

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

Arctic+ Theme 3: Freshwater fluxes

ArcFlux

EOP/-SA/0332/DFP-dfp

-Proposal-

DOCUMENT STATUS SHEET			
Project Control Initials	ISSUE	DATE	REASON FOR CHANGE
OA	1.0	12 November 2015	Version submitted to ESA
OA	2.0	19 April 2016	All sections revised. Revised version submitted to ESA

D: page deleted

I: Page Inserted

M: Page modified

DISTRIBUTION LIST			
COMPANY	NAMES	COPIES	
DTU	O. ANDERSEN, L. S. SØRENSEN, K. NIELSEN	1	
ENVEO	T. NAGLER	1	
LEGOS	A. KOURAEV, E. ZAKHAROVA	1	
ESA		8+1	
LEGOS ESA	A. KOURAEV, E. ZAKHAROVA	1 8+1	

PREPARED BY		<u>COMPANY</u>	<u>DATE</u>	<u>INITIALS</u>
	O. ANDERSEN	DTU		OA
	L. S. SØRENSEN	DTU		LS
	K. NIELSEN	DTU		KN
	H. SKOURUP	DTU		HS
	T. NAGLER	ENVEO		TN
	A. KOURAEV	LEGOS		АК
	E. ZAKHAROVA	LEGOS		EZ
ACCEPTED BY	O. ANDERSEN	DTU	19/4-2016	

1	Cov	er Letter	6
	1.1	Theme	6
	1.2	Summary	6
	1.3	Tables i, ii and iii	7
	1.4	Key Personnel	9
	1.5	Full consortium	9
	1.6	Signed Declaration	11
	1.7	Signature	14
	1.8	References	15
	1.9	Acronyms	19
2	Tecl	nnical Proposal	20
	2.1	Introduction Error! Bookmark not define	ed.
	2.2	Project Objectives	26
	2.2.2	Proposed approach to reach the primary objectives of the proposal	26
	2.2.2	Potential problem areas and possible solutions	40
	2.3	Advancement in science and impact of proposed work with respect to the state-of-the-art	42
	2.4	Initial scientific roadmap	43
	2.5	Statement of Compliance matrix	45
	2.6	Proposed work logic of ArcFlux	46
	•••••		46
	2.7	Proposed Activities Description	47
	2.7.1	WP1000 : Scientific requirement consolidation	47
	2.7.2	2 WP2000 : Data set collection	48
	2.7.3	3 WP3000 : Development and validation	49
	2.7.4	WP4000 : Prototype demonstration and impact	51
	2.7.5	WP5000 : Scientific roadmap	51
	2.7.6	WP6000 : Promotion	52
	2.7.7	WP7000 : Management	54
	2.8	IPR impact	54
3	Mar	nagement Proposal	56
	3.1	Organisation	56
	3.1.1	Roles and Responsibilities	56
	3.1.2	Background and Relevant Experience of the Institutions/Companies	57
	3.1.3	8 Key Personnel Curriculum Vitae	64
	3.1.4	Key personnel dedication	82
Δ	Imn	lementation Pronosal	<u>8</u> 1
+	л ппр л 1		04 Q/I
	4.1	ר ומוווווק	04

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

	4.1.1	Deliverables
	4.1.2	Meetings
	4.2	Work Breakdown Structure
	4.2.1	Work Package Description
	4.3	Estimated Effort Summary 100
	4.4	Estimated effort summary Error! Bookmark not defined.
5	Fina	ncial Proposal101
	5.1	Total contract cost 101
	5.2	Price Breakdown 102
	5.3	Travel and Subsidence Plan
	5.4	Payment Plan
6	Ann	ex: PSS forms
	6.1	DTU
	6.2	ENVEO 108
	6.3	LEGOS

DTU

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

1 Cover Letter

1.1 Theme

The scope of this document is to provide a technical, management, administrative, implementation and financial proposal to the ESA STSE ITT Arctic+, Theme 3: Freshwater fluxes (EOP/-SA/0332/DFP-dfp)

1.2 Summary

The main objective of this proposal is to determine the freshwater budget of the Arctic Ocean. To solve this task we propose to focus on the freshwater fluxes where Earth observation data together with in-situ data is expected to improve the final estimation of the Arctic Ocean freshwater budget. These are;

- Inflow of freshwater related to discharge from rivers
- Inflow of ice and melt run off
- Outflow of sea ice.

Furthermore, we anticipate that a main advance will be the improved capability to monitor and quantify the seasonal variability in these FWFs.

The table below shows how the WP structure of the ArcFlux project proposat relates to the tasks defined in AD-1.

Task [AD-1]	WP ArcFlux
1	WP1000
2	WP2 000
3	WP3000
4	WP4000
5	WP5000

The layout of the proposal

Section 2 contains the Technical Proposal, which in detail explains the objectives of the proposal and proposed approaches to reach these. The section also contains a thorough review of the different work packages. Section 3 is the Management Proposal, which contains information regarding the institutions of the consortium and the CVs of the personnel. Section 4 is the Implementation Proposal, which gives an overview of the work packages and deliverables. Section 5 describes the Financial Proposal and Section contains the PSS forms.

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

1.3 Tables i, ii and iii

Table i)

	Prime Contractor	Subcontrator 1	Subcontractor 2
Complete Name	DTU	ENVEO	LEGOS/CNRS
SME	NO	Yes	NO
Large Space	No	No	NO
Integrator			
EMITS Bidder Code	3193	33187	8354
ESA-p Bidder Code	6000006554	600006864	
ESA-p Vendor Code	100000428	100000448	
Country	Denmark	Austria	France
Price Type	Firm Fixed	Firm Fixed	Firm Fixed
Currency	Euro	Euro	Euro
Total Price	95 000,27	53 000.00	51 980.98
Price for any Options	N/A	N/A	N/A
Total	199 981.25		

Table ii)

Country	Percentage of total Amount	
DK	48%	
FR	26%	
AU	26%	

Table iii)

Contact Person	Name	Ole Baltazar Andersen
	Telephone	+ 45 4525 9754
	Fax	+ 45 4525 9775
	Email	oa@space.dtu.dk
	Postal Adress	DTU Space, Elektrovej 328,
		DK-2800 Lyngby Denmark
Author	Name	Ole Baltazar Andersen

	Title	Senior Research Scientist
Person for Technical	Name	Ole Baltazar Andersen
Management	Telephone	+ 45 4525 9754
	Fax	+ 45 4525 9775
	Email	oa@space.dtu.dk
	Postal Adress	DTU Space, Elektrovej 328,
		DK-2800 Lyngby Denmark
Person for Contractual	Name	Ole Baltazar Andersen
Management	Telephone	+ 45 4525 9754
	Fax	+ 45 4525 9775
	Email	oa@space.dtu.dk
	Postal Adress	DTU Space, Elektrovej 328,
		DK-2800 Lyngby Denmark
Person to Sign the Contract	Name	Kristian Pedersen
	Telephone	+ 45 4525 9750
	Fax	+ 45 4525 9775
	Email	kp@space.dtu.dk
	Postal Adress	DTU Space, Elektrovej 328,
		DK-2800 Lyngby Denmark

Subcontractor: ENVEO

Subcontractor	Name	ENVEO
	Adress	Technikerstrasse 21a, 6020
		Innsbruck, AUSTRIA
Contact Person	Name	Thomas Nagler
	Telephone	
	Fax	43 512 507 48300
	Email	
		+43 512 507 48319
		thomas.nagler@enveo.at

Subcontractor: LEGOS / CNRS

Subcontractor	Name	LEGOS
	Adress	OMP-LEGOS, avenue
		Edouard Belin, 18, 31401
		Toulouse cedex 9, FRANCE
Contact Person	Name	Alexei Kouraev

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

Telephone	(+33)-5-61-33-29-37
Fax	(+33) 05 61 25 32 05
Email	kouraev@legos.obs-mip.fr

1.4 Key Personnel

This list include the key personnel of ArcFlux; the persons that are (sub)WP leaders

NAMES	INSTITUTION
O. ANDERSEN (OA)	DTU
L. S. SØRENSEN (LS)	DTU
K. NIELSEN (KN)	DTU
H. SKOURUP (HS)	DTU
T. NAGLER (TN)	ENVEO
H. ROTT (HR)	ENVEO
J. WUITE (JW)	ENVEO
M. HETZENECKER (MH)	ENVEO
P. MALCHER (PM)	ENVEO
A. KOURAEV (AK)	LEGOS
E. ZAKHAROVA (EZ)	LEGOS
F. RÉMY (FR)	LEGOS
J-F CRETAUX (JC)	LEGOS

1.5 Full consortium

This list include the full consortium of ArcFlux.

NAMES	INSTITUTION
O. ANDERSEN	DTU
L. S. SØRENSEN	DTU
K. NIELSEN	DTU
H. SKOURUP	DTU
R. MEISTER	DTU
R. FORSBERG	DTU

D]	ш
	IU
2	
-	\mathbf{i}

T. NAGLER	ENVEO
H. ROTT	ENVEO
J. WUITE	ENVEO
M. HETZENECKER	ENVEO
P. MALCHER	ENVEO
A. KOURAEV	LEGOS
E. ZAKHAROVA	LEGOS
F. RÉMY	LEGOS
J-F CRETAUX	LEGOS

1.6 Signed Declaration

ESA UNCLASSIFIED - For Official Use

Appendix 3 to ESA/AO/1-8377/15/I-NB Page 14

ANNEX 2: Tender cover letter - Forms to be provided as part of its Annex 2

Form A: Declarations on Key Acceptance Factors

ITT Reference: DTD -2015-1-83 ПЛ

Subject: ARC FLUX - THENE 3

By submitting this Form A as Annex to the cover letter of the Tender reference [insert reference of your tender.....], I/we the undersigned herewith officially declare that the Tender fulfils the Key Acceptance Factors as listed hereunder and accepts that the Tender will be excluded from further evaluation if it turns out that the offer is not in line with any of the declarations given in this form:

		Please tick all the boxes to confirm that you meet the requirements
1	The Tenderer and any subcontractor(s) satisfy/ies the qualification requirements established under Part 1 A " Eligibility requirements" paragraph s b) to i) of the Agency's General Conditions of Tender (see Part 2B-1 of the GCT).	1
2	The Tenderer confirms, on his behalf and on behalf of its subcontractors, to be compliant with the requirements listed in the "Certification of Free Competition" (see Part 2B-3 of the GCT).	v
3	The Tenderer confirms, on his behalf and on behalf of its subcontractors, to be compliant with the requirements listed in the "Certification of non-benefit" (see Part 2H of the GCT).	V
4	The Tenderer confirms, on his behalf and on behalf of its subcontractors, the acceptance of the conditions listed in the "Non commitment of the Agency" (see Part 2B-11 of the GCT).	\checkmark
5	The Tender cover letter and the tender contain a binding price.	V
6	The Tender cover letter and the tender contain price type compliant with the one requested in the ITT	v
7	The Tender is compliant with the budgetary limit applicable to the tender as specified in the cover letter and STC	v
8	The Tender cover letter contains a confirmation that the validity period is 4 months from the date of tender submission with implicit extensions as per Article 37 points 3 &4 of the Procurement Regulations ESA/REG/001 rev.3.	V
9	The Tender contains a detailed technical description	1
10	The Tender cover letter and its Annex 2 (Forms A and B) are signed by authorised representative(s) of the Tenderer.	V

OUE D. ANDWESTED Name:

Current position in the Tenderer's organisation: SENSIGR RESERECCE SCIENTIT 12

Signature: Date: 11/11 - 2015

European Space Agency Agence spatiale européenne

ESA UNCLASSIFIED - For Official Use

Appendix 3 to ESA/AO/1-8377/15/I-NB Page 15

Form B: Declarations on Compliances

ITT Reference: DTU -2015-1- 88177

ARELUK - THENE 3 Subject:

By submitting the present Form B as Annex to the cover letter of the Tender reference [insert reference of your Tender]

I/we the undersigned herewith officially declare that the Tender is compliant with the following requirements as listed hereunder:

	Indicate : "Compliant" or "Partially Compliant" or "Non-Compliant" (in the last 2 cases give reference of the cover letter specific section containing detailed information on the matter and relevant cross references to the applicable parts of the offer)
The information provided to ESA for registration as potential supplier (individually for all entities involved in the tender) has been updated in the last 12 months.	COMPLINUT
With regard to the technical requirements of the ITT/RFQ, the Tender is:	COMPHIQUE
With regard to the managerial requirements of the ITT/RFQ, the Tender is:	Conpuiant
With regard to the financial requirements of the ITT/RFQ, the Tender is:	Computer
With regard to the contract conditions of the ITT/RFQ (please refer to the draft contract and to the present Special Conditions of Tender - Part 3 - section 6.1) the Tender is	Congurant
With regard to the IPR requirements of the ITT/RFQ (please refer to the present Special Conditions of Tender - Part 3 - section 6.3) the Tender is::	Capunt
With regard to the Export/Import requirements of the ITT/RFQ (please refer to the present Special Conditions of Tender - Part 3 - section 6.4) the Tender is:	Compliant
With regard to the Agency's Right of Audit (GCT Part 2 B7), the Tender is:	CompLinur

Name: OUE D. ANDERSON

Current position in the Tenderer's organisation: SCHIER RESERRED SCILDNIF

Signature: Cle // Date: 11/11-2015

European Space Agency Agence spatiale européenne

1.7 Signature

Done and signed for, and on behalf of

Danmarks Tekniske Universitet - Technical University of Denmark. National Space Institute Elektrovej, Byg. 327 2800 Kgs. Lyngby, Denmark

Signature:

BALL

Ole B. Andersen

Ole B. Andersen

1.8 References

Applicable Documents

AD-1	Statement of work. STSE Arctic+. EOP-SA/0332/DFP-dfp. Issue 1, Revision 0
AD-2	ESA Contract No. xxxxxxxxx/xx/I-NB. Appendix 2 to ESA/A0/1-8377/15/I-NB
AD-3	SPECIAL CONDITIONS OF TENDER. Appendix 3 to ESA/A0/1-8377/15/I-NB
AD-4	Item no. 15.155.13 in the list of ESA intended Invitations to Tender. ESA-IPL-POE-
	NB-sp-ITT-2015-815

Reference Documents

RD-1	Schindler, D. W., and Smol, J. P. (2006). Cumulative effects of climate warming and other human activities on freshwaters of Arctic and Subarctic North America. Ambio, 35(4), 160-168.
RD-2	Lenaerts, J. T. M., Van Angelen, J. H., Van Den Broeke, M. R., Garnder, A. S., Wouters, B., and Van Meijgaard, E. (2013). Irreversible mass loss of Canadian Arctic Archipelago glaciers. Geophys. Res. Lett. 40, 870-874, doi: 10.1002/grl.50214
RD-3	Shepherd, A. et al. (2012). A Reconciled Estimate of Ice-Sheet Mass Balance. Science, 30, 1183-1189; doi: 10.1126/science.1228102
RD-4	Shiklomanov, A. I., R. B. Lammers, and C. J. Vörösmarty (2002), Widespread decline in hydrological monitoring threatens Pan-Arctic Research, Eos Trans. AGU, 83(2), 13–17, doi:10.1029/2002E0000007.
RD-5	Alexei V. Kouraev, Elena A. Zakharova, Olivier Samain, Nelly M. Mognard, Anny Cazenave, Ob' river discharge from TOPEX/Poseidon satellite altimetry (1992–2002), Remote Sensing of Environment, Volume 93, Issues 1–2, 30 October 2004, Pages 238-245, ISSN 0034-4257, <u>http://dx.doi.org/10.1016/j.rse.2004.07.007</u> .
RD-5a	Cretaux J-F, V. Jelinski, S. Calmant, A. Kouraev, V. Vuglinski, M. Bergé-Nguyen, M- C Gennero, F. Nino, R. Abarco Del Rio, A. Cazenave, P. Maisongrande, SOLS, a lake database to monitor in Near real time water level storage variations from remote sensing data, Advances in Space research, 47 (2011), p. 1497-1507, doi:10:1016/j.asr.2011.01.004
RD-6	Surdu, C. M., et al. "Response of ice cover on shallow lakes of the North Slope of Alaska to contemporary climate conditions (1950–2011): radar remote-sensing and numerical modeling data analysis." The Cryosphere 8.1 (2014): 167-180.
RD-7	Nielsen, K., Stenseng, L., Andersen, O.B., Villadsen, H. and Knudsen, P. (2015), Validation of CryoSat-2 SAR mode based lak elevels. Remote Sensing of Environment, Volume 171, 15 December 2015, Pages 162-170.

D 1	
	U
	-
-	

RD-8	Woodgate, R.A., Stafford, K.M. and Prahl, F.G. (2015). A Synthesis of year – round interdisciplinary mooring measurements in the Bering Strait (1990-2014) and the RUSALCA years (2004-2011). Bering Strait mooring synthesis for oceanography, RUSALCA, 1 (34)
RD-9	G. Spreen, S. Kern, D. Stammer, and E. Hansen: Fram Strait sea ice volume export estimated between 2003 and 2008 from satellite data. Geophysical Research Letters, vol. 36, L19502, doi:10.1029/2009GL039591, 2009
RD-10	Kouraev A.V., M.N. Shimaraev, P.I. Buharizin, M.A.Naumenko, J-F Crétaux, N.M. Mognard, B. Legrésy, F. Rémy. Ice and snow cover of continental water bodies from simultaneous radar altimetry and radiometry observations. Survey in Geophysics - Thematic issue "Hydrology from space" 2008 DOI 10.1007/s10712- 008-9042-2
RD-11	Serreze, M. C., Barrett, A. P., Slater, A. G., Woodgate, R. A., Aagaard, K., Lammers, R. B., & Lee, C. M. (2006). The large-scale freshwater cycle of the Arctic. <i>Journal of Geophysical Research: Oceans (1978–2012), 111</i> (C11).
RD-12	Kwok, R. (2009), Outflow of Arctic Ocean sea ice into the Greenland and Barents seas: 1979 – 2007, J. Clim., 22(9), 2438 – 2457, doi:10.1175/2008JCLI2819.1
RD-13	Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice thickness in the Arctic region, Nature, 425, 947–950, 2003.
RD-14	Kwok, R., and Cunningham: Variability of Arctic sea ice thickness and volume from CryoSat-2. Phil. Trans. R. Soc., A 373:20140157
RD-15	Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice thickness and volume, Geophys. Res. Lett., 40, 732–737, doi:10.1002/grl.50193, 2013.
RD-16	S. Kern, K. Khvorostovsky, H. Skourup, E. Rinne, Z. S. Parsakhoo, V. Djepa, P. Wadhams, and S. Sandven: The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: Results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise. The Cryosphere, doi:10.5194/tc-9-37-2015, 9, 37-52, 2015
RD-17	RD-13 R. Ricker, S. Hendricks, V. Helm, H. Skourup , and M. Davidson: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607-1622, doi:10.5194/tc-8-1607-2014, 2014
RD-18	Haine, T. W., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., & Woodgate, R. (2015). Arctic freshwater export: Status, mechanisms, and prospects. Global and Planetary Change, 125, 13-35.

DTU

and export. In The freshwater budget of the Arctic Ocean (pp. 91-126). Springer Netherlands.RD-20ACIA, 2005. Arctic Climate Impact Assessment. ACIA Overview report. Cambridge University Press. 1020 pp.RD-21Villadsen H., Ole B. Andersen, Lars Stenseng, Karina Nielsen, Per Knudsen, CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges- Brahmaputra River basin. Remote Sensing of Environment, Volume 168, 2015, Pages 80-89.RD-22Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595RD-23Andersen, O. And G. Piccioni (2016), Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/ RD-25RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	RD-19	Carmack, E. C. (2000). The Arctic Ocean's freshwater budget: Sources, storage		
Netherlands.RD-20ACIA, 2005. Arctic Climate Impact Assessment. ACIA Overview report. Cambridge University Press. 1020 pp.RD-21Villadsen H., Ole B. Andersen, Lars Stenseng, Karina Nielsen, Per Knudsen, CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges- Brahmaputra River basin. Remote Sensing of Environment, Volume 168, 2015, Pages 80-89.RD-22Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595RD-23Andersen, O. And G. Piccioni (2016), Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182		and export. In The freshwater budget of the Arctic Ocean (pp. 91-126). Springer		
 RD-20 ACIA, 2005. Arctic Climate Impact Assessment. ACIA Overview report. Cambridge University Press. 1020 pp. RD-21 Villadsen H., Ole B. Andersen, Lars Stenseng, Karina Nielsen, Per Knudsen, CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges- Brahmaputra River basin. Remote Sensing of Environment, Volume 168, 2015, Pages 80–89. RD-22 Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595 RD-23 Andersen, O. And G. Piccioni (2016) , Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016 RD-24 Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/ RD-25 Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012. RD-26 Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5, RD-27 Andersen, O. P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182 		Netherlands.		
Cambridge University Press. 1020 pp.RD-21Villadsen H., Ole B. Andersen, Lars Stenseng, Karina Nielsen, Per Knudsen, CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges- Brahmaputra River basin. Remote Sensing of Environment, Volume 168, 2015, Pages 80–89.RD-22Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595RD-23Andersen, O. And G. Piccioni (2016) , Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005, isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	RD-20	ACIA, 2005. Arctic Climate Impact Assessment. ACIA Overview report.		
 RD-21 Villadsen H., Ole B. Andersen, Lars Stenseng, Karina Nielsen, Per Knudsen, CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges- Brahmaputra River basin. Remote Sensing of Environment, Volume 168, 2015, Pages 80–89. RD-22 Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595 RD-23 Andersen, O. And G. Piccioni (2016), Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016 RD-24 Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/ RD-25 Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012. RD-26 Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5, RD-27 Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182 		Cambridge University Press. 1020 pp.		
CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges- Brahmaputra River basin. Remote Sensing of Environment, Volume 168, 2015, Pages 80–89.RD-22Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595RD-23Andersen, O. And G. Piccioni (2016) , Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/ RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005, isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	RD-21	Villadsen H., Ole B. Andersen, Lars Stenseng, Karina Nielsen, Per Knudsen,		
 Brahmaputra River basin. Remote Sensing of Environment, Volume 168, 2015, Pages 80–89. RD-22 Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595 RD-23 Andersen, O. And G. Piccioni (2016), Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016 RD-24 Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/ RD-25 Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012. RD-26 Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005, isbn 2- 9599804-2-5, RD-27 Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182 		CryoSat-2 altimetry for river level monitoring — Evaluation in the Ganges-		
 RD-22 Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595 RD-23 Andersen, O. And G. Piccioni (2016) , Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016 RD-24 Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/ RD-25 Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012. RD-26 Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2-9599804-2-5, RD-27 Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182 		Brahmaputra River basin. Remote Sensing of Environment, Volume 168, 2015,		
 RD-22 Döll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595 RD-23 Andersen, O. And G. Piccioni (2016), Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016 RD-24 Permafrost DUE <u>http://www.ipf.tuwien.ac.at/permafrost/</u> RD-25 Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012. RD-26 Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2-9599804-2-5, RD-27 Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182 		Pages 80–89.		
 RD-22 Doll, P. Muller Schmied, H., Schuh, F., Portmann, F. Eicker, A (2014) Global scale assessment of groundwater deletion and related groundwater abstractions. Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595 RD-23 Andersen, O. And G. Piccioni (2016) , Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016 RD-24 Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/ RD-25 Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012. RD-26 Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2-9599804-2-5, RD-27 Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182 	DD 00			
assessment of groundwater deletion and related groundwater abstractions.Combining hydrological modelling with information from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595RD-23Andersen, O. And G. Piccioni (2016), Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	RD-22	Doll, P. Muller Schmied, H., Schuh, F., Portmann, F, Eicker, A (2014) Global scale		
Combining nyurological modelning with mormation from well observations and GRACE satellite, Water Resour. Res, 50, 5698-5720, doi: 10.1002/2014WR015595RD-23Andersen, O. And G. Piccioni (2016) , Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005, isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182		assessment of groundwater deletion and related groundwater abstractions.		
RRD-23Andersen, O. And G. Piccioni (2016) , Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005, isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182		COmbining flydrological modelning with mormation noin wen observations and CRACE satellite. Water Pescur, Pesc 50, 5698-5720, doi:		
RD-23Andersen, O. And G. Piccioni (2016), Recent Arctic sea level variations from satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182		10 1002/2014WR015595		
satellites. Frontiers in Oceanography, in press, 2016RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	RD-23	Andersen, O. And G. Piccioni (2016), Recent Arctic sea level variations from		
RD-24Permafrost DUE http://www.ipf.tuwien.ac.at/permafrost/RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005, isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182		satellites. Frontiers in Oceanography, in press, 2016		
RD-25Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005, isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	RD-24	Permafrost DUE <u>http://www.ipf.tuwien.ac.at/permafrost/</u>		
Group, 2012.RD-26Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	RD-25	Qui, J., Thawing permafrost reduces river runoff, Nature news, Nature publishing		
 RD-26 Stammer D, and Koehl (2005), Estimates of the ocean circulation through the assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2-9599804-2-5, RD-27 Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182 		Group, 2012.		
assimilation of altimetric and geoid information together with the in situ data. In Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2- 9599804-2-5,RD-27Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	RD-26	Stammer D, and Koehl (2005), Estimates of the ocean circulation through the		
RD-27 RD-27 Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182		assimilation of altimetric and geoid information together with the in situ data. In		
RD-27 Andersen, O., P. Knudsen and L. Stensend, (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182		Knudsen et al., (eds) Proceeding of the GOCINA workshop, April 2005,isbn 2-		
Surface) and MDT (Mean Dynamic Topography) from 20 Years of Satellite Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	DD 27	9599804-2-5,		
Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182	KD-27	Andersen, U., P. Knudsen and L. Stensend, (2015). The DT013 MSS (Mean Sea		
Altimetry, Springer Verlag, DOI 10.1007/1345_2015_182		Altimatry Springer Verlag DOI 10 1007/1245 2015 192		
RD-28 Lique C M M Holland V B Dibike D M Lawrence and LA Screen (2016)	RD-28	Lique C M M Holland V B Dibike D M Lawrence and LA Screen (2016)		
Modeling the Arctic freshwater system and its integration in the global system:	ND 20	Modeling the Arctic freshwater system and its integration in the global system:		
Lessons learned and future challenges. I. Geophys. Res. Biogeosci., 121, 540–566.		Lessons learned and future challenges. I. Geophys. Res. Biogeosci., 121, 540–566.		
doi:10.1002/2015IG003120.		doi:10.1002/2015IG003120.		
RD-29 Rae, J. G. L., Aðalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory, J. M., Hewitt,	RD-29	Rae, J. G. L., Aðalgeirsdóttir, G., Edwards, T. L., Fettweis, X., Gregory, J. M., Hewitt,		
H. T., & Ridley, J. K. (2012). Greenland ice sheet surface mass balance: evaluating		H. T., & Ridley, J. K. (2012). Greenland ice sheet surface mass balance: evaluating		
simulations and making projections with regional climate models. The		simulations and making projections with regional climate models. The		
Cryosphere, 6, 1275-1294.		Cryosphere, 6, 1275-1294.		
KD-30 Lucas-Picher, P., Wulff-Nielsen, M., Christensen, J. H., Aðalgeirsdóttir, G.,	KD-30	Lucas-Picher, P., Wulff-Nielsen, M., Christensen, J. H., Aðalgeirsdóttir, G.,		
Mottram, K., & Simonsen, S. B. (2012). Very high resolution regional climate		Mourain, K., & Simonsen, S. B. (2012). very nign resolution regional climate		
Goophysical Research: Atmospheres, 117(D2)		Goophysical Research: Atmospheres 117(D2)		
deophysical Research. Aunospheres, 11/(D2).				

ΠΤΠ
DIU

RD-31	Fettweis, X., Tedesco, M., Broeke, M., & Ettema, J. (2011). Melting trends over the Greenland ice sheet (1958–2009) from spaceborne microwave data and regional climate models. The Cryosphere, 5(2), 359-375.
RD-32	Gallée, H., Guyomarc'h, G., & Brun, E. (2001). Impact of snow drift on the Antarctic ice sheet surface mass balance: possible sensitivity to snow-surface properties. Boundary-Layer Meteorology, 99(1), 1-19.
RD-33	Peterson, B. J., Holmes, R. M., McClelland, J. W., Vörösmarty, C. J., Lammers, R. B., Shiklomanov, A. I., & Rahmstorf, S. (2002). Increasing river discharge to the Arctic Ocean. science, 298(5601), 2171-2173.
RD-34	Karcher, M., Gerdes, R., Kauker, F., Köberle, C., & Yashayaev, I. (2005). Arctic Ocean change heralds north Atlantic freshening. Geophysical Research Letters, 32(21).
RD-35	M. J. Tourian, N. Sneeuw, and A. Bardossy. M. J. A quantile function approach to discharge estimation from satellite altimetry (ENVISAT)WATER RESOURCES RESEARCH, VOL. 49, 4174–4186, doi:10.1002/wrcr.20348, 2013.
RD-36	Birkinshaw, S.J.; Moore, P.; Kilsby, C.G.; O'Donnell, G.M.; Hardy, A.J.; Berry, P.A.M. Daily discharge estimation at ungauged river sites using remote sensing. Hydrol. Process. 2012, doi: 10.1002/hyp.9647.
RD-37	Zakharova, E.A.; Kouraev, A.V.; Cazenave, A.; Seyler, F. Amazon River discharge estimated from TOPEX/Poseidon altimetry. Compt. Rend. Geosci. 2006, 338, 188-196.
RD-38	Papa, F., F. Durand, W. B. Rossow, A. Rahman, and S. K. Bala (2010), Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra river and its seasonal to interannual variations from 1993 to 2008, J. Geophys. Res., 115, C12013, doi:10.1029/2009JC006075.
RD-39	Berry, P. A. M., J. D. Garlick, J. A. Freeman, and E. L. Mathers (2005), Global inland water monitoring from multi-mission altimetery, Geophys. Res. Lett., 32, L16401, doi:10.1029/2005GL022814
RD-40	Birkett, C. M., L. A. K. Mertes, T. Dunne, M. H. Costa, and M. J. Jasinski (2002), Surface water dynamics in the amazon basin: Application of satellite radar altimetry, J. Geophys. Res., 107(D20), 8059, doi:10.1029/ 2001JD000609.

Π	11
UI	U
-	

RD-41	Giles, K., S. W. Laxon, A. L. Ridout, D. J. Wingham, and S. Bacon: Western Arctic
	Gyre. Nature Geoscience, Vol. 5, March 2012
RD-42	Mauritzen, C.: Arctic Freshwater. Nature Geoscience, vol. 5, pp. 162-164. March
RD-43	Ricker, R., S. Hendricks, D. K. Perovich, V. Helm, and R. Gerdes (2015),
	Impact of snow accumulation on CryoSat-2 range retrievals over Arctic
	4455, doi:10.1002/2015GL064081.
RD-44	Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N.,
	Aleksandrov, Y. I., and Colony, R.: Snow depth on Arctic sea ice, J. Clim., 12, 1814-
RD-44	sea ice: An observational approach with buoy data, Geophys. Res. Lett., 42, 4447 4455, doi:10.1002/2015GL064081. Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N. N., Aleksandrov, Y. I., and Colony, R.: Snow depth on Arctic sea ice, J. Clim., 12, 1814 1829, 1999

1.9 Acronyms

ATBD	Algorithm Technical Baseline Document
DTU	Danish Technical University
ESA	European Space Agency
САА	Canadian Arctic Archipelago
FS	Fram Strait
BS	Bering Strait
CS2	CryoSat-2
ITT	Invitation To Tender
FWF	Freshwater flux
FWB	Freshwater budget
GrIS	Greenland Ice Sheet
Р	Precipitation
SMB	Surface mass balance
E	evapotranspiration

DTU

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

2 Technical Proposal

The study will be carried out by a consortium led by DTU. The consortium is composed of a core team involved in the day-to-day work. The consortium consists of scientists from three institutes from three European countries:

- DTU, Denmark
- LEGOS, France
- ENVEO, Austria

The consortium holds all the required expertise and experience to successfully carry out the proposed work in ArcFlux, including the management of it.

2.1 Introductionary state of the Art

As pointed out by RD-1, evidence exists for rapid changes occurring in the Earth's climate system. Through both atmospheric and oceanic circulation, heat is transferred from the equator to the poles. The effects of climate change are most pronounced in the Arctic and Antarctic. Possible ways in which Arctic (eco) systems can be affected by warmer temperatures include: changes in amount and duration of snow and ice cover; frequency and extent of spring floods; changes in the ratio of P-E (precipitation minus evapotranspiration); amounts of water transport to lakes and rivers from snow and permafrost melting; and a decrease in frozen precipitation.

The Arctic Ocean is sensitive to freshwater fluxes (FWF) in terms of ocean stratification, circulations and the nutrient balance. The main input to the freshwater budget is river discharge, ice and snow discharge, net precipitation, and inflow of low-salinity water through Bering Strait (see Figure 1). The transport of freshwater out of the Arctic Ocean is dominated by outflow of liquid water through the Canadian Arctic Archipelago (CAA) and outflow of liquid water and sea ice through Fram Strait (see Figure 1).

A change in the freshwater budget (FWB) of the Arctic Ocean has a number of consequences. The most important one is that an addition of freshwater will affect, and possibly slow down, the thermohaline circulation transporting warmer waters northwards. This would result in a cooling of northern Europe and warmer temperatures elsewhere. In addition, a decreased sea ice cover may result in higher humidity and hence increased snowfall. Furthermore, melting of permafrost and draining of wetlands result in an increased amounts of river flow and lake area. With an expected rise in freshwater discharge to the Arctic Ocean of 28%, of which 15%

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

are attributable to ice melt (RD-11), it is therefore of utmost importance to constrain the FWB, and the individual FWFs.

Figure 1 (left) Main inflow and outflow channels on the Actic Ocean FWB. Also Arctic river basins map from the Arctic Great Rivers Observatory, http://arcticgreatrivers.org/ (Right) Freshwater fluxes that mainly defining the Arctic freshwater budget. Red shows inflow while blue outflow of the Arctic Ocean.

The Arctic freshwater flux system is considerably more complicated than visualized in Figure 1 as also notices by RD-11 in 2006, and many of the individual fluxes are associated with huge errors due to lack of data. The Annual mean freshwater budget outlined in RD-11 encompasses the following components as shown in Figure 2.

DTU

The FWFs in Figure 2 was updated by RD-18 (to the period 2000-2010) due to the rapid changes seen in the Arctic during the last decade, and the increased availability of EO data and independent models. Besides in and outflow via the atmosphere, the outflow of freshwater from the Arctic is mainly as solid water (sea ice) which dominates transport through the Fram Strait and through freshwater diluting the upper layer of the Arctic Ocean and creating the ubiquitous halocline in the upper 50 meters which is seen to dominate the transport in the CAA via the ocean circulation. However all the transports are associated with large uncertainties and RD-18 mentioned that the transports are furthermore currently experiencing large changes.

Some fluxes are also becoming increasingly important in the Arctic FWB. Thawing permafrost is one of the components which are expected to increase the inflow of freshwater into the Arctic as also demonstrated by RD-22. Thawing permafrost generally leads to increased freshwater inflow into the Arctic, but exceptions are seen RD-25. This is somewhat

DTH	Ref:	ArcFlux
	Issue:	2.0
**	Date:	19/04 2016

counteracted by the increase in groundwater depletion and abstractions with new abilities to farm at higher latitudes as also mentioned by RD-22.

It is not possible to close the Arctic Freshwater budget without the inter-annual changes in the Arctic Oscillation that drives large variations in freshwater storage inside the Arctic Ocean into account. RD-18 notices the imbalance in FWB to freshen the Arctic Ocean, increasing from 100 km³/y in the 1980's to around 1200 km³/y 2000-2010 (with uncertainty of 700 km³/y). The Arctic Ocean Freshening is particularly seen as an increase in sea level associated with the Beaufort Gyre over the altimetry era where a recent publication RD-23 indicates that the Beaufort Gyre has risen by as much as 40 cm over the last 25 years.

Below is a short description highlighting more state of the art of our knowledge of the main in- and outflow of the FWB of the Arctic Ocean.

<u>Inflows</u>

The main river systems that drain into the Arctic Ocean are the Ob, Yenisey, and Lena in Eurasia and the Mackenzie in Canada (see figure 1) providing around 3200 km³/y in freshwater (RD-11). The FWF from rivers is estimated from river discharge near the mouth of the draining rivers. Discharge can be obtained directly from gauge measurement or indirectly from the water levels obtained from gauges or satellite altimetry. In the last decade the number of gauge stations has been declining (RD-4), hence satellite altimetry has become a valuable supplement to derive water levels and hence also the discharge as in-situ observations are frequently sensitive to local water-storage and use of the river water for irrigation.

Satellite altimetry has been used extensively to obtain water level of inland river and lake systems, using data from radar altimetry satellite missions such as ERS, Envisat TOPEX/Poseidon, and Jason-2 [RD-39 and RD-36]. Satellite altimetry has also been used to estimate river discharge. The use of rating curves between altimetric height and in situ discharge data provides a good accuracy for estimation of daily discharges as well as annual river input to the ocean. The early studies based on high-frequency TOPEX/Poseidon measurements showed the mean errors of 1,5 - 6% for daily discharge estimation for the Amazon river [RD-37] and 8% for the Ob' river in Siberia [RD-5]. Additional errors are introduced during interpolation of altimetry-derived (10 days repeat period) daily discharges for calculation of annual river outflow. The final errors of estimations of altimetric annual river outflow increase up to 6 and 17% for Amazon and Ob' rivers correspondingly. Recently RD-38 used Jason-2 altimetry data to estimate water outflow from the Ganga and Brahmaptura rivers, based on in situ rating curves. He obtained errors of 13 and 6.5 %, respectively. The polar orbit altimetric missions with quasi-monthly repeat cycle could also be

used for river discharge estimations. RD-36 obtained discharge for the Mekong and Ob' rivers using ENVISAT altimetry data over 50 km river reaches with acceptable accuracy, basing on the Manning's resistance formulation. RD-35 demonstrated the original approach to derive the river discharge from ENVISAT altimetric heights using quantile function instead of rating curves. This method can be applied in the cases of absence of overlap between altimetric height and in situ discharge time series.

The performance of CryoSat-2/SIRAL altimetry for river monitoring was investigated by using river levels retrieved from Ganges and Brahmaputra [RD-21]. Although the CryoSat-2/SIRAL has long repeat period orbit of 369 days, which is not well adapted for river and lake monitoring, the results from the method of spatio-temporal interpolation developed in this study show a high potential for river hydrology. The application of this method allows the time series construction with the sub-cycle period of 30 days.

Thawing permafrost with possible release of carbon dioxide and methane will likely add to the inflow in a complex matter which is currently an area of intense investigation but quantification of this is still hard.

Ice and snow discharge from Greenland and ice caps in the arctic region is another positive FWF in the Arctic Ocean FWB but considerably smaller than the input from rivers (300-500 km³/y, RD-11). This FWF can be estimated by combining information from surface mass balance (SMB) models, satellite altimetry and ice velocities from SAR images.

RD-2 found through a combination of models and GRACE measurements that glaciers in the CAA are losing mass, caused by the fact that meltwater runoff is not sufficiently compensated for by accumulation. This mass loss means that an increasing FWF is added to the Arctic Ocean. Since their study in 2012 [RD-2], Cryosat-2 and Sentinel-1/3 measurements have become available which makes it possible to continuously measure, and hence constrain, the changes of Arctic and Greenlandic glaciers, and hence changes in the FWF.

As mentioned in RD-3, Greenland Ice Sheet (GrIS) mass loss rates have accelerated since the turn of the century. The GrIS mass balance can be measured using a variety of tools; satellite altimetry measurements to detect of changes in the surface height, SAR measurements of changes in ice velocity and gravimetric measurements of mass changes. It is important to note that the ice sheet or glacier mass loss does not define the FWF but a change in it.

In-situ measurements of precipitation (P) and evapotranspiration (E) are sparse in the Arctic region and are affected with large uncertainties. The net P-E is of the order of $2000 \text{ km}^3/\text{y}$ (RD-11) and is therefore often estimated from climate models with an uncertainty of 10 % (RD-18).

DTH	Ref:	ArcFlux
	Issue:	2.0
**	Date:	19/04 2016

The freshwater flux from inflow of low-salinity water through the Bering Strait and to a lesser degree though deep water outflow of saline water in the Fram Strait are of the order of 3000 km^3/y (RD-11) and can be estimated from mooring data of salinity and velocity (RD-8).

<u>Outflow</u>

A large amount of Arctic freshwater is contained in the sea ice, part of which is transported out of the Arctic Ocean mainly through the Fram Strait (2300 km3/y), and a minor component through the Nares Strait and the straits between the Queen Elizabeth Islands in the northeastern part of Canada (CAA) and with some smaller transport through the Fury and Hecla straits (Bering Strait). To estimate the freshwater outflow of the Arctic contained in the sea ice, a time-series of sea ice thickness through a defined fluxgate combined with sea ice velocities is needed. This has already been demonstrated to work in RD-9.

Oceanic freshwater fluxes of liquid water through mainly the CAA (2300 km3/y) and the Fram Strait (2400 km3/y) can be determined from mooring data of salinity and velocity with an uncertainty of some 10% [RD-18]. Recent availability of high quality SAR altimetry from the Cryosat-2 and Sentinel-3 missions opens up the possibility to use these for studying the liquid transport in the upper 50 meters of the ocean through a geostrophic assumption as demonstrated for the North Atlantic in RD-26.

Current knowledge gap

According to RD-22 one of the major knowledge gaps in relation to estimating the FWB based on models is the lack of in situ observations for validation of the models. RD-11 also pointed out that the uncertainty is very large on the various components in the FWB. RD-18 notices the imbalance in FWB which is the source to freshen the Arctic Ocean has been increasing from 100 km³/y in the 1980th to around 1200 km³/y in the 2000-2010 period but with uncertainty of 700 km³/y. It is also noticed that based on such numbers coupled climate models project continued freshening of the Arctic Ocean during the 21st century with a total gain of about 50.000 km³ which is an increase of about 50%. On top of this our knowledge into the effect of thawing permafrost and irrigation at higher latitudes adds further uncertainty.

Both for present day estimates of the Fresh water balance, but also to serve for improved modelling of FWF and improved model-predictions of FWF and FWB it is fundamental to include EO data. The outcome of ArcFlux will produce independent estimates of several components of the FWF based on EO data which can also serve both model validation and model data.

In the ArcFlux approach the idea is to focus on improving the FWF of the four major FW components using EO data. These four major FW fluxes adds up to more than 90% of the total FW budget of the horizontal water and ice fluxes in and out of the Arctic Ocean according to RD-18.

2.2 Project Objectives

The main objectives of this proposed study are:

- 1. Identify, and document the major challenges associated with estimation of the Arctic Freshwater budget. This includes identifying gaps in our current knowledge and capabilities.
- 2. Explore, develop and validate different approaches to address the identified challenges and enhance current approaches to compute the freshwater budget in the Arctic. This should be done maximizing the use of ESA data.
- 3. Compute a multi-year assessment of the Arctic freshwater budget based on the developed methodology.
- 4. Validate the obtained results and compute uncertainties. Compare the derived estimates with existing alternative estimates
- 5. Develop a scientific roadmap for future research activities in this domain of estimating the FWB of the Arctic Ocean.

2.2.1 Proposed approach to reach the primary objectives of the proposal

Within ArcFlux we will focus on contributions (FWFs), where satellite data in combination with available in-situ data is expected to improve the FWF estimates. These are river discharge, ice discharge and melt, sea ice fluxes and ocean fluxes through Bering Strait, Fram Strait and CAA/ Davis Strait. We propose the following approach to derive these FWFs which are listed below. Another major objective in this proposal is to estimate the FWB of the Arctic Ocean in relation to the potential storage of freshwater inside the Arctic Ocean. The freshwater budget of the Arctic Ocean consists of several contributions as described above.

Within ArcFlux, the strategy for determining the FWFs is described in the following sections.

2.2.1.1 Discharge from arctic rivers

Discharge from arctic rivers is one of the major freshwater sources in the Arctic Ocean, but with a declining number of gauge data (RD-4), satellite altimetry is a valuable supplement. Water levels obtained from satellite altimetry has already been applied for arctic rivers to

derive discharge (RD-5). Here we intend to use missions such as Envisat, SARAL, T/P, Jason-1, -2, CryoSat-2, and potentially Sentinel-3 data, to estimate water level variations, which can be converted into discharge through a rating curve. The tracks related to the altimetry data in the vicinity of the Ob River are shown on Figure 3. The data coverage is similar for the other large rivers. The altimeter onboard CryoSat-2 is partly operating in SAR/SARIn mode in the arctic region, and these modes have proven to provide more precise water level estimates over smaller water bodies than from conventional radar altimetry (RD-7), due the higher along-track resolution. A first preliminary attempt to estimate a water level time series for the Ob River (virtual station 20 km upstream from Aksarka) is demonstrated in Figure 4. The time series is only based on CryoSat-2 data and it is expected that the result will improve when data from other missions is included.

Our approach enables us to look at the river level variations at various locations which can be a possible key to understand the various contributors. Contribution from thawing permafrost might add water to the rivers, but in principle the altimeter does not distinguish between the sources (i.e., melt water, damn building, seasonal freezing of the ground and permafrost) and only measures the total water level variations, but provide the observations at multiple locations along the river.

To achieve accurate water levels from altimetry it is essential to have an accurate mask of the river outline. We therefore propose to use satellite imagery from Sentinel-1 and Sentinel-2 to derive seasonal masks of the various river systems. These images will further provide information regarding periods of freezing (RD-6), which will help to identify periods where the altimetry derived water levels are uncertain, due to ice cover. Data from Sentinel-1and 2 is available for the areas that cover the mouth of the large Arctic Rivers and can be downloaded from the "Sentinels Scientific Data Hub" (https://scihub.copernicus.eu/)

Figure 3: Availeble altimetry data in the vicinity of the Ob Rver. Yellow indicates Envisat and SARAL/Altika orbits, green CryoSat-2 and red Sentinel-3. The almost horizontal tracks are the Jason/Topex orbits.

Figure 4: Water level time series for the Ob river based on CryoSat-2 in SARIn mode (credits: Karina Nielsen, 2016)

<u>To convert water levels to discharge</u> we will implement the classical rating curve approach for estimation of river input into the ocean from the four largest Arctic rivers: Ob', Yenisey, Lena

and Mackenzie. We will furthermore conduct a feasibility study of the altimetric water height retrieval for medium-size rivers of Eurasia (Pechora, Nadym, Pur, Taz, Khatanga, Yana, Indigirka, Kolyma). The consortium will benefit from the combination of LEGOS experience in conventional altimetry and analysis of height-discharge relations for arctic rivers [RD-5] and DTU's experience in water height processing from CryoSat-2 SAR and SARIn modes [RD-21]. The lower reaches of the Ob' river are covered by CryoSat2 observations in SARIn mode (A preliminary plot based on CryoSat-2 data is shown in Figure 4). So, this basin will be used as a test site for demonstration of the performance of new SAR technology, as compared to conventional altimetry. For other basins we will retrieve the water height using all available missions (T/P, Jason 2, ENVISAT, SARAL/Altika and Cryosat2 LRM) and will evaluate the goodness of combined measurements for discharge estimations. The rating curves will be constructed using in situ discharge data collected by LEGOS during FP-7 MONARCH-A project (historical data until 2006-2009) as well as recent 2008-2012 period data available due to French-Russian collaboration in the frame of GDRI CAR-WET-SIB (http://www.eu-russiayearofscience.eu/en/1519.php) for about 20 Eurasian rivers draining into the Arctic Ocean (with restricted use).

The presence of ice on boreal and arctic rivers can significantly deteriorate the accuracy of the water height retrievals during winter. But as it was shown in [RD-5], the resulting winter errors of river discharge estimates by rating curves are relatively low because of low values and low variability of the flow under the ice. Since 2004 progress has been achieved in water height retrievals over river ice and the modern algorithm developed at LEGOS uses the parameters of the waveform to select the signals non contaminated by land and retrackers adapted to ice conditions.

The initial GDR altimetry data are archived in the Centre for Topographic studies of the Oceans and Hydrosphere (CTOH) at the LEGOS laboratory (http://www.legos.obs-mip.fr/en/observations/ctoh/). They are accompanied by relevant updated geophysical corrections.

The pan-arctic drainage covers 22.4*10⁶ km² [RD-33]. The four largest rivers drain about 42% of this area, but their contribution is about 60% of total water input. A regionalization approach will also be considered in order to obtain lateral water input from small and medium-size rivers. It is based on first establishing relationship between rivers with missing runoff data and neighboring rivers using historical datasets prior to 1998. These relations could be used as proxies to reconstruct poorly gauged continental lateral FWF for recent periods. The accuracy of this approach will be evaluated using the short record period of in situ data (2008-2012) available for Eurasian continent and HYDAT database (Environment Canada) available for Canadian rivers.

D]	U
1	*
-	\mathbf{k}

For comparison other source of water input from medium and small river watersheds are model simulations. For the Eurasian rivers Pur, Nadym, Taz and Northern Dvina the water flow will be simulated by two regional hydrological distributed models: WATFLOOD and ECOMAG run by LEGOS team. The simulations from the global models (for example GLDAS) will be used for evaluation of river freshwater input from other watersheds.

2.2.1.2 Freshwater flux from Greenland and Artic ice caps

The fresh water flux from the ice sheet and ice caps includes two major processes, (i) the calving flux from marine terminating glaciers and (ii) melt water flux (run-off).

(i) The calving flux is the ice discharge through a defined gate which is defined in general near the grounding line of the outlet glaciers. To calculate the calving flux ice velocity data and the ice thickness at the gate is needed. Ice velocity data can be derived from repeat pass SAR data (i.e. Sentinel-1), while the ice thickness is derived from the difference between ice surface and bedrock elevations. Ice surface DEM will come (and be continuously updated) from satellite/airborne altimetry while the bedrock topography will have to come from models (e.g.

http://sites.uci.edu/morlighem/dataproducts/mass-conservation-dataset/ or

http://www.the-cryosphere.net/7/499/2013/tc-7-499-2013.pdf). The bedrock DEMs may be constrained by airborne measurements carried out by DTU in 2007 and 2011 using ice penetrating radar.

We plan to derive the calving fluxed of the main glaciers of Greenland and ice caps, where suitable data are available.

(ii) The other component to the FWF from the land based ice is run off (melt that did not refreeze).

The surface mass balance (including run-off) of the ice sheet and ice caps cannot be estimated from remote sensing. Therefore, this component will be quantified through the use of Regional Climate Models (RCMs) within ArcFlux.

There are uncertainties associated with all RCMs, and therefore our strategy is to use several models, and to use their variability as a measure of the error on the run-off term. We will use run off estimates from an ensemble of models, and as a start we plan to use HIRHAM, MAR, and RACMO but if more models become available throughout the duration of the project, these may be included during the progress of the WPs.

Regional Climate Models that can provide surface mass balance (and run off) are:

HIRHAM. The HIRHAM RCM is run at the Danish Meteorological Institute (RD-30). HIRHAM products over Greenland have been validated with ice core and automatic weather station data. The model takes melt and meltwater retention processes in snow into account. HIRHAM5 was run at a horizontal resolution of 0.25°, but later versions might have higher resolution (RD-29).

RACMO. The Regional Atmospheric Climate Model version 2.3 is run at the University of Utrecht. For Greenland, RACMO is coupled to a multi -layer snow model which calculates melt, percolation, refreezing and runoff of meltwater. RACMO2 was run with a horizontal resolution of 0.1°. **MAR.** The MAR (Modèle Atmosphérique Régional) RCM is run at the

University of Liège (RD-31). The snow–ice component includes snow thermodynamics, meltwater refreezing, snow metamorphism, snow/ice discretisation, and an integrated surface albedo (RD-32). MAR is run with a horizontal resolution of 25 km. Model output is freely available for download here: <u>ftp://ftp.climato.be/fettweis/MARv3.5/Greenland</u>

The test areas for determining the FWF from ice sheets/ice caps can not be finally decided, until at the end of WP1400 in which two or three test areas are defined for determination of the FWF from land ice into the Arctic Ocean. These test areas (glaciers) will be chosen based on an evaluation of available EO data as well as validation data.

Candidates for these two-three areas could be Petermann Glacier (Greenland Ice Sheet), Ryder Glacier (Greenland Ice Sheet) and Flade Isblink (local ice cap). These are shown in Fig. A. These are good candidate test areas because they cover both the ice sheet and a local ice cap, and the two ice sheet glaciers are quite different in size and nature so the method /techniques can be tested in different settings.

Figure 5: Location of candidate test sites shown on ice velocity map (credit: http://www.enveo.at/)

2.2.1.3 Sea ice Freshwater flux

The content of freshwater transported out of the Arctic via the sea ice, is previous estimated using a combination of ice concentration and ice drift (RD-12). More recent estimate of sea ice transport through Fram Strait to the total FWB (RD-18 and RD-11) uses modelled sea ice thicknesses from models pre-2000 and observed sea ice thicknesses from ICESat data 2003-2008 (RD-9), together with drift and area based on radiometer data.

However, due to the recent availability of sea ice thickness estimates from satellite radar altimeters (RD-13, RD-14, RD-15), and drift from repeated SAR imagery, this study will use a combination of these satellite based observations to estimate the present FWF across the largest outflow fluxgate crossing the Fram Strait.

We will use a combination of CryoSat-2 and ENVISAT monthly sea ice thickness profiles from existing products, see Table 1. Observations of sea ice thicknesses of thickness less than 0.5 m from SMOS mission will primarily be used to estimate the overall storage of freshwater contained in Arctic Ocean, as the sea ice in Fram Strait are primarily older thicker ice types. As

DTH	Ref:	ArcFlux
	Issue:	2.0
	Date:	19/04 2016

the sea ice thicknesses measured by radar altimetry do not include the snow layer on top of the sea ice (RD-17), this is accounted for using snow depths obtained by modified climatology as suggested by (RD-16). A study of an optimal snow depth product for the Arctic is part of Arctic+ Theme 1, and will not be addressed here. In addition, sea ice thickness derived satellite altimetry, are not available in Arctic summer months June-September, due to contaminated signals from meltwater ponds (RD-13-15, RD-17). To fill in these gaps summer month sea ice thickness profiles will be based on model input, e.g. My Ocean or Polar Portalen.

We intend to demonstrate the capability of using sea ice drift based on repeated SAR images, from Sentinel-1 and ENVISAT. The ice drift is already produced in house (DTU Space, Roberto Saldo) and available at the online service <u>www.seaice.dk</u>, see Figure below. Between the end of the ENVISAT era April 2012 and the beginning of Sentinel-1A launched April 2014, the drift data is produced using only RadarSat images, which is sparse for the Fram Strait region. During this period we intend to use existing drift products based on scatterometer and radiometer data, such as OSI-SAF, Polar Pathfinder and CERSAT sea ice motion maps.

Table 1: Sea ice products.

Parameter	Satellite mission	Instrument	Product
Sea ice thickness	CryoSat-2	Altimetry	CPOM, UCL
			AWI
			ESA CCI
	ENVISAT	Altimetry	ESA CCI
	SMOS	Radiometry	University of Bremen
			University of
			Hamburg
Snow depth	Modified Warren	Climatology	
Drift	Sentinel-1	SAR images	Seaice.dk
	ENVISAT	SAR images	Seaice.dk

The various sea ice thickness and drift products will be validated using information of the sea ice draft and velocities from moored Upward Looking Sonars and drifting buoys (CRREL ice mass balance buoys and AWI snow depth buoys), located in the Fram Strait, see map below.

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

Figure 6: , Left: Most recent sea ice thickness map of the Arctic Ocean, February 2016, from Alfred Wegener Institute, http://www.meereisportal.de. Right: Sea ice thickness and drift validation data in Fram Strait region 2012-present from drifting buoys (blue: CRREL ice mass balance buoys, red: AWI snow depth buoys) and moored upward looking sonar (yellow).

Figure 7: Sea ice drift vectors based on repeated Sentinel-1A SAR images April 9-10, 2016, super imposed on April 10, 2016, mosaic of Sentinel-1A images, <u>www.seaice.dk</u>.

2.2.1.4 Ocean circulation

The primary contributions of liquid freshwater from ocean circulation to the freshwater budget come from inflow of low saline water from the Bering Strait and outflow of saline water from Fram Strait and CAA/ Davis Strait (totally 4600 km3/y per RD-11). These contributions are currently estimated from velocity data and salinity profiles from moorings and ship surveys (RD-11). Ocean models are another way to predict the liquid oceanic contribution to the freshwater budget. An example is the North Atlantic/Arctic Ocean Sea Ice Model (NOASIM) (Karcher et al., 2005).

In this project we attempt to apply a new approach to estimate some of these contributions. Satellite altimetry has for many years been applied to derive ocean currents under the geostrophic assumption through deriving an accurate mean dynamic topography (se Figure 8). However until the launch of CryoSat-2, this has been an impossible task in the Arctic Ocean since it is partly ice covered. The great advantage of the SAR altimeter on-board CryoSat-2 and Sentinel 3 is the fact that the footprint is orders of magnitude smaller than conventional altimeters (100 Km2 for Envisat 4 km2 for Cryosat-2 and Sentinel-3). Hence the new satellites are far less prone to be corrupted by sea ice and far better to capture sea level in leads of the

DTH	Ref:	ArcFlux
	Issue:	2.0
	Date:	19/04 2016

sea ice. Hence we expect that we are able to capture sea level and sea level variations across the major straits in and out of the Arctic (Se Figure 1) using altimetry from these satellites.

Figure 8: The DTU13MDT (height in meters) for the Arctic Ocean (upper figure). The lower figure shows the MDT computed from 3 years average of the GECCO, the MICOM, and University of Washington PIO (bottom left to right) hydrodynamic MDT (Andersen et al., 2015).

The combined use of the GOCE satellite along with Cryosat-2 and ERS1/ERS2 and ENVISAT in the Arctic Ocean have resulted in the development of the DTU13 Mean Dynamic Topography,which is shown in the Figure for the Arctic Ocean. The novel satellite derived MDT is the first ever satellite only MDT for the use of determining geostrophic ocean currents which governs the the influx and outflux of freshwater in the Arctic Ocean pending on the ice-cover. Together with ice-cover information from seaice.dk we will perform estimation of in and outflux into the Arctic Ocean based on an improved DTU15 version of the MDT along with an improved GOCE geoid model as also demonstrated by RD-27.

2.2.1.5 Continental runoff

The total continental runoff is a combination of river discharge, glacier and ice sheet discharge, subsurface flow and groundwater flow (RD-20). The first to contributions are described in the text above. The subsurface flow is primarily related to the freeze-thaw cycle in the active layer in permafrost soils (RD-20). The subsurface and groundwater flows are considered to be orders of magnitudes lover than the river discharge (RD-19). In this study these contributions are neglected. Contribution from thawing permafrost and its effect through release of carbon dioxide and methane as well and the use of water for irrigation and

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

use for energy production in Arctic is expected to impact the continental runoff in the future but due to the complexity of this we will use available models and GRACE data for the determination of these effects.

2.2.1.6 Р-Е

Precipitation minus Evapotranspiration/evaporation represents the net precipitation. This contribution can be divided into a land and an ocean part. Over land P-E represent the amount of water that is available for runoff. The major part will flow into rivers and a smaller part, depending on the soil condition and permafrost, is absorbed by the surface. Over the ocean P-E represents the net precipitation that goes directly into the Arctic Ocean. The term P-E can be calculated from reanalysis (RD-11 and RD-18) data such as the ECMWF ERA Interim and NCEP/NCAR. Hence, the P-E contribution over land can be used as a validation check for the estimated river discharge based on altimetry and discharge in-situ data if the subsurface flow/absorption is neglected. Here we will adapt estimates of P-E from the literature e.g. from RD-18. RD-18 provides estimates of P-E based on the period 2000-2010. However, since we also plan to consider the most recent period, adapting these estimates might introduce some errors.

2.2.1.7 Arctic Ocean Freshwater storage

The Arctic Freshwater fluxes are in general not in equilibrium, as large inter-annual changes in the Arctic Oscillation drives large variations in freshwater storage inside the Arctic Ocean. RD23, which is a result of the ESA sea level CCI, demonstrated the use of satellite altimetry for studies of sea level variations which can be used as a proxy to study Arctic Ocean Freshwater storage on inter-annual scales. The spatial distribution of sea level trend for the period 1993-2015 from a combination of ERS-1/ERS-2, ENVISAT and Cryosat-2 is presented in RD23 with a total increase on the order of 2.2 mm/year. If we focus on the Beaufort Gyre, the sea level increase exceeds 1.5 cm/year over the altimetry era, indicating an increase in the freshwater storage in the Beaufort Gyre. This result compliments results for the same period as reported by RD-41 and RD-42.

In addition, freshwater is stored in the sea ice coverage, but the variations are much less than for the ocean freshwater storage (RD-11 and RD-18).

Ref:ArcFluxIssue:2.0Date:19/04 2016

Figure 9: Spatial distribution of linear sea level trend for the period 1993-2015 from a combination of ERS-1 / ERS-2, ENVISAT and Cryosat-2. An increase of 15mm/y is observed in the Beaufort Sea. In the North Atlantic values corresponding to global sea level rise is seen (Andersen and Piccioni, 2016).

Through liaison with the ESA CCI on sea level we will be able to upgrade and reprocess the sea level time series and in this part of the project try to use the sea level increase in the Arctic for certain time-period subsets to use this to address the storage contribution to the Freshwater budget. To quantify the changes in freshwater storage contained in the sea ice cover, a simple approach is proposed by estimating volume changes of based on existing sea ice thickness products from CryoSat-2/SMOS and ENVISAT, see Section 2.2.1.3. A more detailed study of sea ice volume/mass changes losses is addressed in Arctic+ Theme 2 and will not be addressed further in this study.

2.2.2 Computing the budget

The approach taken to compute the final freshwater budget is described below.

To estimate the total FWB we propose to use a similar approach as RD-11. We will use a mean salinity of 34.8 pss as a reference value, thus salinities above this threshold are added as sources and salinities below this threshold is as sinks. By using a similar approach as RD-11, the values updated throughout this project are valid in comparison to changes between the RD-11 reference periods 1979-2000 and the values estimated within this project approx. 2002-present. We will focus primarily on the Arctic Ocean FWB and exclude related areas such as Baffin Bay.

n	[]]
U	U
-	-
-	-

We aim to produce a present state FWB covering the past 10-15 years based on primarily satellite observations. This is huge a step, as previous estimates of total FWB (RD-11, RD-18, and references here in), is primarily based on models.

In the total budget we will include freshwater storage, as well as transport.

The storage is calculated from changes in the Arctic sea level based on altimetry data, and the changes in sea ice volume from existing sea ice products, see Section 2.2.1.7.

Present fluxes updated and estimated from Earth Observation data within this project are:

- River discharge
- Glacier contribution
- Sea ice export through Fram Strait
- Oceanic inflow/outflow (Bering/Fram Strait/CAA)

The P-E fluxes will be based on literature reviews.

To support the FWB, yearly and seasonal variations will be estimated and discussed.

2.2.3 Summary

we will develop a novel approach to estimate four FWFs in the Arctic Ocean by maximizing the use of EO data: river discharge, FWF from the GrIS and Canadian Arctic ice caps, the sea ice freshwater flux and ocean fluxes. Figure 10 shows an overview of which satellite data sets and products we anticipate to use in ArcFlux.

We anticipate that a main advance will be the improved capability to monitor and quantify the seasonal variability in these FWFs. The seasonal signal of the FWFs, which has previously been identified as uncertain (RD-11).

Due to the warming temperatures the Arctic region is subjected to extreme events such as the melt event of the GrIS in 2012. In this project we will study how these extreme event effects the different component of FWFs and how well our proposed methodology for FWF products are able to capture these extreme events.

To quantify the total FWF of the Arctic Ocean, we will use estimates from the existing literature based on model results and in-situ data to quantify the remaining FWFs; P-E over land and ocean and freshwater outflow through CAA and FS, inflow through BS (in the period prior to CryoSat-2).

Figure 10: An overview of the satellite data (red) and existing satellite based products (green) that will be used in the project.

2.2.4 Potential problem areas and possible solutions

- The ice cover, which is present on Arctic rivers for more than half of the year influences significantly the radar waveform and backscatter values not only in periods of stable ice cover, but also during ice formation and break-up. A choice of an appropriate retracker and data correction and filtering is thus necessary.
- Is the temporal resolution of the altimetry high enough to observe the spring flood of the Arctic rivers?

DTU

Use of altimetric data from several radar altimetry missions and from several tracks covering specific a region will make it possible to increase temporal resolution and improve estimates in the period of rapid changes of river water level and discharge, such as during the spring flood.

• A FWB calculation will rely heavily on model output and results from the literature for e.g. runoff of the GrIS, glaciers and ice caps as well as the P-E component over the Arctic Ocean. Such models are associated with uncertainties that can be difficult to assess.

To address this issue we propose to evaluate output from different models in order to estimate the variability within the range of model results and to assess the uncertainty.

• We propose to estimate the FWF out of the Arctic Ocean caused by sea ice drift from derived satellite products, and not directly from the satellite data. These derived products are sea ice thickness and drift. To account for snow depth we use a modified version (RD-16) of existing snow depth measurements (RD-44). This together with the potential overestimation of sea ice thicknesses, as the radar most likely does not penetrate all the way to the snow/ice surface, but somewhere in the snow layer (RD-17 and RD-43) will probably lead to an overestimation of the actual FWF.

Since two entire Themes (1 and 2) within the Arctic+ ITT are dedicated specifically to sea ice mass and snow on sea ice we will not focus on these issues within this project, but the outcomes of Themes 1 and 2 will definitely be useful for a more precise FWF determination in the future.

In the FWB determination strategy laid out in this project (Sect. 2.2.1) we assume that the freshwater input from the changes in hydrology, permafrost snow melt etc are all captured in the river discharge. This might not be the case as some of the melt water might find its way to the ocean independently from the rivers.

In order to assess this issue if the determined FWF via the rivers are adequate we propose to compare the estimated river FWF to alternative satellite-derived products such as the snow water equivalent estimated from Globsnow

(http://www.globsnow.info/index.php?page=Snow_Water_Equivalent) and model estimates of P-E over the drainage areas in question. Also, water mass redistributions can be compared to masscon solutions from GRACE data (e.g.

http://grace.jpl.nasa.gov/data/get-data/jpl_global_mascons/).

• No satellites covers the entire Arctic Ocean and will leave a polar Gap. This is smallest for Cryosat-2 (88N). However the Cryosat-2 satellite is in a drifting orbit; hence the satellite tracks are crossing the rivers at different locations.

In order to get time series at virtual stations from CryoSat-2 it is necessary to correct the obtained surface elevations for the terrain, since the tracks will cross a given river at different locations. Over relative short distances along the river center line a linear correction can be applied to account for the topography.

2.3 Advancement in science and impact of proposed work with respect to the state-of-the-art

Estimations of the FWB has until now primarily been relying on climate models and in-situ observations of different kinds such as river discharge data. Incorporating EO data such as satellite altimetry and satellite imagery together with advanced data analysis algorithms as it is proposed in ArcFlux is expected to have a large impact, especially on the accuracy of the relevant FWFs, since the volume of in-situ data is declining. FWFs that rely on EO data will provide independent results, which will help to obtain a more qualitative estimate of the FWB and be an important step towards monitoring services for the Arctic Ocean.

EO satellite data provide continuous measurements, which will help to improve the temporal resolution of the FWFs. With satellite altimetry, we anticipate to provide monthly estimates of river discharge for those months when the rivers are not frozen and thus this will add to our understanding of these processes and timescales involved

The outcome of ArcFlux will produce independent estimates of several components of the FWF which is based on EO data and help to close of the major knowledge gaps in relation to estimating the FWB based on models and somewhat compensating for the lack of in situ observations for validation.

Hence, these estimates can be used to validate the models based equivalents. For e.g. the river discharge a large network of discharge estimates and river level time series based on altimetry will be available for the Arctic region. Such estimates are valuable input to hydrological models.

The high temporal resolution of sentinel-1 (12-day repeat) for the Greenland margins will make it possible to estimate sub-monthly FWF estimates.

We will develop novel approaches to estimate four FWFs in the Arctic Ocean by maximizing the use of EO data: river discharge, freshwater flux from the GrIS and Canadian Arctic ice caps, the sea ice freshwater flux and ocean fluxes. We anticipate that a main advance will be the improved capability to monitor and quantify the seasonal variability and possible extreme events in these FWFs. The seasonal signal of the FWFs has previously been identified as uncertain (RD-11).

The high temporal resolution of sentinel-1 (12-day repeat) for the Greenland margins will make it possible to estimate sub-monthly FWF estimates.

We will develop novel approaches to estimate four FWFs in the Arctic Ocean by maximizing the use of EO data: river discharge, freshwater flux from the GrIS and Canadian Arctic ice caps,the sea ice freshwater flux and ocean fluxes. We anticipate that a main advance will be the improved capability to monitor and quantify the seasonal variability and possible extreme events in these FWFs. The seasonal signal of the FWFs has previously been identified as uncertain (RD-11).

2.4 Initial scientific roadmap

An entire workpackage within this project is dedicated to generating a scientific roadmap, which will describe ideas for future developments which will be beneficial for determining the FWFs in the Arctic Ocean from EO data. The details of such a roadmap will depend entirely on the work plans of all the Themes in Arctic+. Therefore only an initial high-level scientific roadmap is presented here.

Since the here-proposed Theme 3 project will contribute to advances in mainly four FWFs; river discharge, land ice contribution, sea ice transport and ocean fluxes, obvious follow-on projects would be focused on all of the FWFs in order to close the FWB. This would be a close collaboration between the climate modeling and remote sensing communities. In such a project the products of this project should be derived for all regions and not just selected test areas.

A schematic of the roadmap is seen in Table 2. Each element in Table 2 is described in the following.

			2016		2017	20	18	2019	2020	2021
	1	Arctic +								
ſ	2	River outflow from Sentinel								
	З	Freshwater pulses from glaciers								
ſ	4	Impact on sea ice growth								

Table 2: Schematic of the Arctic+ scientific roadmap for future developments

1) Arctic+ [2016-2018]

The different Themes of the Arctic+ all will advance in fields that will contribute to a better FWF determination by e.g. a better sea ice mass determination. During the duration of the Arctic+ projects, the members of each Theme should collaborate on defining both individual and joint element for their respective scientific roadmaps.

<u>Milestone</u> [end of Arctic+ projects]: detailed scientific roadmap laid out in collaboration with the other Themes.

2) River outflow from Sentinel [2017-2018]

Quantify river outflow (Russian and Siberian rivers) using Sentinel data and available insitu data, by use of the methodology developed in ArcFlux. This will be linked this to changes in Arctic Sea Level with a focus on the Beaufort Gyre. The results obtained in this project could be applied and further developed in the framework of Year of Polar Prediction (YOPP), which aims at improving the environmental prediction capabilities in the Polar region.

<u>Milestone</u> [Early 2017]: Apply for this to be carried out as a CCI+ activity or an STSE study.

<u>Milestone</u> [End of 2018]: Observation and modelling examples as contribution to YOOP.

3) Freshwater pulses from glaciers [2018-2020]

Freshwater pulses from glaciers, ice caps and the Greenland ice sheet will be quantified. Develop a downstream service from ESA CCI products, and model intra-ocean freshwater pulse flow with existing ocean model.

NASA OMG and EU Arctic Integrated Observing System project could provide key process understanding.

<u>Milestone</u> [Start 2019]: Application for this project submitted (could be for H-2020 project, or CCI+)

4) Impact on sea ice growth [2019-2021]

Pilot Service will be developed for integrated freshwater flow to the Arctic, and impact on sea ice growth and decay, assimilating EO data (altimetry, gravimetry/Grace-FO/NGGM).

This could be ESA project with associated P-TEP for user applications (e.g. ice conditions), with goal to be integrated into expanded EU Copernicus marine service.

DTH	Ref:	ArcFlux
	Issue:	2.0
**	Date:	19/04 2016

Milestone [End of 2021]: Freshwater service developed

Besides these specific actions it would be obvious that the combined consortium of the different themes should collaborate on a large project (e.g. in the frame of H2020) on a state-of-the-art determination the individual FWFs and the total FWB of the Arctic Ocean and its temporal evolution. The various observations in the current project will support future calls on the Artic under the Horizon 2020, especially with focus on an integrated Arctic Observing System.

A future development could also be that some/all of the products developed in this project such as e.g. the river discharge can be made operational and be made available under e.g. Polar Thematic Exploitation Platform (P-TEP) http://p-tep.polarview.org/

2.5 Statement of Compliance matrix

Requirement Description	State of Compliance
Perform all works described in AD-1 regarding theme 3:	Yes
Freshwater fluxes, section 2.5 and 3	
Secure the access to relevant data described in AD-1	Yes
section 5	
Deliver all technical documentation described in section	Yes
4.2 in the delivery time proposed	
Provide progress Report every month	Yes
Provide minutes and presentations from all project	Yes
meetings	

2.6 Proposed work logic of ArcFlux

Figure 11: Flow chart that describs the proposed work logic

Figure 11 shows the flow chart of the proposed work logic. For the individual WPs and sub WPs the responsible institutions are listed.

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

2.7 Proposed Activities Description

The proposed work follows closely the objectives set out in Section 2.2 through seven defined work packages which are described in detail in section 2.7.1 - 2.7.7.

In Work Package 1000 (WP1000), the required baseline will be established and documented through reviews of existing literature, projects and data. In Work Package 2000 (WP2000) a database containing the data to be used within this project, will be created and described.

Work Package 3000 (WP3000) contains the algorithm and approach development and validation, while Work Package 4000 (WP4000) contains a prototype demonstration using the approach selected in WP3000 applied on an experimental data set.

In Work Package 5000 (WP5000) a scientific roadmap is described, which builds on e.g. an evaluation of the obtained results, and a research-to-operational plan.

Work Package 6000 (WP6000) contains the promotion activities such as presentations, website and journal paper(s), while Work Package 7000 (WP7000) contains all management activities such as delivery of progress reports etc.

2.7.1 WP1000 : Scientific requirement consolidation

The purpose of this WP is to consolidate the scientific requirements for estimating the Arctic freshwater fluxes, maximizing the use of ESA data. The required baseline for doing so will be established and documented through detailed reviews of existing literature, initiatives, projects and data (both satellite, airborne and in-situ). The data sets shall include both development data sets that will be used to estimate the freshwater fluxes , but also validation data. In case that there is a lack of useful and critical datasets this will be described and a practical solution to overcome this will be proposed. This could e.g. be that model output will be included instead of observation-based estimates.

Therefore, this work will include a review of existing models that could possible produce output that can be used to close the Arctic freshwater budget. Examples of such models are regional climate models for GrIS run off (e.g. MAR, HIRHAM or RACMO) and global climate models for providing P-E over land and ocean (e.g. HadCM3, EC-Earth) or re-analysis datasets such as ERA-INTERIM.

A thorough assessment and analysis of the main challenges associated with determining the Arctic FWFs using satellite observations will be carried out and any knowledge gaps and

D	[U]
*	*
÷	\mathbf{k}

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

scientific problems will be documented. This work will define and guide the scientific focus of the project to address these issues. Some of these possible gaps and problems are already listed in Sect. 2.2.4

Due to the limited time (and financial) frame of this project, the development and validation of a prototype freshwater flux determination will be restricted to suitable test areas. In this WP, these test areas will be chosen based on the availability of satellite data as well as validation data.

2.7.2 WP2000 : Data set collection

The objective of WP2000 is to build and describe a reference database of carefully selected satellite EO data and airborne and in-situ validation data which covers the test areas defined in WP1000.

The main output of the WP2000, the database, will act as a direct input to the other WPs butwill also be a stand-alone product: a published, well-organized, easily accessible reference database for the use of other scientists. This will make it possible for other scientist to test alternate approaches for determining the FWFs and directly compare with the products derived in this project, and to perform the same validation on their results. The database will be made available to the public at the end of the project via the project website.

The data required to build the database include;

- In situ data on river water level and discharge:
 - The modern international datasets provide discharge data for limited areas and limited periods. For discharge we will make a compilation from the following sources:

Arctic-RIMS (A Regional, Integrated Hydrological Monitoring Systemfor the Pan-Arctic Land Mass) [http://rims.unh.edu/index.shtml] The data on this portal are currently limited to the period prior to 1999

Historical data from the Russian Hydrometeorological Service, Environment Canada, USGS and other institutions

- Global Runoff data center <u>http://www.bafg.de/GRDC/EN/Home/homepage_node.html</u>
- Databases with time series over water levels of large rivers, lakes and wetlands around the world.
 - Hydroweb <u>http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/</u>.This altimetric water level data base at LEGOS contains time series over water levels of large rivers, lakes and wetlands around the world. However spatial coverage of Arctic rivers is still limited. Existing data cover only the Ob' and Lena river watersheds). In order to overcome this limitation, we plan to significantly enhance and update this dataset and construct water level time series for the virtual stations (intersections of altimetric tracks with the river channels) at the

outlets of the main Arctic rivers using combination of multi-mission radar altimetry data (depending on actual coverage of each satellite mission and fluvial geomorphology).

0

- Satellite data sets GDRI for T/P, Jason-1, -2, ENVISAT, SARAL/AltiKa and CryoSat-2 are available at CTOH (center for topography of oceans and hydrosphere) at LEGOS.
- Optical data from Landsat, potentially S2 and other comparable sensors will be used for the geographical selection.

The database will not include those satellite data which is freely available to the public *in the format used in this project*. The database it will include satellite data if it turns out that the available data needs to be processed before being useful in the FWF determination.

The database content and structure will be described in detail, and this documentation will also include instruction to how to get access to the satellite data that is not part of the database but is used in the project.

In case of any restriction in the use of any type of datasets, this will be communicated to ESA. The consortium has the ambition of using none or little restricted data.

2.7.3 WP3000 : Development and validation

In this WP different methods, products and algorithms that can be used to estimate the different Arctic FWFs, shall be explored, analyzed, developed, and tested. The different approaches will be tested against selected test area data, chosen in WP1000 and collected in WP2000.

As described in section 2.2.1 the freshwater fluxes that will be addressed in this project are:

- River discharge
 - The discharge is functionally related to water level, which makes it possible to use EO data. In order to estimate river water level and runoff, it is necessary to test the applicability of satellite altimetry data for arctic rivers, where the presence of ice and snow perturbs the altimetric signal during a large portion of the year. In order to minimise potential contamination of the altimetric signal by land reflections, and at the same time to retain a sufficiently large number of altimeter measurements on water, a geographical selection of the data will be performed

using optical and potentially SAR satellite imagery. Then a dedicated methodology to select and retrieve the altimeter water levels during the various phases of the hydrological regime will be used. If in situ discharge data are available, we will test the possibility to establish relationships between satellite-derived water level and river discharge measurements and assess the accuracy of the annual and monthly altimeter discharge estimates. with account of various parameters (altimetric height errors, spatial and temporal sampling interval, rating curve simplification).

- River outlines/river width can be determined from SAR/optical imagery.
- Inflow from land ice
 - The FWF from the GrIS and other glaciers and ice caps will be determined by flux gate estimates derived from ice velocities and flux gate sizes (glacier thickness and width).

Ice velocity data can be derived from repeat pass SAR data (i.e. Sentinel-1), while the ice thickness will be derived from the altimetry and bedrock DEMs. To get the full FWF, it is proposed to use an ensemble of models predicting run-off to quantify the uncertainty related to this component.

- Outflow of sea ice
 - Sea ice drift products based on repeated SAR imagery, ENVISAT and Sentinel-1 is used when available, e.g. from <u>www.seaice.dk</u>. To fill in gaps existing drift maps based on scatterometer and radiometer data will be used, such as OSI-SAF, Polar Pathfinder and CERSAT sea ice motion maps to be downloaded from nsidc.org.
 - The sea ice thickness will come from already existing since several of these are available. Examples are: <u>http://www.cpom.ucl.ac.uk/csopr/seaice.html</u> (CS2), Alfred Wegener Insitute (CS-2), ESA CCI Sea ice project ERS-2, ENVISAT and CryoSat-2.
- In/outflow of liquid water
 - The velocity of the ocean currents are derived from the arctic sea level

The remaining components of the Arctic freshwater budget will come from models, in-situ observations and relevant literature.

Dedicated scientific efforts are devoted to testing the different approaches and the final (chosen) approach – including the preferred solution for each freshwater flux – will be selected from a thorough experimental analysis in the test areas. This analysis will include an error analysis of the different FWFs, including those that comes from already existing

DTH	Ref:	ArcFlux
	Issue:	2.0
	Date:	19/04 2016

products (e.g. sea ice thickness). Here the uncertainty can be assessed through a product intercomparison.

For the products that shall be developed in this project (being River inflow, sea ice drift, inflow from land ice, and ocean fluxes), all implementation choices and trade-offs (such as e.g. retracking algorithm chosen for altimetry) shall be verified in order to evaluate the reliability of the final product (river heights and potentially discharge). In addition, the FWF products will be compared with existing EO-based equivalent/alternative datasets.

2.7.4 WP4000 : Prototype demonstration and impact

In WP4000, the developed and tested methodology selected in WP3000 will be used on a number of test areas over suitable time frames to produce FWF prototype products of River inflow, Inflow from land ice and sea ice outflow. The prototype products will form what is called the 'experimental dataset' within this project.

The test areas and time frames used for generating the experimental dataset will be chosen so that the full potential of the developed methodology can be investigated. For instance, areas and timeframes that represent high temporal variability in the FWFs will be chosen to test the capability of the methodology to capture this.

The experimental dataset will be compared to existing state-of-the-art results in order to quantify the improvements that the prototype products offer. For instance, we anticipate that the methodologies developed within this project will make it possible to estimate FWF at a higher temporal resolution than what has previously been possible. The conclusions will build on an error/uncertainty analysis based on the validation available through the WP2000 database, and the comparison to other products.

The experimental dataset will be included in the database that was built in WP2000, and the documentation describing the database will be updated accordingly.

2.7.5 WP5000 : Scientific roadmap

WP5000 is dedicated to the definition of a so-called scientific roadmap. Based on the successes and challenges learned through the previous WPs, the scientific roadmap will summarize suggestions and ideas for future developments beneficial for determining the FWFs in the Arctic from EO data. It will be aimed at transferring the outcome of this project

DTH	Ref:	ArcFlux
	Issue:	2.0
**	Date:	19/04 2016

into scientific activities to be conducted in the time frame 2017-2021. To ensure that the scientific roadmap is relevant to both scientific and operational organizations, such will be consulted in the process of making the scientific roadmap. Examples of organizations to consult could be met offices such as the Danish Met Office, DMI.

The scientific roadmap will include a critical analysis of how the outcome of this project outcome satisfies the specific scientific objectives of Arctic+, Theme 3, namely that:

- The major challenges and knowledge gaps in the estimation of the Arctic freshwater budget are identified
- Different approaches to address those challenges and enhance current approaches to compute the freshwater budget of the Arctic Ocean maximizing the use of ESA data are explored, developed and validated
- A multi-year assessment of the Arctic freshwater budget based on the developed methodology is computed and the results are validated, and the uncertainty of the estimates are computed and compared the obtained results with existing alternative estimates

[from AD-1]

From this analysis it will be made clear what additional scientific work is required in order to advance forward in achieving even more accurate estimates of the Arctic FWF from EO-data, including what new datasets and in-situ validation campaigns might be critical for a further advance in current knowledge and capabilities within this subject.

Finally, the scientific roadmap will include a plan outlines a possible strategy for the transition from research to operational activities related to the FWF product generation in the Arctic.

2.7.6 WP6000 : Promotion

Within WP6000, activities are carried out that ensure that the results obtained within the project are promoted within the scientific and operational communities. This includes to create awareness of the project from its very beginning by presentations at conferences, scientific fora and meetings, and through the setup of a project website which will be continuously updated throughout the project lifetime. The website content shall be submitted to ESA for approval prior to publishing, and it shall provide direct access to the project database once this is created and updated. The website will include also an internal webpage for consortium members only.

DTH	Ref:	ArcFlux
	Issue:	2.0
**	Date:	19/04 2016

One important deliverable of this project will be the database containing all relevant data including the experimental dataset, and an activity in WP6000 the database will be promoted e.g. via announcement on CRYOLIST and other scientific for a including conferences.

Multimedia content useful for communication of the projects objectives and especially results will be created and made available through the project website. This will include e.g. animations, presentations and images.

Another important activity within this WP is to ensure that at least one journal paper is submitted to an international peer-reviewed journal.

Arctic freshwater fluxes

One of the main objectives stated in AD-1, theme 3 is to compute a multi-year assessment of the Arctic freshwater budget. Therefore WP6000 is dedicated to this .

An assessment of the total freshwater budget in the Arctic Ocean requires a compilation of the results obtained within this project estimating the river outflow, with freshwater fluxes from other sources.

The budget is composed of the fluxes outlined in the table below. This table also contains explanation on which components will be estimated within this project and which EO data will be used, together with information on which external data sets / models / products will be used to compile the total budget.

FWF	Source	EO data	Existing data
			products
River inflow	Project product	CS2, Sentinel-3, T/P,	Globsnow.
		ENVISAT, GFO, Jason-	GRACE masscons
		1,2, probably ERS-	
		1,2, SARAL/AltiKA.	
		Sentinel-1,2	
Land ice inflow	Project product	Sentinel-1, CS2,	GRACE masscons
		IceSat	
Sea ice outflow	Project product +	CS2, SMOS, Envisat,	seaice.dk, CS2 and
	Existing product	Sentinel-1	SMOS products,
			Envisat
Inflow Bering strait	Project product +	CS2	State-of-the-art
	Existing product		literature
			Mooring data
Outflow Can. Arch.	Project product +	CS2	State-of-the-art
	Existing product		literature

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

			Mooring data
Outflow Fram Srait	Project product +	CS2	State-of-the-art
	Existing product		literature
			Mooring data
P-E	Existing product		Climate models/
			state-of-the-art
			literature

The above table will likely be updated through the investigations carried out in WP1000.

2.7.7 WP7000 : Management

This WP7000 contains all the activities associated with management. This includes the monthly production of monthly executive summary progress reports for approval by ESA, and the collection of a final project report to be made publicly available. Furthermore, an executive summary of the projects which summarizes its main achievements will be compiled.

Another management activity is to ensure that regular progress meeting are held via e.g. skype and that satisfactorily progress is made.

Part of the management activities is also to ensure that minutes are recorded from every meeting and that material is provided in due time prior to meetings.

This WP describes the day to day management support to the overall project management described in Section 3.1.

2.8 IPR impact

All background data corresponding to existing intellectual property rights owned by the contractor or sub-contractor will be specified during the Contract negotiation. This data is needed only for the development and it is not necessary subsequent to the delivery. ESA can use all deliverables of this project with no IPR limitation and restriction but within the intended use/objective of the ITT detailed in AD-1 to AD-4.

Background IPR, ENVEO

All software, relevant or not relevant to this project, developed in other projects by ENVEO is declared as Background Intellectual Property Rights. This includes the in-house developed

DTU	Ref:	ArcFlux
	Issue:	2.0
	Date:	19/04 2016

SAR analysis software package, software for analysing optical satellite images, and GIS tools related to ice sheet parameter retrieval.

We can confirm that the IPR will not impact the deliverables.

Exact name of BIPR item	Own er	D escription	Patent # of Ref. / Issue/Revision /Version	Contract / Funding Details under IPR was created	Date of the creation of the version of the BIPR listed here	Affrected deliverables with description of impacts ESA rights of use and / or distribute
ENVEO Software Package	ENVEO	ENVEO Software for SAR and Optical satellite data analysis (incl.pre- processing of SAR data, coregistration, calibration, geocoding, ice velocity retrieval using offset tracking and InSAR, mass flux calculation),	Ver 2.1 02/2016		02/2016	None
ENVEO Cryoportal Software	ENVEO	enveo-cryoportal database and modules for handling and accessing time series of ice velocity maps and mass fluxes for outlet glaciers.	Ver. 0.9 04/2016	-	04/2016	None

2.9 Import / eksport

No restrictions

Ref: ArcFlux Issue: 2.0 Date: 19/04 2016

3 Management Proposal

3.1 Organisation

Acronym used	Institution/Company
DTU	Danmarks Tekniske Universitet
ENVEO	ENVEO IT Gmbh
LEGOS	Laboratoire d'Etudes en Géophysique et Océanographie Spatiales

3.1.1 Roles and Responsibilities

WP	Description	Company	WP
			leader
WP1000	Scientific Requirement consolidation	DTU	OA
WP1000	Required baseline document.	DTU	LS
WP1100	Litterature review. Technical note.	DTU	LS
WP1200	Review of existing and available data.	LEGOS	AK
WP1300	Review of existing projects and models.	DTU	HS
WP1400	Definition test areas used in the project.	ENVEO	TN
WP2000	Data set collection	DTU	KN
WP2100	Database containing EO and in-situ data and model output	DTU	KN
WP2200	Description of datasets in database	LEGOS	AK
WP3000	Development and validation	LEGOS	EZ
WP3100	ATBD describing the algorithms and methods selected	DTU	KN
WP3200	Product Validation Report	LEGOS	EZ
WP4000	Prototype demonstration and impact	DTU	KN
WP4100	Publish experimental data set : target prototype products	DTU	KN
WP4200	Update technical note D3	ENVEO	TN
WP4300	Impact assessment report	DTU	KN
WP5000	Scientific Roadmap Report	DTU	LS
WP5100	Evaluation of obtained scientific results. Tech. note	DTU	LS
WP5200	Scientific agenda 2017-2021. Tech. note	DTU	LS
WP5300	Research to operational plan	ENVEO	TN
WP6000	Promotion	DTU	OA
WP6100	Journal paper submitted on FWF time series	DTU	KN
WP6200	Website	DTU	LS
WP6300	Presentations	DTU	OA
WP6400	Communication material	DTU	OA
WP7000	Management	DTU	OA

DTU	Ref:	ArcFlux
	Issue:	2.0
	Date:	19/04 2016

WP7100	Monthly reports on progress	DTU	OA
WP7200	Final report	DTU	OA
WP7300	Executive Summary	DTU	OA

3.1.2 Background and Relevant Experience of the Institutions/Companies

3.1.2.1 DTU

DTU Space is part of The Technical University of Denmark (DTU) which is the largest technical university in Denmark with a scientific staff of about 1000, 6000 students preparing for Bachelor or Masters degrees, and 700 Ph.D. students. The research done at DTU forms the basis for a variety of services and products which are offered to Danish industry, authorities and educational institutions - e.g. technology transfer, advice on space-related matters and supervision of PhD students.

DTU Space, the National Space Institute at DTU is the national institute for space-related activities in Denmark. The DTU conducts research in astrophysics, solar system physics, geodesy, remote sensing, space instrumentation and space technology. DTU Space has significant activities within the areas of Earth Observation and Arctic Studies.

DTU-Space specializes in polar remote sensing of ice_sheets and sea_ice (e.g. with ICESat and CryoSat), airborne lidar and geophysics, and general research in physical geodesy. The Geodynamics department is responsible for the national gravity networks of Greenland and Denmark.

DTU Space has many years experience in working with the Arctic using remote sensing data, including derivation of the first ice-sheet wide DEMs, work with early satellite altimetry over the ice sheet, and general monitoring of ice sheet changes from ICESat, GRACE and EnviSat. The department has been deeply involved in the CryoSat mission, and carried out CryoSat calibration and validation campaigns in Greenland, Canada (Devon Ice Cap) and Svalbard (Austfonna) in cooperation with the CryoSat Calibration, Validation and Retrieval Team (CVRT). The Department has recently initiated major science projects also in Antarctica, especially major airborne geophysical campaigns over the Antarctic Peninsula and East Antarctica, including gravity, magnetic, ice-penetrating radar and laser measurements.

Relevant projects:

• Aircraft and coordination of CryoSat cal/val campaigns (2003,2006,2008,2011-12)

- ArcGICE: Combination of Spaceborne, Airborne and In-situ Gravity Measurements in Support of Arctic Sea Ice Thickness Mapping. Study on the synergy of GOCE and CryoSat (2005-7)
- SAMOSA, studies of radar waveforms for CryoSat-like radars for ocean applications (2008-9)
- ESAG, first European GOCE airborne campaign in the Arctic, 2002.
- POLARIS, first deployment of P-band radar in Antarctica, 2010-11
- Ice_Sheets_CCI, ESA climate change initiative (coordinator, 2012-14)
- CryoVAl-LI, Cryosat validation over land ice 2014-2016
- CryoVAl-SI, Cryosat validation over sea ice 2014-2016
- LOTUS, EU, Exploration of SAR altimetry from level 0 data to end user products, 2013-2015
- GOCE++, ESA, Estimation of the mean dynamic topography in coastal regions 2015-2017

3.1.2.2 LEGOS

The Laboratoire d'Etudes en Géophysique et Océanographie Spatiales (LEGOS) is a joint research laboratory of the National Center of Scientific Research (CNRS), of Toulouse University Paul Sabatier III (UPS), of CNES (Centre National d'Etudes Spatiales) and IRD (Institut de Recherche pour le Développement). Overall personal comprises 125 persons with 74 persons of permanent staff, 24 PhD students and 25 PostDocs.

The laboratory is organized through the 5 research groups with support of 4 observational services :

Overall personal comprises 125 persons with 74 persons of permanent staff, 24 PhD students and 25 PostDocs. The laboratory publishes about 100 papers/year in scientific reviews.

Main domain of the research comprises geodesy, geophysics, cryosphere, continental hydrology using satellite remote sensing and in situ data. Continental hydrology using space observation consists of measuring water level fluctuations of continental lakes, major rivers and flood plains by satellite altimetry, estimating snowpack parameters from passive microwave, measuring fluctuations in water storage in soils, underground reservoirs and snow pack by space gravimetry and link with climatic variability and anthropic effects.

The members of LEGOS have been involved in the development and design of space altimetry applications for around 20 years, as PI of the Topex/Poseidon, ERS-1/2, Jason-1/2, Envisat, Cryosat-2 and AltiKa missions. Since 10 years the team members have been involved in studying Lakes, Rivers and floodplains from altimetry, imagery and gravimetry measurements. Analysis of quality of the obtained results to regional hydrology has been undertaken over several hydrological basins.

Application of satellite altimetry for studies of large river systems became a developing field the last 10 years. We have developed methodology for the processing and validation of altimetry data over big rivers and flood plains. We have analysed the altimetry data over big rivers in order to model and determine river discharges based on altimetry-derived time series and volume variations over river flood plain from combination of radar altimetry and

N 1	
-	\mathbf{k}

satellite imagery. Besides, we also showed that altimetry data can be used for calculating discharge and applied the method to large rivers in very different climatic zones, such as the Ob' river in the Arctic, the Ganga-Bramapoutra and more than a hundred of Amazon Rivers in the tropics and to determine hydrological parameters such as the depth of the river bed, the river slope and the Manning coefficient.

The Legos is also strongly involved in the preparation of the new altimetry missions in Ka Band interferometry (SWOT) for which we are scientific PIs of the mission.

Relevant International projects:

FP7 MONARH-A (Monitoring and Assessing Regional Climate Change in High Latitudes and the Arctic)

ESA Climate Change Initiative: Sea Level CCI,

MyOcean and MyOcean2 Prototype Operational Continuity for the GMES Ocean Monitoring and Forecasting Service.

3.1.2.3 ENVEO

ENVEO was founded in 2001, with main business activities in the field of research and development for remote sensing applications in hydrology, cryosphere and meteorology, including developments of methods and of transfer from research to applications and services in hydrology, water management and climate monitoring. The ENVEO partners have many years of experience on use of satellite-borne remote sensing for environmental monitoring in national and international projects. They served as consultants and evaluators for activities in Earth observation from space for ESA, NASA and the European Commission, and for national programs of several countries. The organisational structure of ENVEO is shown in Figure 3.1.

Figure 3.1: The organisational structure of ENVEO

Relevant Experience

ENVEO's experience and research activities include development of methods for monitoring polar regions and retrieval of icesheet/shelf parameters from satellite data; planning of Earth observation systems and sensors for hydrology, water management and glaciology; hydrological monitoring and forecasting in mountain basins; methods and applications of remote sensing of snow, glaciers and polar ice with microwave and optical sensors; methods and applications of image cross correlation and radar interferometry for ice motion of glaciers and ice caps, and ice sheets; methods and applications radar interferometry for motion of unstable mountain slopes and for mapping subsidence in mining districts; principles of microwave radiometry and radar for snow and ice applications; atmospheric radiative transfer in the optical and microwave region; land use mapping with very high resolution optical sensors; field campaigns for EO validation. ENVEO personnel lead the science team of the EE7 candidate mission CoReH2O (selected for Phase-2). Coordinator of FP7 project CryoLand - GMES Snow and Land Ice Service, and the GLACAPI "Multi-sensor analysis of glacier response to climate change on the Antarctic. Peninsula". ENVEO is WP leader in the ESA CCI projects GLACIER_CCI (Phase-1 and Phase-2; responsible for glacier ice velocity from SAR), the GREENLAND ICE SHEET_CCI (Wp lead for calving front and grounding line, contributing to ice velocity from SAR), ANTARTIC-ICESHEET CCI (WP lead for ice velocity), STSE Massbalance (responsible for I/O Method). ESA ALSPTOMOSAR (Airborne SAR tomography for Alpine glacier). ENVEO is PI of the ESA project "SnowPEx -Satellite Snow Product Intercomparison and Evaluation Experiment". ENVEO was part of the expert user group for Sentinel-1 and Sentinel-2, contributes to the preparation for new satellite systems including HRWS, SAOCOM-CS (science team member, responsible for land cryosphere). ENVEO personal contributes to the WMO Polar Satellite Task Group (PSTG) and SAR

Coordination Working Group. ENVEO produced the first Greenland Ice sheet wide Ice velocity map from Sentinel-1 data (published in 2015).

Relevant Reference Projects (selected):

- GLACAPI Multi-sensor analysis of glacier response to climate change on the Antarctic. Peninsula" (ESA Contract No. 4000105776; ENVEO; started June 2012; ongoing).
- STSE Antarctic Peninsula Massbalance (ENVEO subcontr. Ongoing; responsible for IOM)
- STSE Cryosat+ GLITter grounding line location and ice thickness (ENVEO WP Lead; ongoing)
- Glaciers_CCI I+II (ESA Contr. 2010-2013; ENVEO Subcontr. Ongoing);
- Greenland-Ice-Sheet_CCI (ESA Contr. 2011-2014; ENVEO Subcontr. Ongoing);
- Antarctic- Ice Sheet CCI (ENVEO Subcontr.; completed)
- Greenland Ice velocity Map from Sentinel-1 (CCN to Greenland-Ice-Sheet_CCI; ENVEO Lead)
- FP7 CryoLand GMES Service Snow and Land Ice (FP7; 262926; coord. ENVEO).
- FP7 SEN3APP Processing Lines And Operational Services Combining Sentinel And In-Situ Data For Terrestrial Cryosphere And Boreal Forest Zone (FP 7 project; ENVEO WP Lead on ice velocity)
- DUE-GlobGlacier; ESA Contr. 21088/07/I-EC; (ENVEO Subcontr.; completed).
- FFG ASAP-10 Sentinel-1 InSAR Development of Tools for Interferometric Processing of Sentinel-1 TOPS Mode data for Ground Motion Monitoring. (FFG/ BMVIT, ASAP-10 Contract 844386
- STSE North Hydrology (ESA contract Contract 4000101296/10/I-LG; completed)

Facilities

ENVEO is located in the ICT Technologiepark, Innsbruck, at the Campus of the Technical University of Innsbruck, which offers excellent infrastructure for IT activities (e.g. high speed Internet access, etc). The office's equipment comprises all regular office tools, like printers, scanner, fax, Italian coffee machine, etc. Facilities at ENVEO of relevance for the project include

- LINUX servers with hard-disk arrays (> 100 TB), WWW server, workstations, and notebooks with high speed internet connection
- Colour printing devices
- Instruments and recorders for automatic recording of measurements of snow, soil and atmospheric parameters
- Devices for in-situ measurements of snow parameters incl. hand-held GPS.
- SAR software system for geocoding, interferometry, offset tracking, ice velocity retrieval from SAR and optical satellite data supporting ERS, ENVISAT, PALSAR, TERRASAR-X TANDEM-X RADARSAT-1/2, SENTINEL-1 (TOPS)
- Tools for calving flux calculation using velocity fields and other input data
- Software, tools and service system for snow cover mapping from optical and SAR data
- Software for analysing and processing optical satellite data from various sensors
- Hydrological modelling and software and hydrological and meteorological data management software (in-house development)
- Relational data base system for managing time series of meteorological data and numerical forecasts, satellite based information
- Software for graphics and image processing
- Source code managing software (CVS / SVN) and issue tracking system (REDMINE)
- Archive of spaceborne and airborne SAR data (ERS-1, ERS-2, ENVISAT, SIR-C / XSAR, AIRSAR, E-SAR, ALOS PALSAR, E-SAR, Sentinel-1,), and various optical satellite data.

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

3.1.3 Key Personnel Curriculum Vitae

3.1.3.1 DTU

Name:	Ole Andersen
Position:	Senior scientist
Qualifications and	experience of interest for this proposal

Senior research scientist Ole Baltazar Andersen has contributed within the use of satellite altimetry for geodetic and oceanographic purposes. Ole has a master in geophysics and a Ph. D. within ocean tide modelling (1996), and is the author of the suite of geophysical fields like DTU13GRA and DTU13MSS high resolution global fields. He is a member of Sentinel-3 SLSTR Quality Working Group and science working teams associated with the NASA-CNES TOPEX/POSEIDON and Jason 1 and GRACE. Ole is also on the science advisory board for GEROS. Ole Andersen has been assistant secretary general within the International Association of Geodesy and member of several international study groups within the field of satellite altimetry. He has participated in numerous national and international projects and headed the national research project HYDROGRAV in 1007-2010 in Denmark and is currently heading the ESA project GOCE++.

A few selected references:

Andersen, O. B (2012). Satellite altimetry for geoid determination. in eds (Sanso and Sideris) The Geoid, Springer Verlag, Heidelberg, Germany 2012

Andersen, O. B., and R. Scharroo (2010), Range and geophysical corrections in coastal regions, book chapter in eds. (Vignudelli i et al), Coastal altimetry, ISBN: 978-3-642-12795-3

Andersen,O. B. Cheng, Y. (2013) Long term changes of altimeter range and geophysical corrections at altimetry calibration sites Advances in Space Research (ISSN: 0273-1177) (DOI: http://dx.doi.org/10.1016/j.asr.2012.11.027), vol: 51, issue: 8, pages: 1468-1477

A,ndersen, O.B. P. Knudsen and P. Berry (2010) Recent Development in High Resolution Global Altimetric Gravity Field Modeling, The Leading Edge, ISSN: 1070-485X, vol: 29, issue: 5, pages: 540-545.

Andersen O. B, Knudsen P (2009) The DNSC08 mean sea surface and mean dynamic topography. J. Geophys. Res., 114, C11, doi:10.1029/2008JC005179

Andersen, O. B., Olesen, A.V. Forsberg, R. Strykowski, G. Cordua, K. S. Zhang, X. (2010) Ocean Dynamic Topography from GPS - Galathea-3 First results , Gravity, Geoid and Earth Observation (ISBN: 978-3-642-10633-0), pages: 239-346, Springer Verlag, Heidelberg, Germany

Andersen, O. B., Krogh, P. E. Bauer-Gottwein, P. Leiriao, S. Smith, R. Berry, P. (2010) Terrestrial Water Storage from GRACE and Satellite Altimetry in the Okavango Delta (Botswana) Gravity, Geoid and Earth Observation (ISBN: 978-3-642-10633-0), pages: 521-

DTH	Ref:	ArcFlux
	Issue:	2.0
	Date:	19/04 2016

526, 2011, Springer Verlag, Heidelberg, Germany

Andersen, O. B., P. Knudsen and P. Berry (2010) The DNSC08GRA global marine gravity field from double retracked satellite altimetry, Journal of Geodesy, Volume 84, Number 3, DOI: 10.1007/s00190-009-0355-9

Andersen, O. B., Egbert, G. D, Erofeeva, L., and Ray R. (2006) Mapping nonlinear shallow water tides: a look at the past and future, Ocean Dynamics 56, 5-6

Name:	Rene Forsberg	
Position:	Professor	
Qualifications and	experience of interest for this proposal	
Educational and P	rofessional:	
M.Sc. from Universit	y of Copenhagen 1980, Geodesy and Geophysics (double degree).	
Visiting scientist, Oh	io State University 1983-83.	
Visiting scientist, Un	iversity of Calgary 1984-85.	
Visiting professor, U	niversity of New South Wales, Australien 1988-89.	
External lecturer, Nie	els Bohr Institute, University of Copenhagen, 1991-2012.	
Career Summary:		
1980-1997: Research	n Geodesist, Geodetic Institute and National Survey and Cadastre	
1997-2005: State Ge	odesist and Dept Head, Geodynamics Dept., National Survey and Cadastre	
2005-2013: Same po	sition, Danish National SpaceCenter / DTU-Space	
2013-: Professor, D	DTU-Space	
International post	s and major committees	
2010-: Chairr	nan of Danish National SCAR (Antarctic Research) committee	
2010-: Membe	r of Cryosphere WG, International Arctic Science Committee	
2005-9 Memi	per of Danish national IPY committees	
2005-2011: Memi	per of the National Steering Committee for the Continental Shelf Project	
2004-2011: Chairm	an, International Gravity Field Service (International Association of Geodesy)	
2004-2010: Steen	ng Board Member, Global Geodelic Observing System (GGOS)	
2002-2012: Memi	per of Scientific Advisory Croup, ESA CrueSet mission	
1999-2009. Menn	recident International Gravity and Goold Commission.	
1999-2007. Vicepi Projec	t ² coordinating arctic gravity data survey coordination	
1995-99· Sectio	n President (Gravity Field) International Association of Geodesy	
1999 99. 90000	in resident (Gravity rield), international Association of Geodesy	
Miscellanous		
Recipient of the Ole	Rømer award for astronomers and geodesists (1980).	
Fellow of the International Association of Geodesy (1991)		
Friendship Medal, pr	resented by President of Mongolia during first Denmark state visit (2010)	
Research and projects		

D	ΓU
+	*
-	\mathbf{k}

Research scientist and Department Head, Department of Geodynamics (current staff of 12). Have worked extensively with geodetic, satellite and airborne research for cryosphere monitoring, general geodesy and mapping, and earth observation. Research focus has been on gravity field modeling, including geoid determination, and the use of gravity field data for environmental applications, as well as developing airborne methods for geophysics and cryosphere mapping (lidar). Numerous consultancy tasks for international and national survey projects (e.g., major bridges), sea-level issues and satellite-related tasks. Managed the Greenland Gravity Mapping program since 1991, and has taken initiative to, planned and carried out countless field expeditions in Greenland, Svalbard, Canada, the Arctic Ocean, and lately also in Antarctica and many regions of Asia of Africa. Major funded research and government projects: 2015-16: Airborne mapping of the GOCE polar gap, Antarctica (with BAS, LDEO and NPI) 2015-18: SPICES - H2020 project on mapping extreme sea ice events from space 2013-15: ESA Cryosat validation projects (land ice and sea ice) 2012-15: Tanzania and Mozambique airborne geoid and gravity (World Bank and NGA) ESA Climate Change Initiative, Greenland-CCI project 2012-17: (coordinator) 2011-12: IMBIE, NASA/ESA International Mass Balance Intercomparison Experiment. 2010-13: EU-FP7 project Monarch-A, Monitoring Arctic for Climate Change. 2010-14: Nordic Center of Excellence - Stability and Variations of Arctic Land Ice. 2010-13: EU InterReg project BLAST (Bringing Land and Sea Together) 2009-13: ICEGRAV, DTU-Space Antarctic Airborne Geophysics Program (in cooperation with Argentina, Chile, BAS, NGA, U of Texas, Norway, ESA). 2009-13: EU project "Ice2Sea". Satellite measurements of the ice sheets. 2009-12: Indonesian airborne gravity project. NGA and Bakosurtanal. 2007-10: GNET - Support for Greenland GPS and absolute gravity networks for climate related GPS uplift studies (NSF cooperation). KVUG/IPY funding. 2007-15: PROMICE - National monitoring program for the Greenland Ice Sheet (GEUS) 2006-12: UNCLOS program, gravity, magnetic and sea ice measurements from icebreakers, ice camps and aircraft, in support of Danish Law of the Seas program Sea ice monitoring off NW and NE Greenland. BMP, Greenland 2006-08: Government 2005-07: ESA project "ArcGICE": Combination of Spaceborne, Airborne and in-situ Gravity in support of Arctic Sea-ice Mapping 2005-09: EU project DAMOCLES (Developing Arctic Modelling and Observing Capabilities

П	
UI	U
2	2
-	-

	for long-term environmental studies)
2008-09:	Korean airborne geoid survey (Sungyunkwon University)
2004-12:	Airborne gravity surveys of Mongolia, Ethiopia, Nepal and Philippines
2003-15:	ESA Cryovex, coordinating pre-launch Arctic field campaigns
2000 10.	for Cryosat in
	Cooperation with UCL, NPI, Canada, AWI/DLR (Germany) and NASA.
2003-05:	EU project SITHOS (Sea-ice Thickness Observing System)
2003-05:	EU project GREENICE (sea-ice and research in the Polar Sea N of Greenland)
2002-03:	ESAG-2002. ESA-GOCE Survey of Airborne Gravity and Laser in
the Arcti	
2003-04:	Malaysia airborne gravity and geoid project (Govt. of
Malavsia)	
2002-05:	EU project GAVDOS - calibration site for satellite altimetry
	1998-03: Greenland gravity project, field surveys and
training	(NIMA-USA)
at 1999-00): Great Barrier Reef project (ARC/Australia and Australian
Navy)	
:	1996-99: Elevation Changes of the Greenland Ice Sheet
(FNU/Tupo	plar programme)
1996-99	EU project AGMASCO Airborne Geoid Manning System for Coastal
Oceanogra	anby
	ione
Supervisor of	find projects (8 completed 1 engeing) Supervisor of numerous M. Sc. Thesis projects and
Supervisor of	siting and students and scientists. Coordinator the DTU Space and a program 2000-2014
	sitting pri.u. students and scientists. Coordinator the Dro-space pri.u. program 2009-2014.
External lect	urer at Niels Bohr Institute, 1991-2009. Teacher at the yearly TAG international Geold
Schools" sind	e 1995. Teacher at numerous international workshops and ad-noc courses around the world
(US, Canada,	Russia, Malaysia, Indonesia, Ethiopia, Brasil, Argentina, Saudi Arabia).
Publications	
l otal numbe	r of publications: ca. 270 since 1978, of which 115 in reviewed journals, proceedings or
books. Nume	erous invited lectures and presentations at IAG, IUGG, AGU and EGU meetings.
<u>5 cryosphere</u>	-relevant publications:
Rene Forsbe GRACE, ICES	rg, Louise Sørensen, Joanna Levinsen, Johan Nilsson: Mass Loss of Greenland from SAT and CRYOSAT. Cryosat symposium, Dresden. ESA special publication 717, 2013.
Shepherd A, Galin, M Hor M McMillan, I H Rott, L Sør Berg, M van H J Zwally:	E Ivins, G A, V Barletta, M Bentley, S Bettadpur, K Briggs, D Bromwich, R Forsberg, N wath, S Jacobs, I Joughin, M King, J Lenaerts, J Li, S Ligtenberg, A Luckman, S B Luthcke, R Meister, G Milne, J Mouginot, A Muir, J Nicolas, J Paden, A Payne, H Pritchard, E Rignot, rensen, T Scambos, B Scheuchl, E Schrama, B Smith, A Sundal, J van Angelen, W van de
	den Broeke, D G Vaughan, I Velicogna, J Wahr, P Whitehouse, D Wingham, D Yi, D Young, A Reconciled Estimate of Ice Sheet Mass Balance. Science, 338, pp. 2012.
for Greenlan	den Broeke, D G Vaughan, I Velicogna, J Wahr, P Whitehouse, D Wingham, D Yi, D Young, A Reconciled Estimate of Ice Sheet Mass Balance. Science, 338, pp. 2012. L Sandberg Sørensen and R Forsberg (2012): Variability of mass changes at basin scale d and Antarctica, The Cryosphere, 6, 3397-3446, doi:10.5194/tcd-6-3397-2012.
Forsberg, R. GRACE. Geo	 den Broeke, D G Vaughan, I Velicogna, J Wahr, P Whitehouse, D Wingham, D Yi, D Young, A Reconciled Estimate of Ice Sheet Mass Balance. Science, 338, pp. 2012. L Sandberg Sørensen and R Forsberg (2012): Variability of mass changes at basin scale d and Antarctica, The Cryosphere, 6, 3397-3446, doi:10.5194/tcd-6-3397-2012. H. Skourup: Arctic Ocean Gravity, Geoid and Sea-ice Freeboard Heights from ICESat and physcial Research Letters, vol. 32, L21502, doi:10.1029/2005GL023711, 2005.

DTH	Ref:	ArcFlux
	Issue:	2.0
**	Date:	19/04 2016

Name:	Louise Sandberg Sørensen	
Position:	Senior Scientist	
Qualifications and	experience of interest for this proposal	
Dr. Louise Sørensen is a senior scientist at DTU-Space. Louise is working with present-day		
changes of the cry	changes of the cryosphere, using remote sensing techniques to determine mass changes and	
surface elevation	surface elevation changes of ice covered areas. She is an expert in EO of ice sheets,	
especially working on GRACE, IceSat, Envisat and CryoSat. Louise Sørensen acted as "early		
career" member o	f the steering committee of the EU FP7 projects Ice2Sea, and is involved	
in e.g. the ESA project CryoVal-LI.		
Education:		
2006 : M.Sc. in geo	ophysics, Univ. of Copenhagen	
Thesis was awa	Thesis was awarded a gold medal from the University of Copenhagen	
2011 : Ph.D., Univ	of Copenhagen	
2014 : Education i	2014 : Education in University Teaching at DTU.	
Career Summary	:	
2006 : Research assistant at Univ. of Copenhagen		
2006-2007 : Research assistant, Danish spacecenter		
2007-2011 : PhD student at Univ. of Copenhagen		
2011 - 2015 : Scientist at DTU Space		
2013 : Visiting scientist at institute of Earth sciences, Univ. of Iceland (2 months). Funded by		
the Postdoc elite research grant from the Knud Højgaards foundation.		
2015 - : Senior scientist at DTU Space		

Projects experience:

SVALI : Nordic Centre of Excellence SVALI Ice2sea : EU FP7 project ice2sea (2009-2013) ESA CCI-ice sheets : ESA project (2012-2015) IMBIE : ESA/NASA project Ice Mass Balance Inter-comparison Exercise (2012) CryoVEx : ESA funded CryoSat validation (2011, 2014) Cryoval-LI : ESA funded research project (2014-2015) Polarportal.dk : funded by the Danish Energy Agency (2012-)

Other professional experiences:

- Course responsible for master course at DTU : Cryosphere physics and observations (2014)
- Scientific editor for Annals of Glaciology vol. 70 (2014-15)
- Has co-supervised two PhD students
- In review panel for Netherlands Org. for Scientific Research (2012)

n	
U	U
-	*
	-

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

- Course participation: Project management for scientists, DTU (2014)
- Course Participation : The PhD supervision Process: Methods and tools (2013)
- Early career member of the steering committee in EU FP7 project ice2sea (2009-13)
- Member of PhD committee, Australian National University (2015)

Publications

Summary:

Peer-reviewed publications: 16, Other scientific publications: ~6 Web of science statistics: Peer-reviewed publications with citation data: 15, H-index: 8. Average citation number 30

Selected publications:

Johan Nilsson, Paul Vallelonga, Sebastian B. Simonsen, **Louise Sandberg Sørensen**, Rene Forsberg, Dorthe Dahl-Jensen, Motohiro Hirabayashi, Kumiko Goto-Azuma, Christine S. Hvidberg, Helle A. Kjær, and

Kazuhide Satow (2015). Greenland 2012 melt event effects on CryoSat-2 radar altimetry, Geophysical Research Letters, 42, doi: 10.1002/2015GL063296.

Sørensen, L. S., Simonsen, S. B., Meister, R., Forsberg, R., Levinsen, J. F., & Flament, T. (2015). Envisat-derived elevation changes of the Greenland ice sheet, and a comparison with ICESat results in the accumulation area. Remote Sensing of Environment, 160, 56-62, doi: 10.1016/j.rse.2014.12.022.

A. Shepherd, E. R. Ivins, A. Geruo, V. R. Barletta, M. J. Bentley, S. Bettadpur, K. H. Briggs, D. H. Bromwich, R. Forsberg, N. Galin, M. Horwath, S. Jacobs, I. Joughin, M. A. King, J. T. M. Lenaerts, Jan, J. Li, S. R. M. Ligtenberg, A. Luckman, S. B. Luthcke, M. McMillan, R. Meister, G. Milne, J. Mouginot, A. Muir, J. P. Nicolas, J. Paden, A. J. Payne, H. Pritchard, E. Rignot, H. Rott, L. Sandberg Sørensen, T. A. Scambos, B. Scheuchl, E. J. O. Schrama, B. Smith, A. V. Sundal, J. H. van Angelen, J. van de Berg, J. Willem, M. R. van den Broeke, D. Vaughan, I. Velicogna, J. Wahr, P. L. Whitehouse, D. J. Wingham, D. Yi, D. Young, H. J. Zwally (2012) : A reconciled estimate of ice-sheet mass balance., Science, vol: 338, issue: 6111, pages: 1183-1189, 2012, DOI: 10.1126/science.1228102

L. S. Sørensen, S. B. Simonsen, K. Nielsen, P. Lucas-Picher, G. Spada, G. Adalgeirsdottir, R. Forsberg, C. S. Hvidberg (2011): Mass balance of the Greenland ice sheet (2003–2008) from ICESat data – the impact of interpolation, sampling and firn density, The Cryosphere, 5, 173-186, 2011, doi:10.5194/tc-5-173-2011, www.the-cryosphere.net/5/173/2011

Sørensen, L. S. and Forsberg, R. (2010). Greenland Ice Sheet Mass Loss from GRACE Monthly Models. In Gravity, Geoid and Earth Observation, pages 527-532. Proceedings of International Association of Geodesy Symposia Vol. 135. part 7, doi: 10.1007/978-3-642-10634-7_70

Name:	Karina Nielsen
Position:	Scientist
Qualifications and experience of interest for this proposal	

Karina Nielsen has a PhD degree (November 2012) within the fields of geodesy and climate from the Technical University of Denmark. Since her PhD she had been working at DTU Space as a researcher. During this period she has been Working on the FP7 LOTUS (Land and Ocean Take Up from Sentinel-3) project, where she has gained a large experience within SAR radar altimetry over inland water including development retrackers and water level time series retrieval.

Nielsen, K., Stenseng, L., Andersen, O.B., Villadsen, H. and Knudsen, P. (2015), Validation of CryoSat-2 SAR mode based lak elevels. Remote Sensing of Environment, Volume 171, 15 December 2015, Pages 162-170.

Villadsen, H., Andersen, O. B., Stenseng, L., Nielsen, K., & Knudsen, P. (2015). CryoSat-2 altimetry for river level monitoring—Evaluation in the Ganges–Brahmaputra River basin. Remote Sensing of Environment, 168, 80-89.

Name:	Rakia Meister
Position:	Postdoctoral researcher
Qualifications and experience of interest for this proposal	
Rakia Meister analysed both Envisat altimetry and GRACE gravimetry data over the	
Antarctic Ice Sheet for her PhD research, combining the two to derive postglacial rebound	
rates. In her postdoctoral research, she has been part of generating surface height change	
rates from Envisat repeat track altimetry, thus increasing the spatial coverage of surface	
height changes. She is currently working on establishing a 20-year repeat and non-repeat	
track time series of ERS-1, ERS-2 and Envisat surface elevation changes for Greenland. This	
product will include monthly fields of surface heights for Greenland	

Educational and Professional:

DTII	Ref:	ArcFlux
	Issue:	2.0
	Date:	19/04 2016

- 2007 2012 PhD thesis at University College London entitled "Estimating Antarctic Ice Sheet Mass Balance from Gravimetry and Altimetry"
- 2005 2006 MSc in Climate Change at the University of East Anglia, UK. Completed with Disctinction
- 2002 2005 Upper Second Class BSc in Combined Honours (main subject Geology) at Durham, University, UK

Publications

- Shepherd, A., E. R. Ivins, A Geruo and others: A Reconciled Estimate of Ice-Sheet Mass Balance, Science, vol 338 no 6111, pp. 1183- 89, doi: 10.1126/science.12281022012, 2012
- Sørensen, L. S., Simonsen, S. B., Meister, R., Forsberg, R., Levinsen, J. F., & Flament, T. (2015). Envisat-derived elevation changes of the Greenland ice sheet, and a comparison with ICESat results in the accumulation area. Remote Sensing of Environment, 160, 56-62, doi: 10.1016/j.rse.2014.12.022
- Meister, R., B. C. Gunter, A. Muir and A. Shepherd: A comparison of Envisat radar and ICESat laser measurements of Antarctic surface elevation changes, in preparation

Name:	Henriette Skourup
Position:	Research scientist
Qualifications and experience of interest for this proposal	

Henriette Skourup is a scientist at DTU Space. Over the years Henriette has worked extensively with developing satellite methods, especially from NASA's laser altimetry mission ICESat, to estimate sea ice thickness and ocean topography in the Arctic Ocean. She participated in related EU project Monarch-A, and is currently involved in ESA Climate Change Initiative (CCI) to estimate and validate long term satellite series of important sea ice parameters, ESA CryoVal project to validate CryoSat data, and EU project ICE-ARC looking into current and future changes in the Arctic sea ice cover.

As an important part of her work is to validate satellite data and monitor cryosphere changes, she has been involved in numerous airborne lidar and radar campaigns in Greenland and the Arctic Ocean, especially related to ESA CryoVEx (CryoSat validation) campaigns, national funded project PROMICE, and EU projects such as DAMOCLES and GreenICE.

S. Kern, K. Khvorostovsky, **H. Skourup**, E. Rinne, Z. S. Parsakhoo, V. Djepa, P. Wadhams, and S. Sandven: The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: Results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise. The Cryosphere, doi:10.5194/tc-9-37-2015, 9, 37-52, 2015

R. Ricker, S. Hendricks, V. Helm, **H. Skourup**, and M. Davidson: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation, The Cryosphere, 8, 1607-1622, doi:10.5194/tc-8-1607-2014, 2014

R. Forsberg and **H. Skourup**: Arctic Ocean Gravity, Geoid and Sea-ice Freeboard Heights from ICESat and GRACE. Geophyscial Research Letters, vol. 32, L21502, doi:10.1029/2005GL023711, 2005

3.1.3.2 LEGOS

Name:	Alexei V. Kouraev	
Position:	Assistant Professor	
Qualifications and experience of interest for this proposal		
Alexei Kouraev has a Ph.D. degree (1998) in oceanography from Moscow State Lomonosov Univerity (Russia) and HDR (Habilitation Qualification (2014) from University of Toulouse, France. He has been working at LEGOS/University of Toulouse as a researcher (2001-2006), and since 2006 as an assistant professor. He has published over 50 articles in peer-reviewed journals, books, and monographs. He has supervised 3 PhD and 16 Master students. His main research interest is the synergy of satellite and in situ data for studies of continental hydrology (river, flooding zones, bogs, ice and snow cover). He is piloting several projects dedicated to studies of lake ice cover using satellite radar altimetry: ERA-Net RUS.Plus "ERALECC" (2016-2017), CNES TOSCA "Lakes" (2012-2016), CNRS-Russia Project "BaLaLaICA" (2013-2015).		
Zakharova E.A., K Western Si (2014), p. 2 Zakharova E.A., A S.N. Kirpot Western Si Hydromete Cretaux J-F, V. Jeli F. Nino, R. monitor in Advances i Kouraev A.V., M.N Legrésy, F. radar altim "Hydrology	buraev A.V., Remy F., Zemtsov V.A., Kirpotin S.N. Seasonal variability of the beria wetlands from satellite radar altimetry. Journal of Hydrology, 512 366-378, http://dx.doi.org/10.1016/j.jhydrol.2014.03.002 V. Kouraev, S. Biancamaria, M.V. Kolmakova, N.M. Mognard, V.A. Zemtsov, in, B. Decharme. Snow cover and spring flood flow in the northern part of beria (the Poluy, Nadym, Pur and Taz rivers). Journal of eorology, 2011, Volume 2, p. 1498-1511, DOI: 10.1175/JHM-D-11-017.1 nski, S. Calmant, A. Kouraev, V. Vuglinski, M. Bergé-Nguyen, M-C Gennero, Abarco Del Rio, A. Cazenave, P. Maisongrande, SOLS, a lake database to Near real time water level storage variations from remote sensing data, n Space research, 47 (2011), p. 1497-1507, doi:10:1016/j.asr.2011.01.004 . Shimaraev, P.I. Buharizin, M.A.Naumenko, J-F Crétaux, N.M. Mognard, B. Rémy. Ice and snow cover of continental water bodies from simultaneous netry and radiometry observations. Survey in Geophysics - Thematic issue w from space" 2008 DOI 10.1007/s10712-008-9042-2	

Zakharova E.A., Kouraev A.V., Cazenave A, Seyler F. "Amazon river discharge estimated from Topex/Poseidon satellite water level measurements", Comptes Rendus - Geoscience, 2006, Vol 338, No 3, 188-196, DOI: 10.1016/j.crte.205.10.003
Kouraev A.V., Zakharova E.A., Samain O., Mognard-Campbell N., Cazenave A. "Ob' river discharge from TOPEX/Poseidon satellite altimetry data", Remote Sensing of Environment, 93, 2004, pp. 238-245, DOI: 10.1016/j.rse.2004.07.007

Name:	Frédérique Rémy			
Position:	Senior Scientist			
Qualifications and	Qualifications and experience of interest for this proposal			
Dr. Frédérique Remy is Senior Scientist at LEGOS/CNRS. She studies the cryosphere from space, especially the Antarctica ice sheet. She mostly works on radar physics, ice sheet mass balance and ice dynamics with altimetry, radiometry and gravimetry. She belongs to several Scientific Advisory Groups of ESA and CNES and is responsible for the data processing (retracking ice2) of the Envisat radar altimeter. She is now member of the SARAL/AltiKa Science Team and responsible for the Kassis project (KA band for Snow Surface and Ice Survey). She writes about 90 papers in peer reviews, three books and is co-authors of several others.				
Employment: Senior Scientist at LEGOS/CNRS. Experience and Responsibility: Studies the cryosphere from space, especially the Antarctica ice sheet. Main interests are radar physics, ice sheet mass balance and ice dynamics with altimetry, radiometry and gravimetry. Member of several Scientifc Advisory Groups of ESA and CNES and the Leader for the data processing (retracking ice2) of the Envisat radar altimeter. The member of the SARAL/AltiKa Science Team and responsible for the Kassis project (KA band for Snow Surface and Ice Survey). Education PhDs in astronomy (1984) and glaciology (1989) Habilitation qualification (1994)				
 15 PhD students and 18 Masters Selected Publications: Remy, F., Flament T., Michel, A. and J. Verron, 2014, Ice sheet survey over Antarctica with satellite altimetry: ERS-2, EnviSat, SARAL/AltiKa, the key importance of continuous observations along the same repeat orbit, International Journal of Remote Sensing, 35 (14), 5497-5512, doi:10.1080/01431161.2014?926419, 2014. 				

D	ΓU
-	-
-	*

- Flament, T., E. Berthier, and Remy, F., 2014, Cascading water underneath the Antarctic ice sheet (Wilkes Land) observed using altimetry and digital elevation models, The Cryosphere, 8, 1-15.

- Zakharova, E.A, A.V.Kouraev, F. Rémy, V.A. Zemtsov, S.N.Kirpotin, 2014, Seasonal variability of the Western Siberia wetlands from satellite radar altimetry, Journal of Hydrology, 512, 366-378.

- Mémin, A, T. Flament, F. Remy, & M. Llubes, 2014, Snow and height changes in Antarctica from satellite gravimetry and altimetry data, Earth and Planetray Science Letters, 404, 344-353..

- A. Michel, T. Flament, F. Remy, 2014, Study of the penetration bias of Envisat Altimeter observations over Antarctica in comparison to ICESat Observations, Remote Sensing, 6, 9412-9434.

Name:	Jean-François Cretaux
Position:	Scientist, Dr of Science, engineer at CNES: Centre National d'Etudes Spatiales

Qualifications and experience of interest for this proposal

Expert in space hydrology since 15 years. Has contribute within the use of remote sensing data to the development of application of satellite altimetry and imagery to hydrology. Has a long experience in Cal/Val activities using GNSS and other tools for satellite altimetry over inland waters. Has developped and is in charge of a global database for dissemination of satellite altimetry products for lakes and rivers. Has coordinated few international projects (INTAS, ECOSUD, CEFIPRA, NATO) on applications of satellite techniques for hydrology. Presently PI of the SWOT (Surface Water and Ocean Topography) NASA/CNES mission. Has supervised 4 phd and several master degree students. Is authors and co-authors of 48 articles in per review journal and has participated to almost 10 chapter books in space hydrology.

Cretaux J-F., Biancamaria S., Arsen A., Bergé-Nguyen M., and Becker M., Global surveys of reservoirs and lakes from satellites and regional application to the Syrdarya river basin, Environmental Research Letter, 10,1, AN: 015002, 2015, **DOI**: 10.1088/1748-9326/10/1/015002

Bergé-Nguyen M., and Cretaux J-F., Inundations in the Inner Niger Delta: Monitoring and Analysis Using MODIS and Global Precipitation Datasets, Remote Sens., 7, 2, 2127-2151, 2015

Crétaux J-F, W. Jelinski , S. Calmant , A. Kouraev , V. Vuglinski , M. Bergé Nguyen , M-C. Gennero , F. Nino, R. Abarca Del Rio , A. Cazenave , P. Maisongrande, SOLS: A Lake database to monitor in Near Real Time water level and storage variations from remote sensing data, J. Adv. Space Res. (2011), doi:10.1016/j.asr.2011.01.004

Crétaux J-F and C. Birkett, lake studies from satellite altimetry, C R Geoscience, doi: 10.1016/J.cre.2006.08.002, 2006

Crétaux J-F, Kouraev A.V., Papa F., Bergé Nguyen M., Cazenave A., Aladin N.V., and Plotnikov I.S., water balance of the Big Aral sea from satellite remote sensing and in situ observations, Journal of Great Lakes Research, 31 (4), 2005.

Longuevergne L., C.R. Wilson, B.R., Scanlon, and J-F Cretaux, GRACE water storage estimates for the middle east and other regions with significant reservoir and lake storage, Hydrol. Earth. Syst. Sci., 17, 12, 4817-4830,2013

Ričko M., C.M. Birkett, J.A. Carton, and J-F. Cretaux, Intercomparison and validation of continental water level products derived from satellite radar altimetry, J. of Applied Rem. Sensing, Volume 6, Art N°: 061710, DOI: 10.1117/1.JRS.6.061710, 2012

Name:	Elena Zakharova		
Position:	Scientist		
Qualifications an	d experience of interest for this proposal		
Research scientis	st, Ph.D, Habilitation qualification		
LEGOS, OMP, 14,	ave.Edouard Belin, 31400, Toulouse, France		
phone +33 561 3	phone +33 561 33 2915, email: <u>elena.zakharova@legos.obs-mip.fr</u>		
Born 1969,			
Address: 14, Ave. Ed.Belin,31400,Toulouse, France			
Education			
Habilitation qualification, University of Toulouse, France (2015)			

Supplementary 1993 Guest scientist, Plymouth Marine Laboratory, UK 2004 Guest Scientist, Institute Physique du Globe de Paris-IPGP, France Guest scientist, LMTG, OMP, Toulouse France 2005 1990-present, Field campaigns in Russian Arctic and Siberia (hydrological, oceanographical and glaciological survey) 1995- present, Lectures in Moscow State University, Toulouse-III University Ecole Normale Supérieure (Paris) Employment Research scientist, Moscow State University (Russia) 1995-2002 Research scientist, Météo-France, Toulouse (France) 2010-2011 Research scientist, LEGOS, OMP, Toulouse (France) 2004-2005, 2008-2009, 2012-2014 Recently /currently participating in TOSCA CNES SWOT Sea Ice project, French-Russian project CAR-WET-SIB, Franco-Siberian Centre for Education and Research. **Key Research Topics**

Ph. D. in Hydrology and Water Resources, University of Moscow (1995)

Masters in Hydrology, University of Moscow (1991)

Rey Research Toples

Remote sensing, altimetry, radiometry (SMOS), sea ice, land water cycle

Supervision

Ph.D. Students: 2

Master Students: 8

Awards/Grants

TOSCA SWOT (CNES Grant) "SWOT application for the arctic and boreal wetlands" 2013present

Publications

18 publications in Peer Reviewed International (11) and Russian (6) journals

Books

Contribution to 4 book chapters

Selected internationally reviewed articles

Zakharova EA, Fleury S., Guerreiro K., Willmes S., Rémy R., Kouraev A., Heinemann G., Sea ice leads detection using SARAL/AltiKa altimeter. Marine Geodesy, Special issue on SARAL/AltiKa Volume 38, Issue sup1, 2015, 522-533.

Zakharova E., Kouraev A., Remy F., Zemtzov V., Seasonal variability of the Western Siberia wetlands from satellite radar altimetry. Journal of Hydrology, 2014.

Zakharova E.A., A.V. Kouraev, S. Biancamaria, M.V. Kolmakova, N.M.Mognard, V.A. Zemtsov, S.N. Kirpotin, B.Decharme. "Snow cover and spring flood flow in the northern part of the Western Siberia (the Poluy, Nadym, Pur and Taz rivers)". Journal of Hydrometeorology. 2011, vol.12, No 6.

3.1.3.3 ENVEO

Name:	Thomas l	s Nagler		
Position:	Managing	anaging Director		
Qualifications and experience of interest for this proposal				
		CURRICULUM VITAE		
		Name	Thomas NAGLER	
		Qualification	Doctor rerum naturarum (Dr.rer.nat) in Natural Sciences, University of Innsbruck (1996) Magister rerum naturarum (Mag.rer.nat) in Meteorology and Geophysics, Univ. Innsbruck (1991)	
		Present Position	ENVEO IT GmbH, Managing Director	
	1	Project Role	WP Leader	
Relevant Experience				
Activity		Topic, Role		
Employment		 2001- present: Managing Director of ENVEO IT GmbH 2001 - Founding the company ENVEO Environmental Earth Observation IT GmbH 1991-2004: Research Scientist, Inst. Meteorology / Geophysics, Univ- Innsbruck 1988: Alpine Weather Service, Innsbruck 		
Relevant Experience (Selected Projects)		 WP Leader, Project: GlobSnow– ESA DUE, ESRIN Contract (ongoing) WP-Leader: CoReH2O End-to-End Mission Performance Simulator. ESA Study, Contract 4000101698/10/NL/JC. CoReH2O End WP-Leader, Project: Definition Study of Concepts for Demonstration of Advanced Techniques and Technologies on an EO Small Mission. (ESA; Lead Astrium Ltd) Deputy of PI, WP Lead "Ku-band SAR modelling for snow applications", ESA <i>18668</i> WP leader in ESA Project ALGOSNOW – Algorithms for Snow and Land Ice Retrieval using SAR data. (2011-2013) WP Leader in ESA CCI Project "GLACIER CCI" (2010-2013) Coordinator of FP7 Project 262925, "CRYOLAND – GMES SNOW AND ICE SERVICE" (2011-2015) PI of ESA project GLACAPI - Multi-sensor analysis of glacier response to climate change on the Antartia Resp		
Research Stays and Scient Expeditions	ific	 1992 - Research stays at the CIRES, Boulder, CO, USA. 1993 Univ. Sheffield, Dep. of Applied and Computational Mathematics 1992-1999, 2007 Several field campaigns in various alpine test areas in the eastern ALPs (ERS SAR, Radarsat, SIR-C/X-SAR), SARALPS-2007 1994-1995: Glaciological expeditions to the Southern Patagonian Icefield and Larsen Iceshelf, Antarctic Peninsula. 2007: Participation at CLPX-2 experiment, CO, USA. 2007/2008;Lead of SARALPS 2007 and HeliSnow 2008 Campaign,Alps, NOSREX 2010 2012/2013: Lead of ALPSAR Field Campaign, Austria (ESA Contract 4000107780). 2013/2014: Lead of ALPTOMOEXP Field Campaign, Austria 		

Internationa	I Working Groups	 since 1999: Co-Chairman of LISSIG EARSel DLR: Tandem-L: Speaker for Land Cryosphere Member of SAOCOM / TANGISAT Science Team
Principal Inv Observation	estigator/ Co-PI of Earth AO experiments	 ESA: ERS, Envisat, JAXA: PALSAR, RADARSAT DLR: TerrasSAR-X, TanDEM-X; CosmoSkyMed

Name:	Helmut Rott		
Position:	Managing Director		
Qualifications and experience of interest for this proposal			
	Name	Helmut ROTT	
	Qualification	Ph.D. in Meteorology and Physics (1974)	
	Present Position	ENVEO IT GmbH, Managing director	
		Univ. Innsbruck, Professor for Remote Sensing	
	Project Role	Project Leader and WP Leader	
Relevant Experience			
Activity	Topic, Role		
Employment	2001– present: Co-director of Et	2001– present: Co-director of ENVEO IT GmbH	
	 1986– present: Professor at Univ 1988/80: Guest Professor Univ 	1986– present: Professor at University of Innsbruck 1088/00. Creat Professor University of Munich	
	 1988/89: Guest Professor Onlive 1974–85: Research Associate 11 	 1988/89: Guest Professor University of Munich 1974–85: Research Associate University Innshruck & Austrian Academy of Sciences 	
	 1574-05. Research Associate, only. Infisbruck & Austrian Academy of Sciences 1969–74: Research Assistant Univ. Innshruck 		
Research projects and >200 publication	Ins Microwave signatures and inversion methods		
	Spaceborne microwave radiome	Spaceborne microwave radiometry	
	Atmospheric radiative transfer	Atmospheric radiative transfer	
	 Imaging spectrometry for water 	 Imaging spectrometry for water quality and atmosphere 	
	 Synergy SAR/optical for land sur 	Synergy SAR/optical for land surface monitoring	
	Satellite applications for snow &	Satellite applications for snow & ice research and for hydrology	
	Antarctic glaciology	Antarctic glaciology	
	Runoff modelling & forecasting	using satellite data	
	Differential SAR interferometry	Differential SAR interferometry for natural hazards and glaciology	
Manager of ESA Studies (P	• "Tech. Support for the Deploym	• "Tech. Support for the Deployment of Sensors during HeliSnow-2008" ESTEC Cont. 21146	
Contractor)	 "Retrieval of Physical Snow Prop ". 20756/07/NL/CB 	 "Retrieval of Physical Snow Properties from SAR Observations at Ku- and X-Band Frequencies ". 20756/07/NL/CB 	
	 "SAR-Alps2007", 20380/06/NL/0 	GS	
	 "Ku-band SAR modelling for sno 	w applications", 18668/05/NL/GLC	
	"The Use of SAR Interferometry	to Retrieve Bio- and Geo-Physical Variables" /02/NL/MM	
	 "SAR land applications for snow 	and glacier monitoring",.6618/85/F/FL(SC).	
	 "River runoff prediction based o 	n satellite data. 5376/83/D/(JS(SC).	
	 "Study on use and characted 5441/83/D/IM(SC). 	eristics of SAR for land snow and ice applications".	
	Sub-project manager of 9 other ESA	Sub-project manager of 9 other ESA contracts	

Offices in Scientific Advisory Groups of	Earth Science Advisory Committee (2007, 2011)
onces in scientific Advisory groups of	• Earth Science Advisory Committee (2007-2011)
ESA	Chair, CoReH2O Mission Advisory Group (2006-)
	The SAR Advisory Group (2002-2010)
	ASAR Science Advisory Group (1993-2002)
	Earth Science Advisory Committee (1996-1999)
	Earth Observation Advisory Committee (1994-1995)
	• SAR Expert Team (1998-1992).
Principal Investigator of Earth	• ESA: ERS-1, ERS-2, Envisat, CryoSat
Observation AO experiments	NASA & DLR: SIR-C/X-SAR; SRTM
	DLR: Terra-SAR-X, TanDEM-X
	CSA: Radarsat
	• JAXA: PALSAR
Present Positions in Intern. Scientific	Fellow of the IEEE
Organisations	Member, International Academy of Astronautics
	• Member of the Scientific Steering Group of the Climate and Cryosphere Program (CliC) of
	WCRP

Name:	Markus Hetzenecker		
Position:	Senior Research Scientist		
Qualifications and	l experien	ce of interest for this pro	oposal
		CURRICULUM VITAE	
Lever 19		Name	Markus HETZENECKER
		Qualification	Magister rerum naturarum (Mag.rer.nat) in Theoretical Physics, University of Innsbruck (2004)
		Present Positions	Senior Research Scientist
		Project Role	Senior Research Scientist; design of software; software implementation and tests;
Relevant Experience			
Activity		Topic, Role	
Employment		 2011–present: ENVEO IT GmbH 2006–2011: Senior system administrator for Linux/Unix systems at Information Technology Services of University of Innsbruck 1999-2006: System administrator for Linux/Unix systems at Information Technology Services of University of Innsbruck 	

DTU	Ref:	ArcFlux
	Issue:	2.0
	Date:	19/04 2016

Relevant Experience (Selected Projects)	 Development and implementation of Server/Client Infrastructure in a Linux/Unix environment for Institutes and Departments at University of Innsbruck
	 Methods and software development for simulation of acoustic waves in inhomogeneous media (Diploma Thesis)
	 Methodological and software development and implementation for processing and analysing time series of data of spaceborne Synthetic Aperture radar (SAR) and for interferometric SAR processing
	SAR software development for Sentinel-1 data analysis related to ice parameters
	Related Projects at ENVEO
	WP Leader in ESA CCI Project "ICESHEET CCI" (2011-2014)
	 Software Design and Development contributing to ESA CCI Project "GLACIER CCI" (2011-2014) and Icesheets CCI,
	WP Leader, "AIM4X - Advanced Interferometric Methods for TanDEM-X" (ASAP, FFG,))
	Contributing to GlacAPI, Antartic-CCI Scoping Study, STSE APMB,
Publications (selected)	Nagler, T., Rott, H., Hetzenecker, M., Wuite, J., Potin, P. (2015): The Sentinel-1 Mission: New Opportunities for Ice Sheet Observations. Remote Sensing, 2015, 7, 9371-9389, doi:10.3390/rs70709371.
	Nagler, T., Hetzenecker, M., Rott, H., Wuite, J. (2015): Application of Sentinel-1 SAR for monitoring surface velocity of Greenland outlet glaciers. <i>FRINGE 2015 Workshop</i> , 23-27 March 2015, ESA-ESRIN, Frascati, Italy.
	Nagler T., H. Rott, M. Hetzenecker, K. Scharrer, E. Magnússon, D. Floricioiu, C. Notarnicola, 2012. Retrieval of 3D-glacier movement by high resolution X-Band SAR data. Proc. IGARSS 2012.
	Nagler T., M. Heidinger, H. Rott, G. Bippus, M. Hetzenecker, K. Scharrer. 2012. Snow and glacier monitoring service using Earth Observation data. EGU 2012, Poster Presentation.

Name:	Petra Malcher		
Position:	Senior Research Scientist		
Qualifications and	experier	nce of interest for this pr	oposal
		CURRICULUM VITAE	
10 m		Name	Petra MALCHER
		Qualification	Graduation to Magistra rerum naturarum (Mag. rer. nat.) in Meteorology and Geophysics, University of Innsbruck, Austria. (2001, with maximum cum laude).
		Present Position	Senior Research Scientist, ENVEO IT GmbH
		Project Role	Senior research
Relevant Experience			
Activity		Topic, Role	

D 1	LI I
-	-
-	-

Employment	 Since June 2005 - Research scientist at ENVEO IT GmbH, responsible for development of hydrological models, the use of remote sensing products in hydrology, and hydromet data management, analysis of optical and SAR satellite data for snow and land ice poroducts, contributing to software development at ENVEO. 2001-2005 Research scientist, Inst. of Meteorology & Geophysics, Univ. Innsbruck, in the EU funded project EnviSnow for the development of generic earth observation based snow retrieval algorithms (optical, SAR) and development of hydrological models and hydromet pre-processing for runoff simulations and real time forecasts 1995 -2001 - Short term contractional work in various fields of meteorology at the Institute of Meteorology and Geophysics, Innsbruck, Austria; TÜV Bayern Landesgesellschaft Österreich, Jenbach, Austria; Deutscher Wetter Dienst (DWD), Munich, Germany; Zentralanstalt für Meteorologie und Geophysik (ZAMG), Salzburg, Austria; Abfallwirtschaft Tirol Mitte GmbH, Hall i. Tirol, Austria; Mesoscale Alpine Programme (MAP), Innsbruck, Austria; Austro Constrol GmbH, Innsbruck, AT; Innsbrucker Kommunalbetriebe AG, Innsbruck, AT
Experience	 Selected Projects: "ASaG - Preparation for a GMES Downstream Service". FFG ASAP (Austrian National Programme) (FFG ASAP 6 GMES project) ATX Advanced Tools for TerraSAR-X Applications in GMES (FFG ASAP5 Project) ASAP-2 - Autrian Settlement and Alpine Environment Cluster for GMES FFG ASAP-2 Project) INTEGRAL - Interferometric Evaluation of Glacier Rheology and Alterations (EC FP6 Project) GALAHAD - Advanced Remote Monitoring Techniques for Glaciers, Avalanches, and Landslides Hazard Mitigation Cryoland - GMES Service Snow and Land Ice (FP7 Project) Technical Support for the Deployment of Sensors during HeliSnow 2008. (ESA ESTEC Contract) WP Lead ESA GEOACCA - Feasibility Study for Geolocation Assessment of Optical Sensors (2013-2015)
Publications	 P. Malcher, T. Nagler, and H. Rott, "Synergy of SAR and optical sensors for snow hydrology applications," Proceedings of the 4th International Symposium on Retrieval of Bio- and Geophysical Parameters from SAR Data for Land Applications (Innsbruck, Austria), November 16-19, pp. 433-440 P. Malcher, D. Floricioiu, and H. Rott, "Snow mapping in alpine areas using medium resolution spectrometric sensors," Proceedings of the IGARSS'03 Symposium (Toulouse, France), July 21-25, CD-ROM, ISBN: 0-7803-7930-6, paper no. I_A32_10, 3 pp. H. Rott, T. Nagler, P. Malcher, and F. Müller. 2006. A satellite-based information system for glacier monitoring and modelling. Proc. EARSEL GA, 2007. T. Nagler, H. Rott, P. Malcher, and Florian Müller. 2007. Assimilation of Meteorological and Remote Sensing Data for Snowmelt Runoff Forecasting. Accepted for publication in RSE.

3.1.4 Key personnel dedication

WP	Description	WP leader
WP1000	Scientific Requirement consolidation	OA
WP1000	Required baseline document.	LS
WP1100	Litterature review. Technical note.	LS
WP1200	Review of existing and available data. Technical note	AK
WP1300	Review of existing projects and models. Technical note	HS
WP1400	Definition test areas used in the project. Technical note.	TN

+	-
*	\$

Ref: ArcFlux Issue: 2.0 Date: 19/04 2016

WP2000	Data set collection	KN
WP2100	Database containing EO and in-situ data and model output	KN
WP2200	Description of datasets in database	AK
WP3000	Development and validation	EZ
WP3100	ATBD describing the algorithms and methods selected	KN
WP3200	Product Validation Report	EZ
WP4000	Prototype demonstration and impact	KN
WP4100	Publish experimental data set : target prototype products	KN
WP4200	Update technical note D3	TN
WP4300	Impact assessment report	KN
WP5000	Scientific Roadmap Report	LS
WP5100	Evaluation of obtained scientific results. Tech. note	LS
WP5200	Scientific agenda 2017-2021. Tech. note	LS
WP5300	Research to operational plan	TN
WP6000	Promotion	OA
WP6100	Journal paper submitted on FWF time series	KN
WP6200	Website	LS
WP6300	Presentations	OA
WP6400	Communication material	OA
WP7000	Management	OA
WP7100	Monthly reports on progress	OA
WP7200	Final report	OA
WP7300	Executive Summary	OA

3.2 Management structure.

The following key persons participate in the ArcFlux consortium. DTU space (O. Andersen) will head the proporal supported by Scientis L. S. Sørensen and K. Nielsen in the day to day work.

The management structure of the Project consists of a steering committee, headed by the Project manager (O. Andersen) One Project officer from each Party will be elected.

The Steering Committee shall form a quorum if a minimum of 2/3 of all Steering Committee Members are present or represented by another person by written power of attorney. The Parties shall strive to reach unanimous decisions. If unanimity cannot be achieved, decisions shall be made with 2/3 majority by the Steering Committee Members present or represented, each having 1 vote. The Steering Committee controls the corporation in the consortium and over the subcontractors for handling of disagreement. A The Steering Committee shall meet at least twice a year and as requested by a Party.

The following persons and representatives from the various parties is shown below.

4 Implementation Proposal

4.1 Planning

WP	WP Description	M1	M2	M3	M4	M5	M6	M7	M8	M9	M10	M11	M12	M13	M14	M15	M16	M17	M18
1000	Scientific requirement consolidation																		
2000	Data set collection																		
3000	Development and validation																		
4000	Prototype demonstration																		
5000	Scientific roadmap																		
6000	Promotion																		
7000	Management																		

Gantt diagram

	Task Name	Jua	rter	4th Q	uarter	1st Qua	arter	2nd Quarter	3rd	Quarter	4th (Quarter	1st (Quarter	2nd	Quarter	3rd (Qu
		Au	g Sep	Oct	Nov Dec	Jan F	eb Mar	Apr May Jur	ı Jul	Aug Sep	Oct	Nov Dec	Jan	Feb Ma	r Apr	May Jun	Jul	1
1	WP1000 Scientific Req consolidation																	
2	WP1100 Literature Review																	
3	WP1200 Review of Data																	
4	WP1300 Review aof projects and models						C]									
5	WP1300 Test regions																	
6	WP2000 Data set							ų —										
7	WP2100 Database									2								
8	WP 2200 Description							Ĺ										
9	WP3000 Development anf Validation							ý –										
10	WP3100 ATBD							(
11	WP3200 PVR							(
12	WP4000 Prototype Demonstration												_		_			
13	WP4100 Experimental data																	
14	WP4200 Update Tech Note											Ç					1	
15	WP4300 Impact Assesment																	
16	WP5000 Scientific Roadmap														<u> </u>			ŝ
17	WP5100 Eval of Sci Results																	1
18	WP5200 Scientific Agenda																	1
19	WP5300 Research to Operation Plan																	
20	WP6000 Promotion										_		_		_			-
21	WP6100 Scientific Paper																	
22	WP6200 Website	1						(_	
23	WP6300 Presentations	1																
24	WP6400 Communication material																	
25	WP7000 Management																	
26	-																	

4.1.1 Deliverables

Internal deliverables

ESA deliverables

ID	WP	Description	Date
	WP1000	Scientific Requirement consolidation	
D1	WP1000	D5 Required baseline document. This report is a consolidation of the technical notes D1a, D1b, D1c, and D1d.	KO+ 4
D1a	WP1100	Litterature review. Technical note.	KO+ 4
D1b	WP1200	Review of existing and available data. Technical note	KO+ 4
D1c	WP1300	Review of existing projects and models. Technical note	KO+ 4
D1d	WP1400	Definition test areas used in the project. Technical note.	KO+ 4
	WP2000	Data set collection	
D2	WP2100	Database containing EO and in-situ data and model output	KO+ 8
D3	WP2200	Description of datasets in database	KO+ 8

D]	U
-	•
-	-

	WP3000	Development and validation	
D4	WP3100	ATBD describing the algorithms and methods selected	KO+ 11
D5	WP3200	Product Validation Report	KO+ 11
	WP4000	Prototype demonstration and impact	
D6	WP4100	Publish experimental data set : target prototype products	KO+ 15
D7	WP4200	Update technical note D3	KO+ 15
D8	WP4300	Impact assessment report	KO+ 15
D9	WP5000	Scientific Roadmap (This report is a consolidation of the technical notes D9a, D9b, D9c)	
D9a	WP5100	Evaluation of obtained scientific results. Tech. note	KO+ 18
D9b	WP5200	Scientific agenda 2017-2021. Tech. note	KO+ 17
D9c	WP5300	Research to operational plan	KO+ 18
	WP6000	Promotion	
D10	WP6100	Journal paper submitted on FWF time series	KO+18
D11	WP6200	Website	KO+ 2 (ong. maintanence)
D12	WP6300	Presentations	KO+18
D13	WP6400	Communication material	KO+18
	WP7000	Management	
D14x:	WP7100	Monthly reports on progress	Every month
D15:	WP7200	Final report	KO+ 18
D16	WP7300	Executive Summary	KO+ 18

4.1.2 Meetings

Meeting	Place	Date	Deliverables
Kick Off Meeting	DTU	КО	
Progress Meeting 1	telecon	KO+4	D1
Midterm Review Mtg	ESRIN	KO+8	D2 D3
Progress Meeting 2	telecon	KO+11	D4 D5
Progress Meeting 3	telecon	KO+15	D6-D9
Final Meeting	ESRIN	KO+18	D10-D16

4.2 Work Breakdown Structure

List of Work Packages and sub-work packages

WP Title	Sub-WPs	Title	Responsible
----------	---------	-------	-------------

		WP1100	Litterature review	DTU
WP1000	Scientific	WP1200	Data review	LEGOS
	Requirement	WP1300	Review of existing projects and	DTU
	consolidation	W11500	models	
		WP1400	Definition test areas	ENVEO
		WP2100	Create database	DTU
WP2000	Data set collection			
		WP2200	Dataset description	LEGOS
		WP3100	Algorithm / method selection	ENVEO
WP3000	Development and			
	validation	WP3200	Validation of various products	LEGOS
WP4000	Prototype	WP4100	Experimental data set for	DTU
	demonstration and	N/D 4200	prototype production	LEGOG
	impact	WP4200	Update tech note D3	LEGOS
		WP4300	Impact assessment	DTU
		WP5100	Evaluation of	DTU
			obtained scientific results	
WP5000	Scientific Roadmap	WP5200	Scientific agenda 2017-2021	DTU
		WP5300	Research to operational plan	ENVEO
WP6000	Promotion	WP6100	Journal paper submitted on	DTU
		WD6200	FWF time series	DTU
		WF0200	website	DIU
		WP6300	Presentations	DTU
		WP6400	Communication material	DTU
WP7000	Management	WP7100	Monthly Progress reports	DTU
		WP7200	Final report	DTU
		WP7300	Executive summary	DTU

4.2.1 Work Package Description

WP1000

4.2.1.1

The purpose of this WP is to consolidate the scientific requirements for estimating the Arctic freshwater fluxes, maximizing the use of ESA data. The required baseline for doing so will be

DTH	Ref:	ArcFlux
	Issue:	2.0
**	Date:	19/04 2016

established and documented through detailed reviews of existing literature, initiatives, projects and data

In WP1000, a thorough assessment and analysis of the main challenges associated with determining the Arctic freshwater fluxes using satellite observations will be carried out and any knowledge gaps and scientific problems will be documented. This work will define and guide the scientific focus of the project to address these issues.

WP1000 consists of four sub-WPs which all contribute to the D1; the Scientific Requirement consolidation report. D1 is the external deliverable of this WP, while the deliverables of the sub-WPs are internal deliverables.

WP	Title	Sub-WPs	Title
		WP1100	Litterature review
WP1000	Scientific Requirement consolidation	WP1200 WP1300	Data review Review of existing projects and models
		WP1400	Definition test areas

WP ID:	1100		Start:	КО	End: KO+4			
Title	Literature review WP Lea						DTU, LS	
Contributing I	Partners:	DTU						
Objective To	perform a t	horough li	terature review of	the state-of-the-	art for det	erminin	ig the	
freshwater b	udget in the	e Arctic O	cean. In this revie	w the main source	es of uncer	rtainty	will be	
identified.								
Special attention will be given to how fluxes have been previously quantified by using satellite EO								
data.								
Tasks Responsible								
Perform a dedicated and thorough review of the state-of-the-art for DTU								
determining the freshwater budget in the Arctic Ocean.								
Inputs			Planned Effort		End Crite	nd Criteria		
(man-hours)								
Published journal papers, reports, 70					Accepted by ESA			
and presentations.								
Deliverables								
Del. ID	Deliverable	title				Delive	ry Date	
D1a	Literature r	eview, teo	hnical note which	contributes to the	scientific	KO+4		
	requiremer	nt consolid	lation report (D1)					

D]	U
-	
-	
-	-

WP ID:	1200		Start:	КО	End:		KO+4		
Title	itle Data review WP Leade					er	LEGOS, AK		
Contributing F	Partners:	All							
Objective : To	perform a d	letailed re	eview of data (botl	n satellite, satellite	-derived, a	irborne	and in-situ) that		
can / will be u	sed in the q	uantificat	ion of the Arctic C	Ocean FWFs.					
The data sets	shall include	e both dev	velopment data se	ts that will be used	to estimat	te the fr	eshwater fluxes		
, but also valio	, but also validation data. In case that there is a lack of useful and critical datasets this will be described								
and a practical solution to overcome this will be proposed.									
Tasks						Respo	nsible		
Provide an ov	erview of av	ailable sa	tellite EO data for	determining FWF f	from	LEGOS	5		
rivers. Both the temporal and spatial coverage will be given.									
Provide an ov	erview of av	ailable aiı	rborne and in-situ	data that can pote	ntially be	LEGOS			
used for validating the estimated river levels, FWF or river outline.									
Provide an overview of available satellite EO data for determining FWF from land						ENVEC)		
ice. Both the temporal and spatial coverage will be given.									
Provide an overview of available airborne and in-situ data that can potentially be						ENVEC)		
used for validating the estimated ice velocities and ice thickness.									
Provide an overview of available satellite-derived EO products of sea ice					DTU				
thickness and	drift for det	ermining	FWF from sea ice	transport. Both the	9				
temporal and	spatial cove	rage shal	l be given.						
Inputs			Planned Effort		End Crite	eria			
			(man-hours)						
Data acquisition reports, EO			70		Accepted	cepted by ESA			
archives, data	center arch	ives							
Deliverables									
Del. ID	Deliverable	title				Delive	ry Date		
D1b	Data review	, technica	al note which conti	ributes to the scier	ntific	KO+4			
	requiremen	t consolid	lation report (D1)						

WP ID:	1300	Start	:	КО	End:		KO+4	
Title	Review of e	xisting project	s and model	ls	WP Leade	er	DTU, HS	
Contributing P								
Objective : To perform a detailed review past and on-going projects that have aimed at determining the								
Arctic ocean FWB or single FWFs. Furthermore, since this project is focused on products that can be								
quantified from ESA satellite EO data, the FWB will have to be closed by including model output. Therefore								
another objective it to make a review of which models are available for this.								
Tasks Responsible								
Make a review of past and on-going projects that have aimed at determining the								
Arctic ocean FWB or single FWFs.								
Give an overview of available model output for quantifying the P-E component of LEGOS							5	
the FWB in the Arctic Ocean								
Give an overview of available model output for quantifying the freshwater D								
component th	at comes fror	n melt water	run-off from	the GrIS, glaciers a	and ice			
caps. This cou	ld e.g. be MAI	R, RACMO or I	HIRHAM					

Inputs		Planned Effort End Criteria		ria			
		(man-hours)					
Project and	model websites,	70	Accepted	by ESA			
reports, pres	sentations						
Deliverables							
Del. ID	Deliverable title		Delivery Date				
D1c	Review of models and	KO+4					
	the scientific require	ment consolidation report (D1)					

WP ID:	1400	Start:	KO+2	End:		KO+4		
TitleDefinition test areasWP Lead					er	ENVEO, TN		
Contributing F								
Objective : Du	e to the limited	time (and financial)	frame of this project,	the develo	pment a	and validation of		
a prototype fr	In this V	NP, these test						
areas will be chosen.								
Tasks					Respo	nsible		
Two-three tes	t areas are defin	ed for determinatio	n of the FWF from riv	ers into	LEGOS	5		
the Arctic Ocean. These areas (rivers) are chosen based on an evaluation of								
available EO data as well as validation data.								
Two-three tes	t areas are defin	ed for determinatio	n of the FWF from la	nd ice into	ENVEC)		
the Arctic Ocean. These areas (glaciers) are chosen based on an evaluation of								
available EO d								
One test area is defined for determination of the FWF from sea ice transport out						DTU		
of the Arctic Ocean. This area will (a geographical box) will be chosen based on								
available EO derived sea ice products; sea ice thickness and drift								
Inputs		Planned Effor	t	End Crite	teria			
		(man-hours)						
D1b, D1c 70 Accepted					by ESA			
Deliverables								
Del. ID	Deliverable title				Delive	ry Date		
D1d	Definition test a	reas used in the pro	ject. Technical note v	/hich	KO+4			
	contributes to the	ne scientific requirer	ment consolidation re	port (D1)				

4.2.1.2 WP2000

WP2100 Create database				WP2100	Create database
------------------------	--	--	--	--------	-----------------

WP2000	Data set collection		
		WP2200	Dataset description

WP ID:	2100 Start: KO+2 End:						KO+8	
Title	Create database WP Leader DTU, KN						DTU, KN	
Contributing I	Partners:	DTU, LEO	GOS, ENVIO					
Objective								
The objective	is to build a	a referenc	e database of care	efully selected sate	ellite Earth	Observ	ation (EO) data	
and airborne and in-situ validation data								
Tasks						Respo	nsible	
Collect relevant data for glacier FWF						ENVEO		
Collect relevant data for sea ice FWF DTU								
Collect relevant data for river discharge LEGOS								
Create database DTU								
Inputs			Planned Effort		End Criteria			
			(man-hours)					
Various data sets 100					Deliverable accepted by ESA			
Deliverables								
Del. ID	Deliverable	title				Delive	ry Date	
D2	Database c	ontaining	EO, in-situ, and m	odel output		KO+8		

WP ID:	2200	Start:	KO+2	End:		KO+8
Title	Description of data	sets in database		WP Leade	er	LEGOS, AK
Contributing I	Partners: All					
Objective						
The objective is to describe the data sets in the database						
Tasks					Responsible	
Describe data sets in database LEGOS					5	
Inputs		Planned Effort		End Criteria		
		(man-hours)				
Various data sets 100 Delivera			Deliverab	ole accepted by ESA		
Deliverables						
Del. ID	Del. ID Deliverable title				Delivery Date	
D3 Description of data sets in database					KO+8	

4.2.1.3 WP3000

WP3100 Algorithm / method selection		WP3100	Algorithm / method selection
-------------------------------------	--	--------	------------------------------

DT	U
-	+
-	-

WP3000	Development and		
	validation	WP3200	Validation of various products

WP ID:	3100		Start:	KO+2	End:		KO+11
Title	Algorithm	/ method	selection		WP Leade	er	ENVEO, TN
WP ID:	a lth ers:	ENVEO, I	Start:	КО+2	End:		KO+11
Title	Validation	n of variou	s products		WP Leade	er	LEGOS, EZ
Contributing Partners: Ackage is to find the best algorithms / methods for analysing the individual							
Objective :	Objective :						
Validate the p	roducts der	rived in the	e project				
Tasks						Respo	nsible
Sielec F Wittable validation data sets for river FWF						LEGOS	
Reveriberistis	renates o nithin	ns for dater	EMalysis and find	most suitable algor	rithm for	ERG/Q8)
Selecters pixelble	e validation	data sets	for glacier FWF			ENVEC)
Reviewbexistis	rendalepopitor	nut es s lati	€mdf₩i5st suitable	ones for sea ice FV	VF	DN MEC)
Eelese Isdiataebi	esvatistatian	Bobata sets '	for sea ice FWF			ÐNIVEC)
Preservibe chos	en algorithi	m for sea i	c ₽lā₩/f ed Effort		End Crite	ri₽TU	
Discuss valida	tion and int	er-compa	ri \$pmaneholtus s)			LEGOS	5
VerisolischateaPs	VEAS, FDO ODD	n B 8t	310		Deliverab	ble Eccepted by ESA	
Inputs			Planned Effort		End Crite	iteria	
Various data s	sets		(man-hours)		Deliverab	le accep	oted by ESA
D3 , D4	ATBD 360 Deliverables			lekøeræ	oted by ESA		
Deliverables							
Del. ID	Deliverable	title				Delive	ry Date
D5	Product Va	lidation an	d Algorithm Selec	tion Report (PVASF	R)	KO+11	

4.2.1.4 WP4000

WP4000	Prototype demonstration	WP4100	Experimental data set for prototype
	and impact		production
		WP4200	
			Update tech note D3
		WP4300	
			Impact assessment

WP ID:	4100 Start: K0+9 End:		End:		K0+15		
Title	Experimer	ntal data s	ets for prototype	production	WP Leade	er	DTU, KN
Contributing F	Partners:	DTU, LEO	GOS, ENVIO				
Objective	Objective						
To create experimental data sets of FWF based on the methodology defined in WP3000 for the test areas							
	1400.	_			_		
Tasks					Respo	Responsible	
Create exp. Da	ata set of F	WF from r	iver discharge for	the selected test a	reas	LEGOS	, ,
Create exp. Data set of FWF from land ice discharge for the selected test areas ENVEO)		
Create exp. Da	Create exp. Data set of FWF from sea ice for the selected test areas DTU						
Collect model	data set ne	eded to cl	ose FWB.			DTU	
Inputs			Planned Effort		End Crite	ria	
			(man-hours)				
D3		100		Deliverable acc		oted by ESA	
Deliverables							
Del. ID	Deliverable title Del					Delive	ry Date
D6	Publish exp	erimental	data sets: target p	prototype products	;	KO+15	5

WP ID:	4200	Start:	КО+9	End:		KO+15	
Title	Update tech	nical note D3		WP Leade	er	LEGOS, EZ	
Contributing I	Partners: A	II					
Objective							
To include the experimental data in the database and describe these in the data user manual (D3)							
Tasks					Respo	Responsible	
Include the experimental data in the database					LEGOS		
Describe the e	experimental in	n the technical note [03		LEGOS		
Inputs		Planned Effo	Planned Effort		End Criteria		
		(man-hours)	(man-hours)				
D3		96	96 Deliverable ad		le accep	oted by ESA	
Experimental	data						
Deliverables							
Del. ID Deliverable title Deli				Delive	ry Date		
D7	D7 Update technical note D3					KO+15	

WP ID:	4300		Start: KO+9 End: KO+				
Title	Impact as	Impact assessment				r	DTU, KN
Contributing P	artners: DTU, LEGOS, ENVEO						
Objective							
To interpret, analyze, and quantify the impact of the obtained results							
Tasks Resp					Respo	nsible	

D]	
-	-
-	*

Compare exp	DTU					
Perform an e	DTU					
Evaluate the	LEGOS					
FWFs						
Determine t	ENVEO					
collaboratio						
Determine t	DTU					
Inputs		Planned Effort	End Criteria			
		(man-hours)				
Experimenta	Experimental data sets 100 Deliverab			le accepted by ESA		
Deliverables	Deliverables					
Del. ID	Deliverable title			Delivery Date		
D8	D8 Impact assessment report					

4.2.1.5 WP5000

WP5 is dedicated to the definition of a so-called scientific roadmap. Based on the successes and challenges learned through the previous WPs, the scientific roadmap will summarize suggestions and ideas for future developments beneficial for determining the FWFs in the Arctic from EO data.

The output of this workpackage is a scientific roadmap report (D9) which contains a contributions from the sub-WPs 5100, 5200 and 5300.

		WP5100	Evaluation of obtained scientific results
WP5000	Scientific Roadmap	WP5200	Scientific agenda 2017-2021
		WP5300	Research to operational plan

WP ID:	5100		Start:	KO+14	End:		KO+18
Title	Evaluation of obtained scientific results				WP Leade	er	DTU, LS
Contributing P	Contributing Partners: All						
Objective : to	perform a c	ritical and	l thorough analysis	s of the scientific re	esults obtai	ned in A	ArcFlux, related
to the scientific objectives defined for Arctic+, theme 3.							
Tasks	Tasks Responsible					nsible	

DTH	Ref:	ArcFlux
	Issue:	2.0
**	Date:	19/04 2016

Perform a cr scientific obj knowledge g	pecific s and	DTU				
Perform a cr scientific obj challenges	pecific nose	LEGOS				
Perform a cr scientific obj Arctic freshv	itical analysis of how th ectives of Arctic+ The vater budget	ne outcome of ArcFlux satisfies the sp me 3, to make a multi-year assessment	pecific at of the	ENVEO		
Inputs		Planned Effort	End Crite	ria		
		(man-hours)				
D1, D4, D5, I	by ESA					
Deliverables	Deliverables					
Del. ID	Delivery Date					
D9a	tific	KO+17				

WP ID:	5200	Start:	KO+14	End:		KO+18
Title	Scientific agend	a 2017-2021		WP Leade	er	DTU, LS
Contributing P	artners: All					
Objective						
Tasks					Respo	nsible
Transfer the	outcome of Arc	cFlux into scientif	ic activities to be		DTU	
conducted ir	n the time frame	e 2017-2021				
Ensure that operational making the s	DTU					
Determine w advance forv Arctic FWF f validation ca knowledge a	to the situ current	LEGOS	5			
Inputs Planned Effort End Crite (man-hours)						
All previous deliverables 70 Accepted by ESA						

Ref: ArcFlux Issue: 2.0 Date: 19/04 2016

Deliverables		
Del. ID	Deliverable title	Delivery Date
D9b	Scientific agenda 2017-2021. Input to the scientific roadmap report (D9)	KO+17

WP ID:	5300	5300 Start: KO+14 End: KO+18				KO+18		
Title	Research t	o operatio	onal plan		WP Leade	er	ENVEO, TN	
Contributing F	Partners:	All						
Objective : To	Objective : To develop a research to operational plan							
Tasks	Tasks Responsible							
Describe a pla operational ac	Describe a plan that outlines a possible strategy for the transition from research to operational activities related to the FWF product for river discharge in the Arctic.							
Describe a pla operational ac the Arctic Oce	Describe a plan that outlines a possible strategy for the transition from research to operational activities related to the FWF product for land ice FW contribution to the Arctic Ocean.							
Describe a pla operational ac the Arctic Oce	n that outlin tivities relate ean	es a possi ed to the l	ible strategy for th FWF product for t	e transition from re he sea ice transport	esearch to a out of	DTU		
Inputs	Inputs Planned Effort End Criteria (man-hours)							
D2, D3, D4	D2, D3, D4 100 Accepted by ESA							
Deliverables								
Del. ID	Deliverable	title				Delive	ry Date	
D9c Research to operational plan. Input to the scientific roadmap KO+17 report (D9)					7			

The result of the activities will be contained in a scientific paper that will be submitted to an international journal. It is also foreseen that the outcome of the proposed work will be published in terms of oral or poster presentations at international conferences like EGU AGU Ocean Sciences and AGU Fall Meeting and

ESA living Planet symposias and special sessions. Also the development and maintaining of the project website and preparation of communication material is foresen in this WP:

WP6000	Promotion	WP6100	Journal paper submitted on FWF time series
		WP6200	Website
		WP6300	Presentations
		WP6400	Communication material

WP ID:	6100		Start:	K0+6	End:		KO + 18	
Title	Journal pa	Journal paper submitted on FWF time series WP Lea					DTU, KN	
Contributing F	Contributing Partners: DTU, LEGOS, ENVEO							
Objective: Cor	ndensing the	e summar	y report into a scie	entific paper which	will be sub	omitted	to an	
international	journal and	also be th	e base of presenta	itions at internatio	nal confere	ences.		
Tasks						Respo	nsible	
Journal paper on Arctic FWF						DTU		
Inputs			Planned Effort		End Crite	ria		
			(man-hours)					
Outcome of S	cientific		50		Journal pa	aper sul	omitted	
Recommendations								
Deliverables								
Del. ID Deliverable title Delivery Date						ry Date		
D10	Journal pap	er submitt	ed on FWF time se	eries		KO + 1	.8	

WP ID:	6200		Start: KO+1 E		End:		KO+18
Title	Website	WP Lead				er	DTU, LS
Contributing I	Contributing Partners: DTU						
Objective: De	velop and m	aintain th	e project webpage	es			
Tasks						Respo	nsible
Create the pro	oject Webpa	iges				DTU	
Maintain the project Webpages. DTU							
Inputs			Planned Effort (man-hours)		End Crite	ria	
None		40 Accepted			Accepted	d by ESA	
Deliverables							
Del. ID Deliverable title Delivery Date					ry Date		
D11 Project Webpage published KO + 2) -		

WP ID:	6300		Start: KO + 6 End: KO +				KO + 18
Title	Presentat	ions			WP Leade	er	DTU, OA
Contributing I	Partners:	DTU, EN	VEO, LEGOS				
Objective: To conferences)	present the	project at	t various internatio	onal conferences (E	EGU; Living	Planet,	AGU and other
Tasks						Respo	nsible
Develop a nu	mber of ora	l presenta	tions for presenta	tion at internation	al conf	DTU	
Develop a nu	mber of pos	ter prese	ntations for preser	ntation at internati	onal conf	DTU	
Inputs			Planned Effort		End Crite	ria	
			(man-hours)				
	20 Presentations given						<i>r</i> en
Deliverables							
Del. ID Deliverable title Delivery Date							
D12	D12 Presentations (oral + Poster KO+18					3	

WP ID:	6400		Start:	KO + 6	End:		KO + 18	
Title	Communication material WP Lead				WP Leade	er	DTU, OA	
Contributing	Contributing Partners: DTU, ENVEO, LEGOS							
Objective To	make some	Communi	cation material (i.,	e. brochure/handou	its that can	be used	for various	
purposes and	i.e. handed of	out at inter	rnational meetings.					
Tasks						Respo	nsible	
Develop com	munication	material (l	prochure) for hand	lout		DTU		
Inputs			Planned Effort		End Crite	ria		
			(man-hours)					
			40		Accepted	by ESA		
Deliverables	Deliverables							
Del. ID Deliverable title Delivery Date								
D13 Communication material						KO+18	3	

4.2.1.6 WP7000

This work package concerns project management an all the necessary tasks to conduct proper project management on all levels in the ARCFLUX project and well as preparing the final report and condensing it to the Executive summary.

The prime will issue reports and send them to ESA with the updated progress report and completion schedule of the different work packages in the last month, the list of the issues encountered and proposed corrective solutions,

WP7000	Management	WP7100	Monthly Progress reports
		WP7200	Final report
		WP7300	Executive summary

WP ID:	7100	Start:	КО+0	End:		KO+18
Title	Monthly Progress reports			WP Leader D		DTU, OA
Contributing	Partners: DTU,	ENVEO, LEGOS				
Objective: To	prepare the Month	ly Progress reports				
Tasks					Responsible	
Monthly Progress report					DTU	
Inputs	Planned Effort End Crit				teria	
	(man-hours)					
	54 Accepted				by ESA	
Deliverables						
Del. ID Deliverable title					Delive	ry Date
D14	Monthly Progress Report			Every Month		

WP ID:	7200	Start:	KO+15	End:		KO+18	
Title	Final report WP L				er	DTU, OA	
Contributing F	Partners: DTU	ENVEO, LEGOS					
Objective: To	prepare the Final	report					
Tasks						Responsible	
Prepare the fi	nal report						
Inputs		Planned Effort		End Crite	eria		
	(man-hours)						
All previous de	liverables 100 Accepted				d by ESA		
Deliverables							
Del. ID	ID Deliverable title					ry Date	
D15 Final Report						3	

WP ID:	7300	Start:	KO+15	End:	KO+18
Title	Executive summary	WP Leader	DTU, OA		

Ref: ArcFlux Issue: 2.0 Date: 19/04 2016

Contributing Partners: DTU					
Objective Condensing the final report into a executive summary					
Tasks Responsible					
Condensing the final report into a executive summary DTU DTU					
Inputs		Planned Effort	End Criteria		
		(man-hours)			
All previous	deliverables	50	Accepted	ed by ESA	
Deliverables					
Del. ID	Deliverable title		Delivery Date		
D16	Executive summary			KO+18	

4.3 Estimated Effort Summary

WP	Sub-total [%]
WP1000	15
WP2000	10
WP3000	25
WP4000	15
WP5000	10
WP6000	5
WP7000	10
Travel	10

The table below gives the estimated hours per subworkpackage and workpackage for ArcFlux as well as distribution per Key-Person (please reference acronyms to key persons in section 1.4)

D .	Ш
-	-
-	*

ID	WP									
	WP1000	280	DTU	LEGOS	ENVEO	DTU		LEGOS		ENVEO
D1	WP1000	0				(OA/LS/KN/HS)		(AK/EZ/F	(JC)	(TN/HR/JW/MH/PM)
D1a	WP1100	70	30	20	20	(5/5/10/10)		(5/5/5/5)		(5/5/5/0)
D1b	WP1200	70	20	30	20	(5/5/5/5)		(10/10/5/	5)	(5/5/5/0)
D1c	WP1300	70	30	20	20	(5/10/5/10)		(5/5/5/5)		(5/5/5/0)
D1d	WP1400	70	20	30	20	(5/5/5/5)		(10/10/5/	5)	(5/5/5/0)
	WP2000	200								
D2	WP2100	100	80	10	10	(10/10/30/3	80)	(5/5/0/0)		(5/5/0/0/0)
D3	WP2200	100	14	76	10	(0/4/0/10)		(30/20/10	/16)	(5/5/0/0/0)
	WP3000	670								
D4	WP3100	310	55	55	200	(5/20/20/10))	(20/20/5/	10)	(10/50/40/40/60)
D5	WP3200	360	98	190	72	(10/30/30/2	28)	(50/50/40	/50)	(10/20/10/30/10/2)
	WP4000	296								
D6	WP4100	100	60	20	20	(10/20/20/0))	(5/5/5/5)		(5/5/5/0)
D7	WP4200	96	16	60	20	(0/8/8/0)		(5/5/5/5)		(5/5/5/0)
D8	WP4300	100	60	20	20	(10/10/20/2	20)	(5/5/5/5)		(5/5/5/0)
D9	WP5000	257								
D9a	WP5100	70	30	20	20	(0/10/10/10))	(5/5/5/5)		(5/5/5/0)
D9b	WP5200	70	30	20	20	(0/10/10/10))	(5/5/5/5)		(5/5/5/0)
D9c	WP5300	117	37	20	60	(0/10/17/10))	(5/5/5/5)		(20/10/20/10/0)
	WP6000	150								
D10	WP6100	50	30	10	10	(0/10/10/10))	(5/5/0/0)		(5/5/0/0/0)
D11	WP6200	40	40	0	0	(10/10/10/1	.0)	(5/5/0/0)		
D12	WP6300	20	20	0	0	(5/5/5/5)				
D13	WP6400	40	40	0	0	(10/10/10/1	.0)			
	WP7000	205	0							
D14:	WP7100	54	54	0	0	(10/20/10/1	.4)			
D15:	WP7200	100	80	10	10	(10/30/30/1	.0)	(5/5/0/0)		(5/5/0/0/0)
D16	WP7300	50	50	0	0	(20/10/10/1	.0)			
TOTAL Hours		2057	894	611	552					

5 Financial Proposal

5.1 Total contract cost

The type of price is fixed and this offer is valid for 120 days from the closing date of 13 November 2015. It is expected that most partners will contribute to the proposed investigations through added institutional funds.

Total Cost of Proposal:199981 EUROS

5.2 Price Breakdown

WP	Budget per WP [€]
WP1000	27446
WP2000	19604
WP3000	65676
WP4000	29015
WP5000	23534
WP6000	14704
WP7000	19998
TOTAL price (€)	199981

The following subcontractor will be supplementing the main contractor with high class international knowledge and expertise in various aspects of Arctic Ocean and determination of the horizontal Fresh water fluxes on both land, on the ice cap and within the Arctic Ocean

Name of Organization	Country of origin	Costs (euros)	Effort (hours)	% of costs	% of effort
DTU (prime)	Denmark	95000	877	48	43
LEGOS	France	51981	611	26	30
ENVEO	Austria	53000	552	26	27
Total		199969	2040	100	100

5.3 Travel and Subsidence Plan

Travel cost price is calculated using a rough rate of about 1000 euros. We foresee three face to face meeting within the project

We are very well aware of the fact that the meeting plan is not in-line with the ITT. Kick-off meeting is foreseen as a teleconference, but we are kindly asking ESA to consider this as a face to face meeting at the contractor's facilities. In the past we have very good experience with this particularly as the group has not worked together before and hence its important to meet, to consolidate the project plan and to transfer knowledge.

The Midterm Review and final meeting will be held at ESRIN.

In between these Face to face meeting regular meeting at a 4 month interval will be hosted by Teleconferencing.

Meeting	Place	Date
Kick Off Meeting	DTU	КО
Progress Meeting 1	Telecom	КО+4
Midterm Review Mtg	ESRIN	КО+8
Progress Meeting 2	Telecom	KO+11
Progress Meeting 3	Telecom	KO+15
Final Meeting	ESRIN	KO+18

Summary of travel costs specified in Exhibit B of the PSS forms for each institution.

	Travel	Number of	Number of	
Institute	rate	meetings	persons	Total budget
DTU	1000	2	2+1	3000
LEGOS	1000	2	1+2	3000
ENVEO	1000	3	1	3000

5.4 Payment Plan

D]	U
2	*
-	-

The project plan as shown in the Gant Diagram as well as the list of Deliverables and their dates indicate the major milestones associated with the ArcFLux project

First Progress Meeting (K0+4) Midterm Review key point (K0+8m) Final Meeting (K0+18m)

The project is scheduled such that WP1000 is scheduled to be completed at month 4, WP2000 is scheduled to be completed at month 8 for the Midterm Review key point in the Gant Diagram.

For each company/institute the following milestone payment plan (in %) is proposed:

6 Annex: PSS forms

6.1 DTU

	1010111	0. F 33 AT	Fage II0.	or			185	ue 5	
			COMPANY NAME:	DTU					
RFQ/ITT no.:	EOP-SA/0332/DFP-		-						
PROPOSAL no.:	DTU-2015-1-8377		Name and title:	Kristian Pedersen, D	Directo	or DT	U Sp	ace	
ECONOMIC CONDITIONS:	July 2015		4	0					
NATIONAL CURRENCY (NC):	DKK		Signature: 1	1 al					
VALIDITY PERIOD :	From. 01/2015	To.12/2017	1)2	The Chel	-				
ESA Audit agreement reference / date				and out	~				
						A	greed	by	
					ESA				
						ix whe	Status n appl	icable	1
1. LABOUR					-				
Direct labour cost centres or cafegories		Rosin Hourly Rate	Direct Overboard	Grate Hourly Rala	1				
Code and Name		INC	(% or Rate in NC)	(NCI	I I				
Senior Researcher 2016		881.00	0%	881.00	×				
Researcher 2016		676.00	0%	676.00	x		-	-	
Senior Researcher 2017		894.00	0%	894.00	x		_		
Researcher 2017		686,00	0%	686.00	x		-		
							-		-
							_		-
2. INTERNAL SPECIAL FACILITIES									
Facility Code and Name		Тура	of Unit	UNIT RATE	1				
				(NC)					
						\vdash	-+	_	-
							-		-
							_		
3. OTHER COST ELEMENTS								-	-
Standard ESA type	Accon	ding to normal compa	ny type	OVERHEAD %	1				
3,1 Raw materials									
3.2 Mechanical parts							-		-
2.2 Com Saished and inte						\vdash			-
5,5 Semi-misried products									
3,4 Electric & electronic components									
3,5 Hirel parts									
a) procured by company							-		
b) mon red by 3 rd party							-		_
3.6 External many module							-	_	—
A 2 External major produces							_	_	
3,7 External services									
3,8 Transport, insurance									
3.9 Travels									
3.10 Miscellaneous					\vdash		-	-	
					\vdash	-	-	-	-
GENERAL EXPENSES				A. 24.					
According to ESA type	According to normal	Applicable on a	cost element no	OVERHEAD %					
E. Oscard B. Indexis destructions	company type				L			_	_
 General & Administration experises 									
Research & Development expenses									
7. Other (specify)									
									-

COMPA	NY PRICE BREAKDOW	VN FORM		FornA	lo PSS A2	Page no.	1	of 1	Issue 5
RFQ/	ITT No.:	EOP-SA/033	2/DFP-		COMPANY				
Propo	sal/Tender No :	DTU-2015-1	8377		Name	DTU			
Type	of Price:	FFP	Firm Fixed Price		Country:	Denmark			
Econo	omic Condition:	July 2015			1				
Nation	nal Currency (NC).	Euros			Representative				
Excha	inge Rale (X)	1 DKK =	7,45000	Euros	Name and Title:	Knstan Pedersen, D	irecto	r DTU Space	
Cont	raciual Phase:				Signature		1	200	
Projec	stWork Package(s):	All WPs				MI.	-1	CVU	
					-	Du	k	- Vell	-
							-	TOTAL	TOTAL
								INCI	(EURO)
								Euros	NC/X
	LABOUR								
Direct L	abour cost centres or cei	Negovies	No of FTE	Sold Hours per	Manpower Effort	Gross Hourly Rate			
Code /	Description		(calcivated) U = W / V	ManYear	No of Hours	m NC			
	Senior Researcher 2014	6	0.1	1.526	114	881.00	+	100 434 00	13,481.0
	Researcher 2016		0.1	1.526	213	876,00	-	143.988.00	19.327.2
	Senior Researcher 2017	7	0,2	1.526	245	894,00	-	219.924,00	29.520,0
-	Researcher 2017		0,2	1.526	321	685,00	-	220,206,00	29.557,8
								0,00	0.0
								0.00	0,0
								0.00	0,00
								0.00	0,00
								0,00	0,00
1	Total Direct Labour Hou	irs and Cost	0.6		894,0		A	684 552,00	91,886,17
	INTERNAL SPECIAL	FACILITIES							
Code	Description			Type of ord	No of units	Unit rales			
						NO MIC	-	0.00	0.00
							-	0,00	0,00
-							-	0.00	0.00
							-	0,00	0,00
							-	0.00	0.00
2	Total Internal Sciencel Fr	netes Cost						2.00	0.00
-	Total Internal Opeonal To		Rase amounts		OH amounts		-	0,00	0.00
	OTHER DIRECT CO	ST ELEMENTS	in NC	+ CH %	IN NC				
3,1	Raw materials							0.00	0.00
3.2	Mechanical parts							0,00	D.00
3,3	Semi-finished products							0,00	0,00
3,4	Electrical & electronic co	omponents					<u> </u>	0.00	0,00
3,5	HIREL parts						<u> </u>		
	a) procured by company	,					-	0,00	0,00
2.0	 procured by third part Cuternal Major Durid 	y					-	0.00	0,00
3,6	External Region Products						-	0,00	0,00
3.6	Transport and incurrence						-	0.00	0,00
3.0	Travel and Subsistence		23,200		0		-	23 200 00	3 114 00
3,10	Miscelleneous		10100				-	0.00	0.00
3	Total Other Direct Cost		23 200.00		0.00		с	23 200 00	3 114 00
4	SUB-TOTAL DIRECT	COST				(A+B+C)	D	707 752 00	95 000 27
-	GENERAL EXPENSE	19	Cost dame to what	h % annias	Bese Amount in NC	OMIS	-		00.000,21
5	General & Administration	n Expenses	Social netrito to Write		Sector Principle of 195	M17.30		0.00	0.00
6	Research & Development	ni Expenses					F	0.00	0,00
7	Other						G	0.00	0,00
8	TOTAL COMPANY	COST				D+(E+E+G)	H	707 752 00	95 000 27
-			Cost items to whe	th % accles	Base Amount in NC	4		1011102,00	00.000,21
	PROFIT		www.upura.uz.www.	a altraga	01 000 01	0.00			
	PROFIL				91 665,2	0.0%	1	0,00	0,00
10	COST WITHOUT AD	DITIONAL CHAR	GE				J		0,00
11	FINANCIAL PROVISI	ON FOR ESCAL	ATION				к		0.00
12	TOTAL COMPANY	PRICE				(H+I+.I+K)	1	707 752 00	95 000 27
	TOTAL OUR CONTO	10700 00:05							55.000,21
13	TOTAL SUB-CONTR.	AUTOR PRICE					M		0,00
14	REDUCTION for COM	IPANY CONTRIE	NOITUS				N		0.00
15		RESA				(1 +M-N)		707 752 00	05 000 07
13	I TAL PRICE PC	LOA				(manual)		101.152,00	35.000,27

If insufficient space is available to identify all required information, please use additional sheet or insert lines.

TRAVEL PLAN AND COST	DETAL			EXHIBIT "B" TO PSS-A	22								1 eusel
RFQ/ITT No	P-SA0332/DEP-dip/8377/ARCTIC+F DTIL2016-1-8327	svir						0	Project	GOCE++	Height Sy	rsterns	
Contractual Phase	2360-1-6107-010							5	onceny		DIO		
Economic Condition National Currency (NC)*	July 2015 DKK						â	Type charge (X)	r Price	7,45	FFP	×	
WP Reference Number	WP T80	PurposeiEntert	Departure	Destination	N. of Trps.	Avg People per Trip	Travel Cost p.p. (NC)	B/E Mg	Daysper Trip	Subscience Cost p.d. (NC)	AIR	Total Cost (NC)	Total Cost (EURO)
1000 2000		Kick-off meeting PM1	Copenhagen Copenhagen	Copenhagen FRANCE		14 14	3.000	w w	2	0.1400	× ×	0	1.657
6000		Final meeting	Copenhagen	ESRIN		2	3.000	ш	2	1,400	A	11.600	1 557
												o o o o o o o o o o o o o o o o o o o	
Total Cost, WBS level 1 (equal to the item 3.9 of PSS-A2)											23.200	000

Ref: ArcFlux Issue: 2.0 Date: 19/04 2016

6.2 ENVEO

COMP	ANY PRICE BREAKDOWN	FORM		Form N	o. PSS A2	Page no.		of	lssue 5	
RFC	VITT No.:	ESA/AO/1-83	377/15/I-NB		COMPANY					
Pro	oosal/Tender No.:	STSE ARCT	IC+		Name:	ENVEO IT GmbH				
Тур	e of Price:	FFP	Firm Fixed Price		Country:	AUSTRIA				
Eco	nomic Condition:		10.2015							
Nati	onal Currency (NC):	EURO			Representative					
Exc	hange Rate (X):	1 EURO =	1.00000	EURO	Name and Title:	Thomas Nagler / Ma	naging) Director		
Cor	ntractual Phase:				Signature:	7	1	1		
Proj	ecovvork Package(s):				-	[usmo	, pr	ngt		
					-		1	Y		
							T T	τοται	TOTAL	
								(NC)	(EURO)	
								EURO	NC/X	
	LABOUR									
Direct I	abour cost centres or cate	aories	No. of FTE	Sold Hours per	Manpower Effort	Gross Hourly Rate				
Code	/ Description	-	(calculated)	ManYear	No. of Hours	in NC				
A1	Scientific Manager		U = W / V	V	115	105.11		12 087 65	12 087 65	
A2	Senior Scientist				121	99.63		12 001.00	12 001.00	
A3	Scientist				316	71.48		22 587.68	22 587.68	
								0.00	0.00	
								0.00	0.00	
								0.00	0.00	
								0.00	0.00	
								0.00	0.00	
								0.00	0.00	
L								0.00	0.00	
	T. 10: 11 1		0.0		550.0		<u> </u>	U.UU	10.00	
	Total Direct Labour Hours	and Cost	0.0		552.0		A	46 7 30.56	46 730.56	
<u> </u>	INTERNAL SPECIAL F	ACILITIES			1	Unit rates				
Code	Description			Type of unit	No. of units	in NC				
								0.00	0.00	
								0.00	0.00	
								0.00	0.00	
								0.00	0.00	
							_	0.00	0.00	
2	Total Internal Special Faci	ilities Cost	De se e secondo		011		в	0.00	0.00	
	OTHER DIRECT COST	ELEMENTS	in NC	+ OH %	in NC					
3.1	Raw materials							0.00	0.00	
3.2	Mechanical parts							0.00	0.00	
3.3	Semi-finished products							0.00	0.00	
3.4	Electrical & electronic com	nponents						0.00	0.00	
3.5	HIREL parts									
	 a) procured by company 							0.00	0.00	
	b) procured by third party							0.00	0.00	
3.6	External Major Products							0.00	0.00	
3.7	External Services						<u> </u>	0.00	0.00	
3.8	Travel and Subcistances		2.020	0.0%	0		-	00.0 00.0a0.c	00.00 00.030 C	
3.10	Miscellaneous		3 000	0.070			+	0.000.00 n.nn	0.00	
3	Total Other Direct Cod		3 050 00		0.00			3 05.0 00	0.00	
-	Total Other Direu Cost		3 030.00		0.00			5 050.00	5 050.00	
4	SUB-TOTAL DIRECT (CUST				(A+B+C)		49 780.56	49 780.56	
	GENERAL EXPENSES		Cost items to whi	ch % applies	Base Amount in NC	OH %				
5	General & Administration	Expenses					E	0.00	0.00	
6	Research & Development	Expenses					F	0.00	0.00	
7	Other						G	0.00	0.00	
8	TOTAL COMPANY C	COST				D+(E+F+G)	н	49 780.56	49 780.56	
⊢–́–			Cost items to whi	ch % annlies	Base Amount in NC		<u> </u>			
	PROFIT		48 701	on to apprece	40 700 C	7.00/	<u> </u> .	0.074	0.07/	
۳,	PROFIL		40.101		46 730.6	7.0%	L'	3 2/1.14	3 271.14	
10	COST WITHOUT ADDI	TIONAL CHA	RGE				J		0.00	
11	FINANCIAL PROVISION						к		0.00	
<u> </u>							<u> </u>			
12	TOTAL COMPANY P	RICE				(H+I+J+K)	L	53 051.70	53 051.70	
13	TOTAL SUB-CONTRAC	CTOR PRICE				M		0.00		
14		DANK CONTE					N	C 1 70	C4 70	
⊢"	REDUCTION OF COMP	ARE CONTR	GDOTION				1 14	01.70	51.70	
15	TOTAL PRICE FOR	RESA				(L+M-N)	1	53 000.00	53 000.00	
I							1		20 000100	

COMPANY NAME: ENVEO IT GmbH PROPTO: ESAAC01-8377150-NB Tomas Nagler / Managing Director PROPOSAL no: STSE ARCTIC- Tomas Nagler / Managing Director COMUNIC CONDITIONS: 10 2015 Signature: Tomas Nagler / Managing Director ANTIONAL CURRENCY IND: EURO Signature: Mane and title: Tomas Nagler / Managing Director ESA. Audit agreement reference / date From. 10/2015 To 08/2017 Signature: Mane and title: Important in the stature in the	COMPA	NY RATES AND OVERHEADS	FORM No	o. PSS A1	Page no.			ssue (5	
RF00TIN ESAADA(H-87715h-NB PROPOSAL 10.2015 Mame and Itile Thomas Nagler/Managing Director CONDUC CONDITIONS: 10.2015 MATIONAL_CURRENCY (NC): EURO Standard: agreement reference / date From .10/2015 To.08/2017 Standard: agreement reference / date From .10/2015 To.08/2017 I. LABOUR From .10/2015 To.08/2017 T. LABOUR Scientific Manager From .10/2015 To.08/2017 Scientific Manager From .10/2015 To.08/2017 From .10/2015 To.08/2017 Scientific Manager From .10/2015 To.08/2017 From .10/2015 To.08/2017 Scientific Manager From .10/2015 To.08/2017 From .10/2015 From .10/2015 Scientist 68.71 32.62 105.11 I I I Scientist 68.71 30.0 22.18 71.48 I I I I I I I I I I I I I I I I </td <td></td> <td></td> <td></td> <td></td> <td>COMPANY NAME:</td> <td>ENVEO IT GmbH</td> <td></td> <td></td> <td></td> <td></td>					COMPANY NAME:	ENVEO IT GmbH				
PROPOSAL no: STSE ARCITIC+ Name and tile: Thomas Nagler / Managing Director CONMUNE COUNTIONS: 10.2015 Signalure: Marce and tile:	RFQ/ITT r	าง.:	ESA/AO/1-8377/15/I-	-NB						
ECONOMIC CONDITIONS: 10.2015 Signature: Mathematical agreement reference / date VALIDITY PERIOD: From. 10/2015 To 0/8/2017 Signature: Auge 2017 Signature: Signature: Signature: Signature: Signature: I LABCUR I LABCUR Signature: Signature: Signature: Signature: Exclored servers analogone Date of Note Note Note Note Note Note Note Note	PROPOS	AL no.:	STSE ARCTIC+		Name and title:	Thomas Nagler / Man	aging l	Directo	or	
NATIONAL CURRENCY (NG): EURO Signature:	ECONOM	IIC CONDITIONS:	10.2015							
VALUEY PERIO: From. 10/2015 To 08/2017 Muthat agreement reference / date Audit agreement reference / date Augent to the second	NATIONA	L CURRENCY (NC):	EURO		Signature: 🧹	γ (
ESA Audit agreement reference / date	VALIDITY	PERIOD :	From. 10/2015	To.06/2017		Inomos l	neg/	6-		
I Agent by the second of the second	ESA Au	dit agreement reference / date						-		
LIBOUT Direct Diversion on departing Bala Houry Data (not observe or onlogense) Direct Diversion on Diversion Diversion on Diversion Diversion on Diversion on Divers								Agree	d by	_
I.LBOUR State <										
Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solution: Solute: So										
Labour Busic Houry fails Direct Jornets Direct Jornet Jornet Jornet Jornets Direct Jornets								Sta	us	
I. LABOR Dired Dour context or calegories Basic Houry Rate Dired Dour Context in M2 Orest Houry Rate Dired Dour context in M2 Scientific Manager 72.49 32.62 105.11 Image: Context in M2 100 Image: Context in M2 100 100 Scientific Manager 68.71 30.92 39.63 Image: Context in M2 I							(× 1	when ap	plicabl	e)
Direct abuse road overhear or adaptive is and itematical constrained or adverhear of the iso of th	1. LABOU	R								
Code and Name (No.) (No.) (No.) (No.) Seniorf Scientist 68.71 30.92 99.63 Image: Control Scientist Scientist 68.71 30.92 99.63 Image: Control Scientist	Direct labour	r cost centres or categories		Basic Hourly Rate	Direct Overhead	Gross Hourly Rate				
Scientist 72.43 32.62 20.63 1 Scientist 68.71 30.92 99.63 1 Scientist 49.30 22.18 71.48 1 Scientist 49.30 22.18 71.48 1 Scientist 19.30 22.18 71.48 1 Scientist 19.30 22.18 71.48 1 Scientist 19.30 10.11 1 1 Scientist 19.30 10.11 1 1 Scientist 10.11 1 1 1 Scientist 10.11 10.11 1 Scientist 10.11	Code and Na	ame Scientific Managor		(NC) 72.40	(% or Rate in NC)	(NC) 105-11			1	Т
Serientist 03.71 30.32 93.03 1 1 Scientist 49.30 22.18 71.48 1 1 1 Image: Scientist 1 1 1 1 1 1 1 Image: Scientist 1 1 1 1 1 1 1 Image: Scientist 1 1 1 1 1 1 1 Image: Scientist 1 1 1 1 1 1 1 Image: Scientist 1 1 1 1 1 1 1 Image: Scientist 1 1 1 1 1 1 1 Image: Scientist Scientist 1 1 1 1 1 1 Image: Scientist S		Sopier Scientist		72.49 69.71	20.02	00.62		_	-	-
Submitsion 49.30 22.10 71.46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 3 1 <t< td=""><td></td><td>Seinor Sciencisc</td><td></td><td>40.20</td><td>30.52</td><td>55.05</td><td></td><td></td><td>_</td><td>+</td></t<>		Seinor Sciencisc		40.20	30.52	55.05			_	+
Image: Second products Image: Second		Sciencisc		49.50	22.10	/1.40		+	-	+
Image: Second parts According to normal company type OVERHEAD % Image: Second parts Second parts According to normal company type OVERHEAD % Image: Second parts Second parts According to normal company type OVERHEAD % Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts Image: Second parts Image: Second parts Second parts Image: Second parts	———							+	+	+
Image: Section of the section of t								+	+	+
Image: Second								+	+	+
Image: Section of the section of t								+	_	+
Image: Second								_	-	+
Image: Second										+
Answer Answer Type of Unit UNIT RATE South and Name Type of Unit UNIT RATE Image: South and South								_	-	-
Image: Second products Type of Unit UNIT RATE (NC) Image: Second products I								_	-	-
Security Code and Name Type of Unit UNIT RATE (NC) Image: Normal company type Image: Normal company type <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>+</td>								_		+
Type of Unit UNIT RATE (NC) Facility Code and Name Type of Unit UNIT RATE (NC) Image: Constraint of the constraint	2 INTERN	I VAL SPECIAL FACILITIES								_
NO NO Image: No intermed and products Im	Facility Code	and Name		Type	of Unit	UNIT RATE				
Image: Control of the second secon	,	-				(NC)			_	_
Image: Constraint of the second of the se										
Image: Constraint of the second of the se										
Image: Construct on the second of the sec										
According to normal company type OVERHEAD % Standard ESA type OVERHEAD % 3.1 Raw materials Image: Company type OVERHEAD % 3.2 Mechanical parts Image: Company type Image: Company type Image: Company type 3.3 Semi-finished products Image: Company type Image: Company type Image: Company type Image: Company type 3.4 Electric & electronic components Image: Company type Image: Company type Image: Company type Image: Company type 3.5 Hirel parts Image: Company type 3.6 External major products Image: Company type 3.6 External major products Image: Company type 3.6 External services Image: Company type 3.7 External services Image: Company type Image: Company type Image: Company type Image: Company type 3.10 Miscellaneous Image: Company type										
S. OTHER COST ELEMENTS According to normal company type OVERHEAD % 31 Raw materials Image: Cost and a parts Imag										
Standard ESA type OVERHEAD % 3.1 Raw materials Image: Solution of the system of the syst	3. OTHER	COST ELEMENTS		•						
3.1 Raw materials Image: Constraint of the sector of	Standard I	ESA type	Accor	ding to normal compa	ny type	OVERHEAD %				
3.2 Mechanical parts Image: Control of the control	3.1	Raw materials								Τ
3.3 Semi-finished products I </td <td>3.2</td> <td>Mechanical parts</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	3.2	Mechanical parts								
3.4 Electric & electronic components I	3.3	Semi-finished products								
35 Hirel parts Image: Construction of the product	3.4	Electric & electronic components								
a) procured by company indicating in the image of	3.5	Hirel parts								
b) procured by 3'd party Image: Company and the service of the se		a) procured by company								
3.6 External major products I<		b) procured by 3 rd party								
3.7 External services Image: Ima	3.6	External major products								
3.8 Transport, insurance Image: Constraint of the symbol of the sym	3.7	External services								
3.9 Travels Image: Constraint of the symbol of the sy	3.8	Transport, insurance								
3.10 Miscellaneous Image: Company type Image:	3.9	Travels								
GENERAL EXPENSES According to normal company type Applicable on cost element no. OVERHEAD % Image: Company type 5. General & Administration expenses 6. Research & Development expenses Image: Company type Image: Company type <td< td=""><td>3.10</td><td>Miscellaneous</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	3.10	Miscellaneous								
GENERAL EXPENSES According to ESA type According to normal company type Applicable on cost element no. OVERHEAD % 5. General & Administration expenses 6. Research & Development expenses Image: Company type Image: Company type										
According to ESA type According to normal company type Applicable on cost element no. OVERHEAD % 5. General & Administration expenses 6. Research & Development expenses	GENERAL	EXPENSES								
company type	According to	ESA type	According to normal	Applicable on	cost element no.	OVERHEAD %				
b. General & Administration expenses Image: Comparison of the system o			company type							
o, Hessarch & Development expenses	5. General &	Administration expenses						+	_	+
(/ Mines / en e e h d	o. Research	& Development expenses						+	_	+
/ Uner (specify	7. Other (spe	еспуј						+	_	+
	—									

COMPANY PRI	CE BREAKDOWN FORM	EXHIBI	T "A" TO PSS A2 Page No	a.	No. of Pages	Issue
RFQ/ITT No.:	ESA/AO/1-8377/15/I-NB		COMPANY NAME:	ENVEO IT GmbH		
Proposal/Tender	No.: STSE ARCTIC+		Name and Title:	Thomas Nagler / Ma	anaging Directo	r
National Currence	zy: EURO			-		
Contractual Phase	se	0	Signature	1		
Applicable Project / W	to PSS-A2 elements: 3.1-3.4 - 3.6 - 3.7 - 3.10 - 10 ork Packages		14	when hay	5	
Cost El. No.	ITEM DESCRIPTION	Type of Price	Purchase Currency	Purchase Amount	Exchange rate 1 NC =	Amount in NC
3.9	Travel and Subsistence		EURO			3 050.0
		-				
L						
L						
L						
		+				
—		+			l	
		+				
		+				
		+				
L		+				
L		+				
L		+				
<u> </u>		+				
	1		1	1		

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

TRAVEL PLAN AND COST D	DETAIL			EXHIBIT "B" TO PSS-A2									Issue '
REQ/ITT No.:	ESA/AO/1-8377/15/I-NB								Project				
Proposal/Tender No.:	STSE ARCTIC+								Company:	ENVI	EO IT	GmbH	
Contractual Phase	0												
Economic Condition:	01.10.2015							T	ype of Price:		FFP		
National Currency (NC)*:	EURO						Exc	:hange	(X): 1 EURO =	1		EURO	
	•												
WP Reference Number	WP Title	Purpose/Event	Departure	Destination	Nr. of Trips	Avg.People per Trip	Travel Cost p.p. (NC)	B/E	AvgDays per Trip	Subsistence Cost p.d. (NC)	A/R	Total Cost (NC)	Total Cost (EURO)
WP1000	Scientific Requirement Consol	KO Meeting	Innshruck AT	Conenhagen	1	1	700	F	15	150		925	925
WP3000	Scientific Roadman	PM2	Innsbruck AT	Toulouse	1	1	900	E	2.0	150	-	1 200	1 200
WP6000	Einal Presentation	Final Meeting	Innsbruck AT	ESRIN	1	1	700	F	1.5	150		925	92
								-				0	
											-	0	
												0	
		1			1			1	1		-	n 0	
		1			1			1	1		-		
					1			1	1		-	1 0	
					1			1	1		-		
					I			+	+		-		
											<u> </u>		
											-	0	
											<u> </u>	0	
											-	0	
											<u> </u>	0	
								-			-	0	
											-	0	
								_			-	U	
												0	
												0	
												0	
												0	
												0	
												0	
												0	(
												0	(
												0	(
												0	(
												0	
												0	(
												0	
												0	
												0	
												0	
												0	
												0	
												0	
												0	
												0	
					1	1		1	1	1		0	
					1				1			0	
					1				1			0	
		1			1			1	1		-	n 1	
Total Cost MIRS level 1 (4	equal to the item 3.9 of PSS-421				1			1			-	3 050	3 050
Total obst, WBS level 1 je	cquar to the next 3.5 of F 33442										1	3 0 3 0	3 0 3 0

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

COMPANY MANPOWER AN	D PRICE SI	JMMARY PER WP					F	ormino. PSS A8				Page 1 of 1	Issue
ITT/RFQ: Proposal/Tender No.: Company Name: Contractual Phase: WBS-Level (Number and *	Title):	ESAIA.OH-8377/15/ STSE ARCTIG+ ENVEO IT GmbH 0	I-NB						Econo National Exchange	Price Type: mic Conditions: Currency (NC): Rate: 1 EUR =	Firm Fixed Price 10.2015 EURO 1		
WP Title WP Number		WP1000	WP2000	WP3000	WP4000	WP5000	WP5000	WP7000					Total WBS-Lev
Labour Hours per category Scientific Manager Senior Scientist Scientist	* *	20 25 30	10 10 40	20 20 130	14 15 100	35 35 0	16 16 16						1
 Total Labour Hours	*	75	60	170	129	70	48	0					5
1. Total Labour Cost	NC	6 737.35	4.906.60	13 387 20	10 113.99	7 165.90	4 4 19.52	0.00					46 730.
2. Internal Special Facilities Cost	NC												
3.1-3.4 Material Costs 3.5 High Rel Parts Costs 3.6 External Major Products Cost	NC NC NC												
3.7 External Services Cost 3.8 Transport/Insurance Cost 3.9 Travel and Subsistence Cost	NC NC NC	325.00		1 200.00			325.00						3 060.
3. Total Other Costs (sum of above 3.x)	NC	325.00	0.00	1 200.00	0.00	0.00	925.00	0.00					3 050.
4. Sub-Total Direct Cost	NC	7 062.35	4 906.60	14 587.20	10 113.99	7 165.90	5344.52	0.00					49 780.
5 7. General expenses	NC												
8. Sub-Total Company Cost	NC	7 862.35	4 906.60	14 587 20	10 113.99	7 165.90	5 344.52	0.00					49 780.
9. Profit Fee 10. Cost without additional charge 11. Financial Provision for	NC NC	4/1.61	343.46	337.10	707.98	501.61	308.37	0.00					32/1.
escalation													
12. Total Company Price	EURO	8 133.96	5250.06	15.524.30	10 821.9/	/ 66/.51	5 663.39	0,00					53.061.
13. Total Sub-Contractors Price	NC EURD	8 133.96	5 250.06	15 524.30	10 821.97	7 667.51	5 653.89	0.00					53 061.
14. Reduction for Company contribution	NC	51.70											51.
15. Total Price for ESA	NC EURO	8 082.26	5 250.06 5 250.06	15 524.30 15 524.30	10 821.97 10 821.97	7 667.51 7 667.51	5 653.89 5 653.89	0.00					53 000. 53 000.

LEGOS

COMPA	NY RATES AND OVERHEADS	FORM N	o. PSS A1	Page no.	of		Issu	ue 5
				COMPANY NAME:	CNRS - DELEG	ATION	REGIC	NALE
FQ/ITT r	io.'	EOP-SA/0332/DEP-		_	MIDI-PYRENEE	S on be	halt of	
ROPOS	AL no.:	DTU-2015-1-8377		Name and title:	Christophe GIRAUL	, CNRS r	egional	0.0
CONOM	IC CONDITIONS:	oct-15				1	le la	REC
	L CURRENCY (NC):	EUR Erom 01/2015	To 12/2016	Signature:		12	A	M
SA Au	dit agreement reference / date	11011.01/2013	1 W ditte ver ver ver elegu	Régional Empêch	é –	151		ATX Mara
	- -		Jean-Pa	ul SWERTS	\bigcirc		Agreed to	
						E	Status	
. LABOU	R					1.60	iner appli	cauloj
irect labour	cost centres or categories		Basic Hourly Rate	Direct Overhead	Gross Hourly Rate	1 `	~	
ode and Na	ame		(NC)	(% or Rate in NC)	(NC)			
	Assistant Professor		38,48	80	69,27	X		
	Senior Scientist		54,06	80	97,31	X		
	Scientist		40,21	80	72,38	X		
	Scientist		38,35	80	69,02	X		
								_
								_
						++		
			1					
INTERN	IAL SPECIAL FACILITIES						1	
acility Code	e and Name		Туре	e of Unit	UNIT RATE			
					(NC)		- <u>-</u>	
						+	+	
. OTHER	COST ELEMENTS				I		_	
Standard	ESA type	Accor	rding to normal compa	any type	OVERHEAD %			
,1	Raw materials							
,2	Mechanical parts							
,3	Semi-finished products							
,4	Electric & electronic components					+		
,0	nirei parts					++-	+	
	a) produced by company						+	
6	b) procured by 5° party External major products						+-+	_
.7	External services							
.8	Transport, insurance					++-	+	
5 C	Travels	3620 euros						
.9	Miscellaneous	5020 Curos						
3,9 10								
3,9 1,10					1			
3,9 3,10 GENFRAI	EXPENSES					_		
3,9 3,10 GENERAI	EXPENSES	According to normal	Applicable on	cost element no.	OVERHEAD %			
3,9 3,10 GENERAI According to	EXPENSES ESA type	According to normal company type	Applicable on	cost element no.	OVERHEAD %			
3,9 3,10 SENERAI According to	EXPENSES .ESA type : Administration expenses	According to normal company type	Applicable on	cost element no.	OVERHEAD %			
I,9 B,10 GENERAL Iccording to General 8 Research	EXPENSES ESA type Administration expenses & Development expenses	According to normal company type	Applicable on	cost element no.	OVERHEAD %			

DMPANY PRICE BREAKDOWN FC RF0/ITT No.: EC Proposal/Tender No.: D Type of Price: D Economic Condition: D National Currency (NC): Exchange Rate (X): 1 Contractual Phase: Project/Work Package(s):	DRM DP-SA/0332 TU-2015-1- FFP Oct 2015 EUR EUR 1 EURO =	2/DFP-dfp/8377/ARCTIC+ 8377 Firm Fixed Price	Form I FWF	Vo. PSS A2	Page no.	0	F	Issue 5		
DMPANY PRICE BREAKDOWN FC RFQ/ITT No.: EC Proposal/Tender No.: D1 Type of Price: Economic Condition: Reconsmic Condition: National Currency (NC): Exchange Rate (X): 1 Contractual Phase: Project/Work Package(s): Image: Image: Image: Image: <trtr> Image: Image:</trtr>	ORM OP-SA/0332 TU-2015-1- FFP Oct 2015 EUR 1 EURO =	2/DFP-dfp/8377/ARCTIC+ 8377 Firm Fixed Price	Form I FWF	No. PSS A2	Page no.	0	1	Issue 5		
RFQ/ITT No.: EC Proposal/Tender No.: D' Type of Price: Economic Condition: National Currency (NC): Exchange Rate (X): 1 Contractual Phase: Project/Work Package(s):	DP-SA/0332 TU-2015-1- FFP Oct 2015 EUR 1 EURO =	2/DFP-dfp/8377/ARCTIC+ 8377 Firm Fixed Price	FWF	COMPANY			and the second sec			
Proposal/Tender No.: D Type of Price: Economic Condition: Economic Condition: Economic Condition: Exchange Rate (X): 1 Contractual Phase: Project/Work Package(s): Exchange Rate (X): 1 Exchange Rate (X): 1 Contractual Phase: Project/Work Package(s): Exchange Rate (X): 1 Exchange Rate (X): 1 Exchang	TU-2015-1- FFP Oct 2015 EUR 1 EURO =	8377 Firm Fixed Price								
Ingle of Price. Ingle of Price. National Currency (NC): Exchange Rate (X): Contractual Phase: Project/Work Package(s): ILABOUR rect Labour cost centres or categoriate // Description	Oct 2015 EUR 1 EURO =	Finit Fixed Fille		Name:	CNRS - DELEGATIC	N REG	IONALE MIDI-PYRENE	ES on behalf of LEGOS		
National Currency (NC): Exchange Rate (X): Contractual Phase: Project/Work Package(s): LABOUR rect Labour cost centres or categorit de / Description	EUR 1 EURO =			Country.	France					
Exchange Rate (X): Contractual Phase: Project/Work Package(s): LABOUR ect Labour cost centres or categorit de / Description	1 EURO =			Representative			0	Je to REC		
Contractual Phase: Project/Work Package(s): LABOUR rect Labour cost centres or categorit de / Description		1,00000	EUR	Name and Title:	Christophe GIRAUD,	CNRS	regional representative	AL A B		
LABOUR rect Labour cost centres or categoriude / Description				Pour le Délégater	égional Empêci	1 JAK				
LABOUR rect Labour cost centres or categori ide / Description						ŀ	V-TEI			
LABOUR rect Labour cost centres or categoriu ide / Description						1) V			
LABOUR rect Labour cost centres or categorie ide / Description				Jean-Paul	SWERTS	T	(NC)	TOTAL		
LABOUR rect Labour cost centres or categorie ide / Description		2			-		EUR	MC/X		
rect Labour cost centres or categori 1de / Description		No of ETE	Sold Hours per	Manpower Effort				No the second se		
Sug , Booshphon	ies	(calculated)	ManYear	No. of Hours	Gross Hourly Rate			× 7 31		
Assistant Drofessor		U = W/V	V 1.607	W 100	60.07	~	0.000.50	0.000.50		
Senior Scientist		0.0	1 607	32	97.31		3 113 86	3 113 86		
Scientist		0,0	1 607	32	72,38		2 316,10	2 316,10		
Scientist		0,3	1 607	447	69,02		30 853,19	30 853,19		
							0,00	0,00		
							0,00	0,00		
							0,00	0,00		
							0,00	0,00		
							0,00	0,00		
	10.1						0,00	0,00		
1 Total Direct Labour Hours and	Id Cost	0,4		611,0		A	43 209,71	43 209,71		
INTERNAL SPECIAL FAC	ALTHES				Unit rates					
Jode Description			Type of unit	No. of units	in NC					
							0,00	0,00		
							0,00	0,00		
							0,00	0,00		
						_	0,00	0,00		
2 Total Internal Special Facilitie	es Cost			3		в	0,00	0,00		
OTHER DIRECT COST EI	LEMENTS	Base amounts in NC	+ OH %	OH amounts in NC						
3,1 Raw materials							0,00	0,00		
3,2 Mechanical parts							0,00	0,00		
3,3 Semi-finished products 3.4 Electrical & electronic compo	nents						0,00	0,00		
3,5 HIREL parts							0,00	0,00		
a) procured by company							0,00	0,00		
b) procured by third party							0,00	0,00		
3,6 External Major Products							0,00	0,00		
3.8 Transport and Insurances							0,00	0,00		
3,9 Travel and Subsistence		3 620		0			3 620,00	3 620,00		
3,10 Miscellaneous							0,00	0,00		
3 Total Other Direct Cost		3 620,00		0,00		С	3 620,00	3 620,00		
4 SUB-TOTAL DIRECT CO	ST		1.00	2 4 10	(A+B+C)	D	46 829,71	46 829,71		
5 General & Administration Ex	nenses	Cost items to white	on % applies	Base Amount in NC 46.830	0H %	F	5 151 27	5 151 27		
6 Research & Development Ex	penses					F	0,00	0,00		
7 Other						G	0,00	0,00		
8 TOTAL COMPANY COS	ST				D+(E+F+G)	н	51 980,98	51 980,98		
	Cost items to			Base Amount in NC	%					
9 PROFIT				0,0	0,0%	1	0,00	0,00		
10 COST WITHOUT ADDITIO	ONAL CHA	RGE				J		0,00		
11 FINANCIAL PROVISION F	FOR ESCA	ALATION				ĸ		0,00		
12 TOTAL COMPANY PRI	ICE				(H+l+J+K)	L	51 980,98	51 980,98		
13 TOTAL SUB-CONTRACT	OR PRICE					M	an a	0,00		
14 REDUCTION for COMPAN	NY CONTR	RIBUTION				N		0.00		

If insufficient space is available to identify all required information, please use additional sheet or insert lines

					1.	RECHA			
OMPANY PRIC	E BREAKDOWN FORM	EXHIBIT	"A" TO PSS A2	ean-Paul SWERT	S / 20	Tesue			
1,444			Page No.		No. of Pages				
FQ/ITT No.:			COMPANY NAME:		15/1	a see la			
oposal/Tender	No.:		Name and Title:	1	75/	THERE			
ational Currenc	у:			R	antine arti	a.B.S.S.S.S.S.S.			
ontractual Phas	ie		Signature		151.50	IN SAME AND			
pplicable 1 roject / Wo	o PSS-A2 elements: 3.1-3.4 - 3.6 - 3.7 - 3.10 - 10 ork Packages				42 1- 1- 13				
ist El. No.	ITEM DESCRIPTION	Type of Price	Purchase Currency	Purchase Amount	Exchange rate	Amount in NC			
					~	Common /			
					14				
				2-					
	4								
			A		1				
					/				
					/				
					/				
					/				
				. /					
					-				
				/					
			/	1					
	1								
			/						
		1	1						
		- /							
	-								
		1							
		1/							
		/	1						
		1							
	/								
		1	1						
			1						
		1				-			
	/								
						3			
		1							
		1	1	1					

.

Ref: ArcFlux Issue: 2.0 Date: 19/04 2016

Issue 1					Total Cost	(EURO)	950		3 620
		77/ARCTIC+FWF		UR	Total Cost	(NC)	950		3 620
		EOP-SA/0332/DFP-dfp/83 CNRS	u.	ч т т	Subeistance Cost 0.10	p.d. (NC)	225 A	230 00 230 00	
IISWERIS		Project: Company:		Type of Price: Exchange (X): 1 EURO =	Trevel Cost B / E Aun Dave nar	p.p. (NC) B/E Avg.Uays per Trip	500 E 2	865 0 05 m m m m m	
Jean-Pau		() /		Total Asia Davido nar	rips Avg.People per Trip	- c	N = N	
EXHIBIT "B" TO PSS APT	12 Martine State	All and a	100/	to a cen	Destination Nie af	Destination Nr. of	Copenhagen		
NO	11	14/1	X	2		Departure	Toulouse	Toulouse Toulouse Toulouse	
		C+FWF				Purpose/Event	Kick-off meeting	Find Trind receing	
ETAIL		EOP-SA/0332/DFP-dfp/8377/ARCTI DTIL2015-1-8377	100-1-0104-010	Oct 2015 EUR	tans was	WP Title			aual to the item 3.9 of PSS-A2
/EL PLAN AND COST DE		FQ/ITT No.: E	ontractual Phase	conomic Condition: ational Currency (NC)*:		WP Reference Number	0		I Cost, WBS level 1 (e

 Ref:
 ArcFlux

 Issue:
 2.0

 Date:
 19/04 2016

COMPANY MANPOWER AND PRI	CE SUI	MMARY PER V	VP			F	orm no. PSS A	18				Page×ofY	Issue 5
ITT/RFQ: Proposal/Tender No.: Company Name: Contractual Phase: WBS-Level (Number and Title):		EOP-SA0332/DI DTU-2015-1-89 CNRS All WPs	FP- 77						Eco Nation Exchang	Price Type: nomic Conditions: al Currency (NC): ge Rate: 1 EUR =	FFP July 2015 Euros		
WP Title WP Number		1000	2000	3000	4000	5000	6000	7000					Total WBS-Level
Labour Hours per category	Hours	100	86	245	100	60	10	10					611
Assistant Professor	#												100
Senior Scientist	#												32
Scientist	#												32
Scientist	#												447
	#												
	#												
Total Labour Hours	*												611
1. Total Labour Cost	NC												
2. Internal Special Facilities Cost	NC												
2.1.2.4 Millarial Contra	NC												1
2.5 Liab Bol Bode Costs	NC	<u> </u>		<u> </u>									
2.6 External Major Products Cost	NC												
37 External Services Cost	NG												
38 Transport/Insurance Cost	NG												
3.9 Travel and Subsistence Cost	NG			<u> </u>									
3 10 Miscellaneous Cost	NG												
3 Total Other Costs (sum of above 3 x)	NC												
A Cub Tabel David Card	NC		I	1						L			1
4. Sub-rotal Lifect Cost	NO												
57. General expenses	NC												
8. Sub-Total Company Cost	NC												
9 Profit Fee	NG		1	1									1
10. Cost without additional charge	NC												
11. Financial Provision for escalation	NG												
12. Total Company Price	NC												
	EUR0												
									-				
 Total Sub-Contractors Price 	NC												
	EUR0												
14. Reduction for Company contribution	NC												
15. Total Price for ESA	NC		1	1					1				1
	EURO	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	51.980,98

If more than 12 WPs are to be reported, then duplicate the form as necessary, do not add columns. If Labour Categories require more lines, please add as necessary.