv SW_OPER_MAGB_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_vvvv SW_OPER_MAGC_LR_1B_yyyymmddTh1m1s1_yyyymmddTh2m2s2_vvvv	Swarm magnetic data, 1 Hz	2013-11-25 - 2018-12-31	Decimated to 30 second sampling vvvv = 0505 or 0506

Table 1-1: Input data products

1.2 Model Parameterization and Data Selection

See Section 2.1.

1.3 Output Products

The products of this validation report are:

Swarm Level 2 Magnetic Lithospheric field Product:

SW_OPER_MLI_SHAi2C_0000000T000000_9999999999999990_0501

Swarm Level 2 Intermediate Validation Product:

SW_OPER_MLI_VAL_0000000000000000009999999999999990501

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_0000000T000000_9999999999999990501

1.4 Validation Results

The tests were conducted between 2019-01-15 and 2018-02-10.

This 5th year CI L2 production, denoted CIY5, is very similar in methodology and results as last year's production (CIY4) which is thoroughly described in [Sabaka et.al., EPS, 2018]. The following contains the results of the tests performed on the lithospheric field output product. See Annex A for general definitions of various tests.

1.4.1 Spatial Power Density

Figure 1-1 below shows on the left the spatial power densities of the CIY5 and LCS-1 [Olsen et.al., GJI, 2017] lithospheric field models in blue and red respectively; and the power of the differences between the CIY5 model and LCS-1 (orange) and MF7 (purple). The differences are everywhere well below the actual field. As of degree ca. 80, the power of the CIY5 model is slightly larger than that of LCS-1which might be due to measurement noise. On the right in Figure 1-1, the degree correlation between CIY5 and the two other models are plotted. The degree correlation with both is above 0.8 to above spherical harmonic degree 105.

Figure 1-1: Spatial power densities and degree correlations

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_00000000T000000_9999999999999990501

Figure 1-2 below shows the relative differences in percent between each spherical harmonic coefficient of the CIY5 and the LCS-1 and MF7^{*} models respectively in degree versus order matrices. These plots show slight differences at lower degree and low order probably due to crosstalk with the ionospheric field, but otherwise the models agree well – in particular the CIY5 and LCS-1 models.

* Degrees 20-120

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_0000000000000000009999999999999990501

1.4.3 Visualisation of Spatial Differences

Figure 1-3 below shows the difference in B_r between the CIY5 and LCS-1 lithospheric field models at Earth's surface for degrees 15-105 at epoch 2015. These plots reveal the main differences to be in the auroral regions above quasi-dipole latitude $\pm 55^{\circ}$ but also show a tendency to "banding" along the satellite tracks though less pronounced than previous years CI models. A "polar gap" artefact also seem to have arisen in particular at the South Pole possible due to the increase in spherical harmonic degree of the model.

Figure 1-3: Spatial visualization of Br differences between CIY5 and LCS-1 models

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_0000000T000000_9999999999999990501

Page 9 of 14

1.4.4 Visualisation of Radial Field

Figure 1-4 below shows the radial field, B_r , of the CIY5 lithospheric field models at Earth's surface for degrees 15-120 at epoch 2015.

Figure 1-4: Spatial visualization of Br of the CIY5 model

1.4.5 Statistics of Model Residuals

The statistics of the data residuals obtained by the CIY5 modelling is given in Table 1-2 below. Grey cells indicate data from night side, white cells indicate data from sunlit regions. Crossed cells indicate data which are not used in the inversion process. "Field" indicate the pure vector and scalar measurements, whereas "NS diff" and "EW diff" indicate the North-South (along-track) respectively East-West differences. The standard deviations (of the residuals between the observations and the estimated model) of the differences are quite impressive; the standard deviations of the direct field measurements from the satellites are also remarkably . Note also the almost perfect similarity between Swarm A and C (side-by-side flying pair) and North-South

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_00000000T000000_9999999999999990501

differences for all three satellites. Swarm B shows slightly higher residuals in the horizontal and scalar Field components (B_{θ} , B_{ϕ} , and F) at low and mid latitudes and slightly lower residuals at high latitudes likely due to its higher altitude.

			Geomagnetic quasi-dipole latitude										
		Low, $\leq 10^{\circ}$				Mid,]10°55°]			High, $> 55^{\circ}$				
Swarm/ Obs.			Standard deviations of data residuals, weighted, [nT]										
		σ(B _r)	$\sigma(B_{\theta})$	$\sigma(B_{\varphi})$	σ (F)	σ(B _r)	$\sigma(B_{\theta})$	σ(Βφ)	σ (F)	σ(B _r)	$\sigma(B_{\theta})$	$\sigma(B_{\varphi})$	σ (F)
А	Field	1.63	1.92	1.66	2.41	1.65	2.09	2.07	1.78	\ge	\succ	\times	5.62
	NS	0.31	0.18	0.32	0.16	0.24	0.28	0.35	0.18	\ge	\succ	\succ	0.93
	diff	0.89	0.76	0.79	0.68	0.49	0.53	0.82	0.31	\ge	\succ	\times	1.05
В	Field	1.64	2.49	1.98	3.29	1.88	2.55	2.26	2.33	\succ	\succ	\succ	5.44
	NS	0.30	0.18	0.30	0.16	0.24	0.28	0.34	0.19	\succ	\succ	\times	0.83
	diff	0.80	0.67	0.72	0.60	0.47	0.52	0.80	0.29	\times	\succ	\times	0.95
С	Field	1.64	1.87	1.64	2.38	1.65	2.08	2.07	1.78	\ge	\succ	\times	5.62
	NS	0.32	0.18	0.32	0.16	0.25	0.29	0.35	0.18	$\left \right\rangle$	\succ	\succ	0.93
	diff	0.90	0.76	0.78	0.68	0.49	0.54	0.82	0.31	\times	\succ	\times	1.05
A-C	EW	0.55	0.40	0.74	0.36	0.38	0.44	0.75	0.32	\ge	\succ	\times	0.55
	diff	1.22	0.63	1.79	0.51	0.70	0.75	1.50	0.44	\ge	\geq	\ge	0.59
Magne	etic	3.99	4.01	4.50	n.c.	3.44	3.87	4.31	n.c.	13.23	12.83	10.41	n.c.
observatories		11.41	13.43	9.39	n.c.	5.31	6.75	7.97	n.c.	16.26	17.37	15.07	n.c.

Table 1-2: Statistics of model residuals

1.5 Criteria

Table 1-3 below summarizes the criteria used to check the validity of the MLI_SHAi2C product:

Input	Test	Criteria	Pass?
Observations	Residual statistics	Standard deviation of vector data below 7 nT.	Ok
Alternative model	Comparison with model	CI model agrees with alternative model	Ok

Table 1-3: Validation criteria

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_00000000T000000_99999999999999990501

2 Additional Information

2.1 Model Configuration and Data Selection Parameters

The MLI_SHAi2C product is obtained as a comprehensive co-estimation of the core, lithosphere, ionosphere, and magnetosphere field contributions including induced contributions similar to the method described in [Sabaka et.al., GRL, 2016]. The complete model configuration used is given in Table 2-1 below; the MLI_SHAi2C product is the green part:

Model Part	Maximum Degree/Order	Temporal Characteristics	Comment
Core	18/18	Order 5 B-spline with knots every 6 months	Damping of the mean-square, second and third time derivatives of B_r at the coremantle boundary (at 3480 km radius) with enhanced damping of zonal terms up to degree 9.
Lithosphere	120/120	Static	 Degree 19-120 purely determined by North-South differences from all satellites and East-West differences of lower pair satellite (A and C). Damping of B_r for degrees 91 and above to reduce noise
Ionosphere	45/5 (dipole coordinates)	Annual, semi-annual, 24-, 12-, 8- and 6- hours periodicity	 Spherical harmonic expansion in quasi- dipole (QD) frame, underlying dipole SH n_{max} = 60, m_{max} = 12. Scaling by 3-months averages of F10.7 plus induction via a priori 3-D conductivity model ("1-D+oceans") and infinite conductor at depth. Damping of: Mean-square current density J in the E-region within the nightside sector (magnetic local times 21:00 through 05:00; peak damping at 01:00) Mean-square of the surface Laplacian of J multiplied by a factor of sin⁸(2θ) over all local times, where θ is co- latitude.

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_0000000T000000_9999999999999990501

Page 12 of 14

Model Part	Maximum Degree/Order	Temporal Characteristics	Comment
Magnetosphere, external	3/1	One hour bins	
Magnetosphere, induced	3/3	One hour bins	
M2 Tidal	18/18	Periodicity: 12.42060122 hr, phase fixed with respect to 00:00:00, 1999 January 1 GMT	

Table 2-1: Model Configuration

The data selection criteria are:

- Coarse agreement with CHAOS-6 field model: $\Delta B_c \leq 500 \text{ nT}$ for all components $c=r, \vartheta, \varphi$, and $\Delta F \leq 100 \text{ nT}$.
- $Kp \le 3^0$ for gradient data, $Kp \le 2^-$ for field data
- Time-derivative of Dst: $|dDst/dt| \le 3 nT/hour$
- 30 second satellite sampling period, NS gradient data computed from 15 second differences
- core and tidal fields determined from night-side data only, i.e. with Sun $\geq 10^{\circ}$ below the horizon

2.2 Comments from Scientists in the Loop

2.2.1 Derivation of Model

The final Comprehensive Inversion model using five years of Swarm data shows very good agreement with alternative models and excellent residual statistics (Table 1-2). Slight along-track banding and differences in polar regions are observed when comparing to other models (see Figure 1-3).

2.2.2 Conclusion

The estimated model is assessed to be of good quality with very good agreement with alternative lithospheric field models.

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_0000000T000000_999999999999990_0501

Annex A Definitions of Tests

A.1 Mean square vector field difference per spherical harmonic degree

The mean square vector field difference between models per spherical harmonic degree (*n*) is diagnostic of how closely the models match on average across the globe. The difference between Gauss coefficients g_n^m of model *i* and model *j* can be defined as:

$$_{i,j}R_{n} = \left(n+1\right)\left(\frac{a}{r}\right)^{(2n+4)}\sum_{m=0}^{n}\left[ig_{n}^{m}-jg_{n}^{m}\right]^{2}$$
Equation A-1

where *n* is the degree, *m* is the order, *a* is the magnetic reference spherical radius of 6371.2 km which is close to the mean Earth radius, and *r* is the radius of the sphere of interest, which is taken as r = a for comparisons at the Earth's surface and r = 3480 km for comparisons at the core-mantle boundary.

Summing over degrees n from 1 to the truncation degree N and taking the square root yields the RMS vector field difference between the models *i* and *j* averaged over the spherical surface:

$$_{i,j}R = \sqrt{\sum_{n=1}^{N} {}_{i,j}R_n}$$

Equation A-2

A.2 Correlation per spherical harmonic degree

Analysis of spherical harmonic spectra is a powerful way to diagnose differences in amplitude between models but tells us little about how well they are correlated. The correlation per degree between two models again labelled by the indices *i* and *j* can be studied as a function of spherical harmonic degree using the quantity: $_{i,j}\rho_n$

$$_{i,j} \rho_{n} = \frac{\sum_{m=0}^{n} (i g_{n}^{m} g_{n}^{m})}{\sqrt{\left(\sum_{m=0}^{n} (i g_{n}^{m})^{2}\right) \left(\sum_{m=0}^{n} (j g_{n}^{m})^{2}\right)}}$$

Equation A-3

Ideally, the correlation should be close to 1 for all models, indicating that they have equivalent features and coefficients. If the correlation falls below 0.5, for degrees 1-9, then the models should be examined in more detail. Coefficients from degree 10-13 in IGRF and WMM are less well-determined (e.g. due to noise) and also change more rapidly so are not expected to be well correlated by the launch of the Swarm mission.

A.3 Visualisation of coefficient differences

A final method of visualising the differences in Gauss coefficients is to plot the differences $_{i}g_{n}^{m}-_{i}g_{n}^{m}$ as a

triangular plot, with the zonal coefficients lying along the centre of the triangle, the sectorial coefficients along the edges and the tesseral coefficients filling the central regions. These plots will illustrate which, if any, coefficients are strongly divergent between models

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

.

Intermediate validation of Swarm Level 2 Lithospheric Field Product SW_OPER_MLI_VALi2C_00000000T000000_9999999999999990_0501

A.4 Visualisation of spatial differences

A geographical investigation of the models can be made by plotting the differences in the B_x , B_y and B_z components of the field at Earth surface (approximated by ellipsoid). Studying differences between the Swarm models and reference models in space yields insight into the geographical locations where disparities are located, illustrating whether biases or errors have arisen in certain regions (e.g. polar areas).