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Abstract
There is increasing interest in getting bathymetry information, particularly for study-
ing climate changes, assessing the marine environment, nautical navigation, and
fishing, among others. The possibilities of determining bathymetry using machine
learning are explored in this project.

An unsupervised density-based clustering model, called DBSCAN, has been applied
to ICESat-2 data in the Heron reef area, part of the Great Barrier Reef. The model’s
performance has been compared with an empirical model based on a statistical
interpolation approach. The performances of the two models are evaluated using a
high-accuracy satellite-derived model from EOMAP.

Results show that both models perform well in determining bathymetry from ICESat-
2 data. The DBSCAN model has challenges as it includes noise around the sea sur-
face and leaves out bathymetry with low point density resulting in a slightly higher
RMSE value than the empirical model. However, the empirical model results show
a bias of 21 cm when compared with the EOMAP heights.

Based on the results from the DBSCAN model and the comparative study with the
empirical model, it is evaluated that machine learning has great potential as a tool
for determining bathymetry.

For future work, suggestions for improving the DBSCAN model are given. Further-
more, recommendations for other possible machine learning models are provided.
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ATLAS Advanced Topographic Laser Altimeter System.

DBSCAN Density-based spatial clustering of applications with noise.

EOMAP EOMAP GmbH & Co KG.

GNSS Global Navigation Satellite System.

ICESat-2 Ice, Cloud, and Land Elevation Satellite-2.

KDE Kernel Density Estimation.

kNN k Nearest Neighbor.

LiDAR Light Detection and Ranging.

LO Local Oscillator.

LSTM Long Short Term Memory.

MSL Mean Sea Level.

NASA National Aeronautics and Space Administration.

NSIDC National Snow and Ice Data Center.

RMS Root Mean Square.

RMSE Root Mean Squared Error.

SDB Satellite Derived Bathymetry.

SDG Sustainable Development Goal.

SNR Signal-to-Noise Ratio.

SVR Support Vector Regression.
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Chapter 1

Introduction

1.1 Motivation
Bathymetry information is one of the essential parameters which plays a signifi-
cant role in planning near-shore structure activities such as engineering work, port
management, fishing, and aquaculture, among others [1].

The topic is related to the Sustainable Development Goals (SDGs) 13 on climate
action and 14 on life below water. Bathymetry can be used for climate change
monitoring by studying sea level anomalies and disaster management, e.g., beach
erosion and tsunamis. Furthermore, bathymetry can be used to monitor marine
and coastal resources and aquaculture. Concerning SDG 14, life below water, an
initiative called Seabed 2030 has been made to produce a complete, high-resolution
bathymetric map of the world’s seabed from the coasts to the deepest trenches by
the year 2030 [2].

Bathymetry is traditionally determined locally by acoustic echo soundings or air-
borne LiDAR. Satellite data can be used instead to create bathymetric maps of a
larger scale and reduce cost. Satellite Derived Bathymetry (SDB) is a technique that
allows for global coverage, and is a cheap alternative to the local measurements, as
the data can be accessed for free, e.g., via. from the European Space Agency or
NASA. However, using satellite data comes with the challenge of obtaining high
accuracy like the data acquired from techniques closer to the ground.

Several kinds of satellite data can be used to determine bathymetry; LiDAR data
from ICESat-2 data is used in this project. The use of machine learning to deter-
mine bathymetry is a rising topic as machine learning is generally good for pattern
recognition and prediction. However, machine learning often requires an extensive
amount of data and computational power. In this report, a machine learning algo-
rithm called DBSCAN is used, which has been specifically designed for large spatial
datasets [3].

2 Satellite Derived Bathymetry from ICESat-2 using Machine Learning



1.2 Aims and Objectives
The project’s original objectives were to determine bathymetry in a particular area,
compare the performance of two different machine learning models, and evaluate
machine learning as a tool to acquire bathymetry by comparing it with an empirical
model. However, the scope of the objectives turned out to be over-ambitious.

Instead, the objectives were slightly modified to the following,

• Determine bathymetry in a particular area.

• Create a machine learning model that can determine bathymetry

• Compare the machine learning model with an empirical model and evaluate
machine learning as a tool for determining bathymetry.

As it appears from the new objectives, it was decided to focus on making a single
machine learning model and perfect it rather than making two and comparing them.

The first objective is to determine bathymetry in a particular area. The bathymetry
is determined using machine learning and an empirical model using an existing script,
which Heidi Ranndal has provided. Initially, an area in the Bahamas was chosen for
this project after conversing with DHI GRAS. However, it was decided to change
the study area due to unavailable in situ data in the Bahamas area. The area was
changed to the Heron reef, which is part of the great barrier reef in Australia due to
its clear waters and the existence of a high accuracy Satellite Derived Bathymetry
(SDB) map from EOMAP.

The second objective involves creating a machine learning model to determine bathymetry
from ICESat-2 data. Originally, a model called Long Short Term Memory (LSTM)
was chosen. However, due to unavailable in situ data in the area and a limited
number of datasets, it was decided to change the model to the Density-based spatial
clustering of applications with noise (DBSCAN) model. The DBSCAN model is an
unsupervised model designed for large spatial datasets, where there is no need for
pre-labeled ground truth data.

Finally, the third objective will conduct a comparative study between the machine
learning and statistical interpolation models. It will be evaluated using the high
accuracy SDB data from EOMAP to evaluate whether machine learning is optimal
for determining bathymetry.

1.3 Structure of the Report
The report has a classical structure, in Chp. 2 relevant knowledge concerning
bathymetry and refraction correction, LiDAR, which is the instrument used to col-
lect the data from ICESat-2 is explained. Furthermore, there is a section explaining
machine learning and, more generally, the DBSCAN algorithm, including how it
works and determining parameters for the algorithm.

The data and the area of interest is presented in Chp. 3, along with details about
the ICESat-2 mission, the ATLAS instrument, the particular dataset from ICESat-2
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that is used, and the SDB EOMAP dataset.

In Chp. 4, the general data processing workflow is presented. The chapter includes
the specific preprocessing steps used for both the ICESat-2 data and the EOMAP
data to ensure an equivalent base for the comparison. Furthermore, the steps in ap-
plying the DBSCAN algorithm are explained in detail, and the reflections necessary
to determine the parameters for the algorithm are described. The workflow of the
empirical model is described according to [4], and the statistical parameters used to
evaluate the models’ performances are presented.

In Chp. 5, results from both the DBSCAN model and empirical model, which are
necessary for the analysis, are commented on and presented.

In Chp. 6, the findings in Chp. 5 are discussed and combined with a priori knowledge.
The performance evaluations of the models are compared with the performances of
models in similar studies in the literature.

Finally, a conclusion is presented in Chp. 7 and suggestions for future work are
given in Chp. 8.
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Chapter 2

Theory

2.1 Bathymetry
Bathymetry is the study of underwater topography and is used in most human
activity in the marine environment [1]. The bathymetric data can be used to in-
vestigate the environmental quality, sustainable fishery, aquaculture, infrastructure,
boundaries definition, history, and composition of rocks and sediments.

The most common ways of determining bathymetry is using,

• Sonar

• LiDAR

• Radar

Local bathymetry maps are mostly made from sonar data acquired from the surface
by ships or from the near bottom using remote vehicles. To map the bathymetry in
larger areas, data can be obtained either from the air or space using LiDAR or radar
data. In this thesis, the data being processed are acquired from a LiDAR; hence,
this will be the primary focus.

2.1.1 Refraction Correction For Bathymetry
One of the essential things to account for when using LiDAR data to determine
bathymetry is the refraction error that occurs due to a change in the speed of light
at the air-water interface.

Satellite Derived Bathymetry from ICESat-2 using Machine Learning 5



Figure 2.1: Illustration of the need for refraction correction [5].

If not accounted for, errors in both horizontal and vertical directions will occur,
resulting in locations that are deeper and further from nadir than the true measure-
ment [5]. This effect is displayed in Figure 2.1.

The refraction correction can be considered a rotation and scaling as illustrated in
Figure 2.2.

Figure 2.2: Geometry of refraction correction [5].

6 Satellite Derived Bathymetry from ICESat-2 using Machine Learning



From Snell’s law, the angle of refraction is given by,

θ2 = sin−1

(
sin θ1

n1

n2

)
(2.1)

where θ1 is the angle of incidence and n1, n2 are the refractive indices for air and
water, respectively.

Due to the change in speed of light, the corrected slant range can be found via. the
relationship,

R = S
n1

n2
(2.2)

where the slant range, S, can be found using,

S =
D

cos θ1
, (2.3)

where D is the uncorrected depth. Then, the angle, γ, is found,

γ =
π

2
− θ1 (2.4)

Applying the law of sines to triangle RPS, cf. Figure 2.2,

α = sin

(
R sinϕ

P

)
(2.5)

where ϕ = θ1 − θ2. Applying the law of cosines,

P =
√
R2 + S2 − 2RS cos θ1 − θ2 (2.6)

Now the corrections in the Y and Z directions can be found by the following expres-
sions,

δY = P cos β (2.7)
δZ = P sin β (2.8)

where,

β = y − α =
π

2
− θ1 − sin−1

(
R sinϕ

P

)
(2.9)
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and finally, projecting δY onto (E, N) axes using azimuth, κ,

δE = δY sinκ (2.10)
δN = δY cosκ (2.11)

Hence, the new heights and geo-coordinates can be found by adding δZ, δE, and
δN , respectively.

2.2 LiDAR
Light Detection and Ranging (LiDAR) or laser altimetry is a remote sensing method
that measures range by measuring the time between transmitting a light signal and
receiving it. Hence, the distance can be determined by,

distance =
cτ

2
(2.12)

where c is the speed of light, and τ is the measured time interval between the
transmitted and received photons. The range is divided by 2 to obtain the one-
way distance. From the distance, the elevation can be obtained by subtracting the
distance from the satellite altitude,

elevation = altitude− distance. (2.13)

Traditionally, two types of LiDAR’s are used [6],

• Topographic

• Bathymetric

where the topographic LiDAR transmits light at near-infrared wavelength, and the
bathymetric LiDAR transmits the photons at a wavelength corresponding to the
green light such that it is possible to penetrate the water column. Fog has a wave-
length at ≈ 1-100µm in diameter, and rain drops ≈ 0.5-5mm in diameter. Hence,
a LiDAR signal will be highly scattered by clouds, fog, or rain [7].

There are three main components in a LiDAR,

• The laser source

• The receiver

• Optical system for pointing the LiDAR

Most LiDARs use either a diode laser or a diode-pumped solid-state laser. The diode
lasers can be very efficient and inexpensive. However, they cannot store energy and
tend to have a broad laser line width and a broad beam, whereas the solid-state
laser has a narrower line width [7].
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The LiDAR receivers can either be a single detector or and a array of detectors. To
increase the Signal-to-Noise Ratio (SNR), two approaches can be used: Increase of
intensity in the Local Oscillator (LO), or by use of gain [7].

For a LiDAR, a single aperture can be used for both the transmitter and receiver or
by using separate apertures. Pointing the LiDAR can be done either mechanically,
e.g., by a tilted mirror, or nonmechanically by tilting without moving a mechanical
device [7].

The working principle of a LiDAR is that photons are transmitted from the laser
source via multiple beams. Then, the photons are scattered, absorbed, or reflected
when they hit a surface. In the case of a bathymetric LiDAR, the photons will be
reflected at both the sea surface and the sea bottom as illustrated in Figure 2.3.
The reflected photons are received in the detector, and by using the measured time
interval between transmitting and receiving, the elevation can be obtained from Eq.
2.13. Combined with data from a Global Navigation Satellite System (GNSS), the
elevation can be stored along with the corresponding latitude and longitude.

Figure 2.3: LiDAR working principle [8].
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2.3 Machine Learning
Machine learning is a way to train a computer to automate a process and is typically
divided into three types,

• Supervised learning.

• Unsupervised learning.

• Reinforcement learning,

where supervised learning is applied for data sets that are composed of a data
matrix and a set of target values, unsupervised is used for data sets that are only
composed of the data matrix and where the goal is to infer structure to the data,
and reinforcement learning is learning by trial and a reward system.

In this project, the focus is on unsupervised machine learning and, more specifically,
clustering.

2.3.1 Clustering Analysis
Clustering analysis is a common way to analyze a dataset with a multipeak distri-
bution of the observations, i.e. when there is more than one peak in the density
distribution of at least one variable, cf. Figure 2.4 [9].

Figure 2.4: Examples of multipeak and unform distributions (A) multipeak distri-
bution with clear separation; (B) multipeak distribution with less clear separation;
(C) Uniform distribution; (D) Densities across X1; (E)-(G) densities across X2 [9].
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Most cluster algorithms involve the following main tasks,

• feature selection,

• choice of a similarity metric,

• application of the grouping criterion,

• and cluster validation,

where the grouping criterion is vital as it defines how the observations are assigned
to each cluster [9].

The different clustering algorithms can be classified based on whether it is; Parti-
tional or hierarchical, hard or soft, centroid-based or density-based. Partitional or
hierarchical refers to whether it can be divided into simple groups or groups and
subgroups; hard or soft refers to whether it assigns each observation to a single
class or receives a probability of belonging to each class. Finally, centroid-based or
density-based refers to whether the algorithms assign each observation wrt. their
distance to the center of the cluster or assigns based on the local density around the
observation [9].

2.3.2 DBSCAN
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a density-
based clustering algorithm where observations are separated into high-density and
low-density regions.

The algorithm is defined by two hyperparameters,

• Epsilon, ε

• MinPts,

where ε is the radius of the circle defining how close the observations must be from
one another to be classified into the same cluster. MinPts is the minimum number
of points that should be within ε of a point to be considered a core point [10].

In the DBSCAN algorithm, there are three main classifications of a point: Core
point, border point, and noise point. A core point specifies a dense area based on
the description mentioned above. The border point has fewer than MinPts with ε
but is close to a core point. A noise point is neither a core point nor a border point
and is considered an outlier [10]. The classification of the points is illustrated in
Figure 2.5.
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Figure 2.5: Illustration of core points, border points, and noise points [10].

The DBSCAN algorithm can be limited to the following steps [3],

DBSCAN Algorithm
1. Start with arbitrary point, p
2. Retrieve all points density-reachable from p wrt. ε and MinPts.
3. if p is a core point, this procedure yields a cluster wrt. ε and MinPts

if p is a border point, no points are density-reachable from p and DBSCAN
visits the next point of the database.

A cluster, C, is defined wrt. ε and MinPts as a nonempty subset of a database, D,
if it satisfy the following [3],

1. ∀ p, q: if p ∈ C and q is density-reachable from p wrt. ε and MinPts, then
q ∈ C.

2. ∀ p, q ∈ C: p is density-connected to q wrt. ε and MinPts,

where the terms density-reachable and density-connected are illustrated in Figure
2.6. The noise points are defined as not belonging to any cluster [3],

noise = {p ∈ D | ∀ i : p /∈ Ci} . (2.14)
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Figure 2.6: Density-reachability and density-connectivity [3].

One of the biggest challenges in applying DBSCAN is estimating the parameters,
ε, and MinPts. Choosing the proper parameters requires a priori knowledge of the
data. However, a general rule of thumb is to use a minimum number of points
equivalent to 2×D, where D is the dimension of the dataset.

After selecting the MinPts value, ε can be determined. One technique to automat-
ically determine the optimal ε value is calculating the average distance between
each point and its k nearest neighbors (kNN), where k = MinPts. The average
k-distances are then plotted with the sorted distance along the x-axis and the kNN
distance along the y-axis. All points with an equal or smaller distance will be the
core points [3]. The optimal ε value will be at the ”elbow” of the curve, i.e., the
point of maximum curvature, as displayed in Figure 2.7 as all points with a higher
distance value are considered to be noise, and all other points are assigned to a
cluster [3].

Figure 2.7: Points sorted by distance to the kNN [10].
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Chapter 3

Data

This chapter presents the study area and the data used for the later analysis in this
project. The data consists of raw data from the National Aeronautics and Space
Administration (NASA) ICESat-2 mission and SDB data from EOMAP.

3.1 Study Area
The study area in this project is Heron Reef, which is part of the coral sea on the
east coast of Australia. The reef is part of the great barrier reef and can be seen in
Figure 3.1.

Figure 3.1: Heron reef, the red dot indicates the position of Heron reef in Australia.

This particular area has been chosen because it was possible to acquire the high-
quality SDB data from EOMAP and because of its clear waters.
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3.2 ICESat-2
The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission is a NASA follow-
up mission to ICESat. It was launched on 15. September 2018 to measure the
elevation of ice sheets, glaciers, and sea ice in the cryosphere. The satellite also
measures heights across Earth’s temperate and tropical regions and thus, the Heron
reef, which is the considered area in this project.

The orbital specifications of the ICESat-2 mission are stated in Table 3.1 below.

Table 3.1: Specifications of ICESat-2.
Orbital altitude ≈ 500 km
Inclination 92◦

Repeat cycle 91 days

The primary payload on the ICESat-2 mission is the Advanced Topographic Laser
Altimeter System (ATLAS).

3.2.1 ATLAS
ATLAS is an altimeter that carries a primary and secondary laser. The primary
laser sends out six beams, cf. Figure 3.2 and the secondary is used as a backup.
It transmits at a wavelength of 532 nm corresponding to green light with a rate of
10,000 pulses per second.

The ground tracks from the six different beams are typically about 14 m wide, and
each ground track is numbered according to the laser spot number that generates it.
The beams are in pairs; GT1L and GT1R, GT2L and GT2R, and GT3L and GT3R,
with one being a strong beam and one being a weak beam with an energy ratio
of approximately 1:4. The paired tracks are about 90 m apart in the across-track
direction and 2.5 km in the along-track direction, as displayed in Figure 3.2. The
distance between the beam pairs is approximately 3 km in the across-track direction
[11]. ATLAS has an across-track resolution of 70 cm [4], meaning that the laser
footprint moves at a 70 cm increment across the surface [12].

The technical specifications of ATLAS can be found in Table 3.2.

Table 3.2: Specifications of the ATLAS Transmitter.
Wavelength 532 nm
Pulse repetition frequency 10 kHz
Footprint diameter < 17.4 m
Optical throughput efficiency 73%
Number of beams 6
Beam energy ratio (strong:weak) 4 : 1
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Figure 3.2: ATLAS acquisition principle [11].

There are three major tasks, that ATLAS is carrying out,

1. Send pulses of laser light to the ground,
2. collect the returning photons in a telescope,
3. record the photon travel time.

The returning photons are focused on six fiber optic cables corresponding with where
the six laser beams return. From the fibers, the photons are passed through filters,
letting only green light pass to prevent sunlight from swamping the detectors [13].

Then, from the recorded photon travel time, the photon height is found using Eq.
2.13.

3.2.2 Data
The dataset from the ICESat-2 satellite used for the project is the level 2 product,
ATL03. The data provides the ellipsoidal height (above WGS84 ellipsoid), time,
geodetic latitude, and longitude for all photons received in ATLAS.

Furthermore, the photons are classified based on the surface type from 0-4, where
0 corresponds to background photons, and 1-3 denotes a signal photon with low,
medium, and high confidence, respectively. In this project, all the photons are
included as the machine learning algorithm has the purpose of classifying them.
The raw data is displayed in Figure 3.3.

The photon heights are already corrected according to solid earth tides, ocean, solid
earth pole tides, ocean tidal loading, and range corrections for tropospheric delays
[11]. Furthermore, the ATL03 file contains values for referencing, including the geoid
height, which will be used in this project.
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Figure 3.3: ICESat-2 photon height as a function of latitude, acquired on April 8,
2019, beam gt1l.

The data was acquired from The National Snow and Ice Data Center (NSIDC)
website and were collected from the reference ground tracks 0154 and 1213. The
temporal baseline ranges from March 2019 to November 2021. The acquired tracks
are visualized in Figure 3.4.

Figure 3.4: Map of tracks used in this project.

3.3 EOMAP
To evaluate the results from the machine learning model, SDB data from EOMAP
is used. The SDB data is obtained from optical satellite images from the ESA
Worldview-2 mission, launched on the 8. October 2009 to monitor the environment.
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EOMAP applies a physics-based inversion method, known as Modular Inversion
Program (MIP), which is independent of in-situ data and can be applied globally.
Using the method and reflected sunlight energy in different wavelengths and various
corrections, the bathymetry can be determined [14].

The product is displayed in Figure 3.5a, where the bathymetry is relative to the
Mean Sea Level (MSL). The used MSL is 1.44 m, which is acquired from a local
station [14]. The EOMAP product covers 42.6 km2 down to a maximum depth of
25 m. The data has a spatial resolution of 2 m, and the horizontal accuracies are
5 m CE 90. The vertical accuracy is 50 cm absolute and 10% depth cf. Figure 3.5b.

(a)

(b)
(c)

Figure 3.5: (a) EOMAP bathymetry model; (b) validation plot of the SDB data
versus acoustic survey from single beam lines; (c) vertial uncertainties of the SDB
data from EOMAP.
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Chapter 4

Method

In this section, the data processing workflow is explained in detail, along with the
necessary considerations for the preprocessing and the model parameters. The work-
flow is illustrated in the flowchart in Figure 4.1.

Figure 4.1: Flowchart of the data processing illustrating the start and end of the
workflow (blue), the inputs/outputs (orange), and the processing step (green).
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4.1 Preprocessing
4.1.1 ATL03 Data
The preprocessing steps of the ICESat-2 data are based on those in [4] and consist
of the following,

• Remove geoid.

• Mask area and signal confidence.

• Remove sea surface.

• Correct for refraction.

First, the data is corrected for the geoid using the geoid data from the ATL03 file.
The geoid heights are interpolated and subtracted from the photon heights.

Then, the data are masked by area and signal confidence as the file contains infor-
mation for an entire track. The area masking is done by creating a bounding box
made from specific latitude and longitude limits. Heron reef is placed approximately
within the coordinates,

latitude : [−23.5,−23.4], longitude : [151, 152],

which are used to limit the data in the ATL03 file. Then, the data signal confidence
masking is done such that photons with confidence 0-4 are included, cf. the flags in
Sec. 3.2.2.

After the masking, the sea surface is found using the median of the photon heights
and a buffer of 0.5 m as in [4],

sea surface = Med(height) − 0.5m. (4.1)

The sea surface is then removed from the heights. Finally, the observations are
corrected for the refraction, cf. Sec. 2.1.1 assuming a salinity of 33 psu and a
temperature of 29 °C.

4.1.2 EOMAP Data
The EOMAP data used to verify the DBSCAN model also needs to be corrected such
that they have the same reference as the ICESat-2 data. It requires the following
preprocessing steps,

• Correct for MSL.

• Interpolation.

As the EOMAP heights are relative to the MSL, the MSL needs to be subtracted
from the heights. Hence, the heights will have the same reference, as the data has
already accounted for the geoid. Furthermore, the data are interpolated so that the
locations correspond to those in the ICESat-2 data.
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The used interpolation model is constructed by triangulating the input data and
making a piecewise cubic interpolating Bezier polynomial on each triangle, using a
Clough-Tocher scheme [15][16]. The gradients of the interpolant are chosen so that
the curvature of the interpolating surface is approximately minimized.

4.2 DBSCAN
In the application of the DBSCAN algorithm, the following steps are performed,

• Get threshold.

• Scale the data.

• Calculate ε and MinPts.

• Compute clusters using DBSCAN.

Before applying the DBSCAN algorithm, the preprocessed data is standardized to
reduce computational time using,

z =
x− µ

σ
, (4.2)

where z is the standardized observation, x is the observation, µ is the mean, and σ
is the standard deviation.

To calculate the clusters, the DBSCAN algorithm has been applied as mentioned
in Chp. 2. The major keystone to the application of DBSCAN is to determine the
parameters: ε and MinPts.

First, MinPts is determined based on a priori knowledge about the data. Given that
the receiver of the ATLAS instrument is prone to pick up noise from the sun, the
sun elevation is considered.

The sun elevations for that particular time for each ATL03 file are found using the
National Oceanic and Atmospheric Administration (NOAA) solar calculator [17].
The inputs for the solar calculator are the latitude, longitude, time zone, date, and
local time. The latitude and longitude limits used for masking the ATL03 file in
Sec. 4.1 are given as input, and the date and local time are achieved from the
ATL03 filename that is converted from UTC to the Australia/Brisbane time zone
corresponding to UTC+10h. From the output, a table consisting of the date, time,
apparent sunrise, apparent sunset, azimuth, and elevation is made. The solar calcu-
lator gives the azimuth and elevation output the value ”dark” when it is after the
astronomical twilight. This value is treated as NaN throughout the data processing.

The parameter, MinPts, is determined by,

MinPts =

⌊
40

SNR

⌋
, (4.3)
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where the SNR denotes a signal-to-noise ratio estimated from a cumulative histogram
of the preprocessed ATL03 heights, the number 40 is the expected number of points
in a cluster, which is found by iteratively increasing the number from a beginning
point of 2×D, where D denotes the dimension of the data which is 3, as suggested
in Sec. 2.3.2. Ultimately, 40 yielded the best result. The relation between MinPts
and the SNR is presented in Figure 4.2.

Figure 4.2: MinPts as a function of SNR.

SNR is found by the equation, inspired by [18],

SNR =
psignal + pnoise · 4σ

pnoise · 4σ
, (4.4)

where σ is the standard deviation of the heights, psignal = 1− pnoise and,

pnoise =

{
ρnoise + ρnoise sin θsun if θsun ̸= NaN
ρnoise otherwise,

(4.5)

where θsun is the sun elevation ρnoise is an estimated noise density found from a
threshold, which is defined by,

threshold = Med− 2σ, (4.6)

where Med is the median of the heights. The threshold creates a clear distinc-
tion between estimated signal and noise such that all the photon heights below the
threshold are considered noise.
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A lower limit to MinPts has been implemented such that the minimum value for
MinPts is 2×D = 6.

The ε parameter is automatically determined from the technique mentioned in Sec.
2.3.2, using the kNN distance with k = MinPts. The optimal ε is found at the
maximum curvature of the distance plot.

Several suggestions from the literature have been tested in the process of finding
the final procedure for determining the parameters, including the generic approach,
where MinPts = 2×D and ε are found from a kNN distance plot. However, it was
found that a single value for MinPts was not optimal for this particular problem.
Another approach from [19] has been tested, where two fixed values for ε were
used for day and night, respectively, whereas ε is used to determine MinPts. This
approach was also not found fit, as the MinPts values were generally too low; hence,
the results contained a lot of noise.

Similar to the approach in [19], a previous article [20] uses a fixed value for ε, and
determines MinPts afterward using a vertical segmentation. Once again, the output
included too much noise. Finally, the method in [21] was tested. In this case,
there are two fixed values for MinPts depending on whether the beam is weak or
strong, and then the dataset is divided into ten vertical segments, where a unique ε
parameter is found for each segment. Once again, the output was not satisfying.

As the noise depends significantly on the amount of green light from the sun, the
idea of including the sun elevation occurred. The method for integrating the sun
elevation into the noise component came from inspiration from [18], where it is
included in the computation of SNR.

4.3 Empirical Model
The empirical model used for comparison is the one presented in [4]. To compute
the results from the empirical model, a MATLAB code has been provided by Heidi
Ranndal. The preprocessing of the data is the same for both DBSCAN and the
empirical model, and after the preprocessing, the bathymetry is extracted via the
following steps [4],

1. A moving median with a window of 50 observations is computed, and heights
above 3m from the median are removed.

2. Another moving median with a window of 30 observations, Hsmooth, is calcu-
lated along with a moving standard deviation of the difference between the
observations and Hsmooth.

3. The heights are divided into high, medium, and low confidence bathymetry.

4. The heights are divided into latitude segments, each with a length of 0.001
degrees ≈ 100m. If there are less than 10 points in a segment, they are not
considered bathymetry data.

The division of the data into high, medium, and low confidence bathymetry is done
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by excluding outliers using different thresholds. Hence, the indices for points within
a distance, kdiff of the moving median are found using,

ix = |Hsmooth −H| < kdiff , (4.7)

and the data points within kdiff and with a standard deviation lower than kstd are
kept,

Hkeep = H[ix & movstd < kstd], (4.8)

where the thresholds kdiff and kstd for the different bathymetry confidences are pro-
vided in Table 4.1.

Table 4.1: Thresholds for bathymetry confidence [4].
Threshold Low Medium High

kdiff 0.75 m 1 m 2 m
kstd 1.5 m 2 m 4 m

4.4 Performance Evaluation
To evaluate the performance of the models, the resulting bathymetry is compared
with the high resolution, high accuracy SDB data from EOMAP. The comparison is
done by examining the residuals between the SDB data and the model bathymetry,

Residual = HeightsEOMAP − Heightsmodel, (4.9)

and include statistical analysis. The statistical analysis includes a mean squared
error (MSE), a coefficient of determination from linear regression made from the
model bathymetry as a function of the SDB EOMAP data. The mean squared error
and the coefficient of determination are computed using the following equations,

MSE(y, ŷ) =
1

nsamples

nsamples∑
i=0

(yi − ŷi)
2 (4.10)

R2(y, ŷ) = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (4.11)

where ȳ = 1
n

∑n
i=1 and

∑n
i=1(yi − ŷi)

2 =
∑n

i=1 ϵ
2
i .

In addition to the linear regression and the RMSE, the distribution of the residuals
is investigated by a histogram, and a statistics summary is also used to evaluate the
performance.
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Chapter 5

Results

This chapter presents and comments on the results of the data processing.

First, the distribution of all the ICESat-2 photon heights for Heron Reef is investi-
gated. In Figure 5.1, the distribution of the preprocessed heights is illustrated.

Figure 5.1: Histogram illustrating the distribution of all the preprocessed photon
heights below the sea surface including a smoothed kernel density estimator (KDE)
curve.

From Figure 5.1, the distribution appears to have more than one peak, at ≈ −0.5m
and ≈ −10m and thus, meets the criteria of a multipeak distribution as described
in Sec. 2.3.1.

Satellite Derived Bathymetry from ICESat-2 using Machine Learning 25



5.1 DBSCAN
When using the DBSCAN algorithm, it is crucial to determine the parameters,
MinPts and ε, cf. Sec. 2.3.2. The MinPts parameter is determined as described in
Sec. 4.2 and used to calculate the kNN, where k = MinPts. The resulting distance
curve is presented in Figure 5.2 along with the computed optimal ε value.

Figure 5.2: kNN distance plot for sample, where ICESat-2 passed on April 8, 2019,
beam gt1l. The red circle indicates the optimal ε value.

From Figure 5.2, the optimal ε parameter is found as described in Sec. 4.2 at y value
of the maximum curvature. For this particular file, MinPts = 13 and ε = 0.086.

After determining the parameters, the clusters can be found using the DBSCAN
algorithm, which can be seen in Figure 5.3.
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(a)

(b)

(c)

Figure 5.3: Sample, where ICESat-2 passed on April 8, 2019, beam gt1l (a) Map
showing the ground track; (b) Corrected ICESat-2 photon heights with DBSCAN
results and sea surface; (c) Corrected ICESat-2 photon heights with the filtered
DBSCAN result and the sea surface.

From Figure 5.3, the results show that the model includes some noise near the sea
surface. However, most noise disappears when applying the smoothing filter except
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for a few photons at ≈ 20 cm height at ≈ −23.455 deg. latitude. Furthermore, it
appears that there is some bathymetry signal that does not appear in the result
from the model at latitudes ≈ [−23.48,−23.47] deg. and ≈ [−23.44,−23.42] deg.

The performance of the model is evaluated by creating a bias plot; the EOMAP
heights as a function of the DBSCAN heights, whereas a linear regression is fitted to
the data and visualized along with the statistical parameters, RMSE and a coefficient
of determination, R2. The bias plots can be seen in Figure 5.4.

(a) (b)

Figure 5.4: Bias plot of sample, where ICESat-2 passed on April 8, 2019, beam
gt1l (a) EOMAP as function of DBSCAN; (b) EOMAP as a function of filtered
DBSCAN.

From Figure 5.4, it is evident that there is a significant improvement in the applica-
tion of the smoothing filter with a difference of δR2 = R2

unfiltered − R2
filtered = −0.19

and δRMSE = RMSEunfiltered − RMSEfiltered = 0.25m.

5.1.1 Overall Results
The results are computed based on all 12 files, which are listed in Table A.1 in App.
A.1 in the following subsection.

The model’s overall performance is evaluated in the bias plot in the following Figure
5.5.
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(a) (b)

Figure 5.5: Bias plot of the (a) unfiltered heights from the DBSCAN model; (b)
filtered heights from the DBSCAN model.

From Figure 5.5, the overall performance appear to be improved significantly with
the application of the smoothing filter with a difference of δR2 = R2

unfiltered−R2
filtered =

−0.07 and δRMSE = RMSEunfiltered − RMSEfiltered = 0.17m.

The residuals between the EOMAP heights and the DBSCAN heights and filtered
DBSCAN heights respectively are displayed as a function of photon height in the
following Figure 5.6.

(a) (b)

Figure 5.6: Residuals as a function of heights for (a) DBSCAN; (b) Filtered DB-
SCAN; Dashed line indicating residual = 0.

From Figure 5.6, a small bias appear on heights [−10, 0]m. However, this bias dis-
appears for the filtered DBSCAN residuals. Furthermore, there are several negative
residuals near the sea surface.

The distribution of the residuals is displayed in a histogram in Figure 5.7.
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(a) (b)

Figure 5.7: Histogram of (a) DBSCAN residuals; (b) filtered DBSCAN residuals.
The histogram is narrowed to show the residuals between [-4,4] m, where the outliers
are gathered in the outermost bins.

From Figure 5.7, the residuals appear to be centered around 0 as desired. However,
the distribution appears slightly right-skewed for both the DBSCAN residuals and
the filtered DBSCAN residuals indicating a small bias.

A statistics summary of the distribution of the residuals is displayed in Table 5.1.

Table 5.1: Statistics summary of residuals between EOMAP and DBSCAN and
filtered DBSCAN respectively.

Residual DBSCAN Filtered DBSCAN
Count 144428 103884

Mean [m] 0.11 −0.001
Std [m] 1.12 0.96

Min [m] −21.70 −21.70
Max [m] 13.33 5.67
25% [m] −0.17 −0.16
50% [m] −0.01 −0.04
75% [m] 0.24 0.15

Table 5.1 reveal that there are outliers down to −21.70m and up to 13.33m. How-
ever, these are insignificant when considering a standard deviation of 1.12m and
0.96m, respectively. Furthermore, the median of −0.01m and −0.04m, indicate a
small bias of 1 cm and 4 cm. The bias appears to increase after the smoothing filter
is applied.

A map visualizing the resulting filtered photon heights from the DBSCAN model
can be seen in Figure 5.8a along with the residuals between those and the EOMAP
heights.
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(a)

(b)

Figure 5.8: Map of (a) the resulting filtered heights from the DBSCAN model; (b)
the residuals between the resulting filtered heights from the DBSCAN model and
the EOMAP heights limited to residuals between [-1,1] m. The pixelsize in the maps
has been exaggerated to make the heights visible.

From Figure 5.8a, the model appears to have caught some of the low heights at the
top of the reef but is missing several in the high slope areas, see Figure B.1 in App.
B.1. The minimum height in the overall results is −22.16m, and the maximum
height is 1.61m. Considering Figure 5.8b, the biggest residuals appear in high slope
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area. It should be noted that the residual map is limited to be between [-1,1] m
to reveal a detailed overview, and thus, there are residuals ≤ −1m and ≥ 1m, cf.
Table 5.1.

5.2 Empirical Model
In this section, the results from the empirical model are presented.

In Figure 5.9, the computed high confidence bathymetry is displayed along with the
filtered version.

(a)

(b)

Figure 5.9: Sample, where ICESat-2 passed on April 8, 2019, beam gt1l (a) Cor-
rected ICESat-2 photon heights with empirical model results and sea surface; (b)
Corrected ICESat-2 photon heights with the filtered empirical model result and the
sea surface.
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From Figure 5.9, the results show that model includes some noise near the sea
surface in height [-0.5,0] m between latitude [-23.46,-23.44] deg. However, the noise
disappears when applying the smoothing filter. Furthermore, it appears that some
bathymetry signal at latitude ≈ [−23.48, 23.47] deg is not included.

The performance is evaluated in a bias plot with linear regression, RMSE, and
coefficient of determination, R2, similar to that in Sec. 5.1. The bias plot is displayed
in Figure 5.10.

(a) (b)

Figure 5.10: Bias plot of (a) EOMAP as function of empirical model heights; (b)
EOMAP as a function of filtered empirical model heights.

From Figure 5.10, the results seem to have improved slightly with difference of δR2 =
R2

unfiltered −R2
filtered = −0.03 and δRMSE = RMSEunfiltered − RMSEfiltered = 0.06m.

5.2.1 Overall Results
In this subsection, the results based on all 12 files are reviewed.

The model’s overall performance is evaluated in the bias plot in the following Figure
5.11.
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(a) (b)

Figure 5.11: Bias plot of the (a) unfiltered heights from the empirical model; (b)
filtered heights from the empirical model.

From Figure 5.11, the performance of the model seem to have been improved slightly
with a difference of δR2 = R2

unfiltered−R2
filtered = −0.01 and δRMSE = RMSEunfiltered−

RMSEfiltered = 0.01m.

The residuals between the EOMAP heights and the empirical model heights and
filtered empirical model heights, respectively, are displayed as a function of photon
height in Figure 5.12.

(a) (b)

Figure 5.12: residuals as a function of height of (a) Empirical model; (b) Filtered
empirical model.

From Figure 5.12, the biggest residuals appear to be at heights [-20,-15] m. The
smoothing filter does not appear to impact the residuals significantly.

The distribution of the residuals is displayed in a histogram in Figure 5.13.
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(a) (b)

Figure 5.13: Histogram of residuals from (a) Empirical model; (b) Filtered empirical
model. The histogram is narrowed to show the residuals between [-4,4] m, where the
outliers are gathered in the outermost bins.

From Figure 5.13, there is a clear bias towards the negative residuals meaning that
the empirical model results are closer to the sea surface than the heights from
EOMAP. From the histogram, it is easier to see the improvement of the results
with the smoothing filter, as the peak of the histogram is higher than that for the
unfiltered results.

A statistics summary of the distribution of the residuals is displayed in Table 5.2.

Table 5.2: Statistics summary of residuals between EOMAP and the empirical model
and the filtered empirical model respectively.

Residual Empirical Model Filtered Empirical Model
Count 125347 93657

Mean [m] −0.13 −0.13
Std [m] 0.48 0.48

Min [m] −17.23 −17.23
Max [m] 5.13 5.13
25% [m] −0.33 −0.33
50% [m] −0.20 −0.21
75% [m] −0.01 −0.04

From Table 5.2, outliers down to −17.23m and up to 5.13m appear. Furthermore,
the medians are −0.20m, and −0.21m, indicating that the resulting heights are
generally 20 cm and 21 cm above those from the EOMAP results, which supports
the fact there is a bias. The smoothing filter does not appear to impact the results
from the empirical model greatly.

A map visualizing the resulting filtered photon heights from the empirical model
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can be seen in Figure 5.14a along with the residuals between those and the EOMAP
heights.

(a)

(b)

Figure 5.14: Map of (a) The resulting filtered heights from the empirical model; (b)
The residuals between the resulting filtered heights from the empirical model and
the EOMAP heights limited to residuals between [-1,1] m. The pixelsize in the maps
has been exaggerated to make the heights visible.

From Figure 5.14a, the empirical model appears to have included several of the
lower height areas. However, the empirical model seems to have difficulty catching
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the high slope areas, cf. Figure B.1 in App. B.1. The minimum height in the overall
results is −23.45m, and the maximum height is 0.55m.

In Figure 5.14b, the biggest residuals appear to be located in the deep areas. In the
areas closer to the surface, there appears to be an overload of red areas indicating
that the results from the empirical model estimate the bathymetry heights to be
closer to the sea surface compared to the EOMAP heights. The residual map is
limited to show the residuals between [-1,1] m, there are residuals ≤ −1m and
≥ 1m, cf. Table 5.2.

5.3 Comparison
This section compares the filtered results from the DBSCAN model and the empirical
model directly with the EOMAP heights.

The heights from the EOMAP data and the filtered heights from the DBSCAN
model and the empirical model are displayed in the following Figure 5.15.

(a)

(b)

Figure 5.15: Sample, where ICESat-2 passed on April 8, 2019, beam gt1l with
heights from the EOMAP data, and the filtered heights from the DBSCAN model
and the empirical model (a) Full size; (b) zoomed in on heights [−4, 0]m.
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In Figure 5.15, there are peaks in the EOMAP heights that do not appear for
either the filtered heights from the DBSCAN model or the filtered heights from the
empirical model. Furthermore, the resulting heights from the DBSCAN model also
include some noise at latitude ≈ −23.455 deg. and the resulting heights from the
empirical model appear to be slightly above the other heights. The lower EOMAP
heights seem to be significantly different from those from the DBSCAN model and
the empirical model at latitude ≈ [−23.435,−23.425] deg.

The residuals between the EOMAP heights and the filtered heights from the DB-
SCAN model and the empirical model, respectively are displayed in Figure 5.16.

(a) (b)

Figure 5.16: Residual as a function of height (a) Full size; (b) zoomed in on heights
[−4, 0]m.

The distribution of the residuals is displayed in Figure 5.17.

Figure 5.17: Histogram of residuals between EOMAP and the empirical model, and
between EOMAP and the filtered DBSCAN for a sample, where ICESat-2 passed
on April 8, 2019, beam gt1l.
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From Figure 5.17, a bias appears for the residuals for both the DBSCAN model and
the empirical model. However, the peak for each of the distributions seems to be at
approximately the same density.

A statistics summary of the residuals is displayed in Table 5.3.

Table 5.3: Statistics summary of residuals between EOMAP data and the filtered
empirical model results and the filtered DBSCAN results respectively.

Residual Filtered Empirical model Filtered DBSCAN
Count 9694 10088

Mean [m] −0.21 −0.07
Std [m] 0.29 0.33

Min [m] −2.94 −8.33
Max [m] 2.08 2.43
25% [m] −0.34 −0.17
50% [m] −0.24 −0.08
75% [m] −0.13 0.03

From Table 5.3, the medians of −0.24m and −0.08m indicate a bias for both mod-
els of 24 cm for the empirical model results and of 8 cm for the DBSCAN model.
However, the standard deviation is smaller for the empirical model results of 0.29m,
compared to that for the DBSCAN model, which is 0.33m.
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Chapter 6

Discussion

In this chapter, the results from Chp. 5 are evaluated and discussed. The chapter
is divided into sections, where the model performance is discussed individually. Fi-
nally, a comparative study is made, where the performance is compared with the
performance of models from other studies.

6.1 DBSCAN
The report distinguishes between the resulting unfiltered heights from the DBSCAN
model and the heights with an applied smoothing filter. The results were compared
with the SDB EOMAP data, where residuals between the heights were computed.
The residuals were analyzed as a function of height, and the statistics of the residuals
were calculated.

Generally, the DBSCAN model succeeds in finding the bathymetry from the noisy
ICESat-2 files. However, the unfiltered results from the DBSCAN model reveal that
the model fails to exclude much noise near the sea surface and detect the low-density
bathymetry.

The noise around the sea surface is not excluded because the noise’s point density
is very close to the actual bathymetry. Hence, the DBSCAN models treat these
points as bathymetry; however, most noise is removed when the smoothing filter is
applied. Concerning the low-density bathymetry, the DBSCAN model searches for
points with the same density based on the parameters ε and MinPts; thus, if the
bathymetry has different densities, some of the bathymetry is excluded.

When comparing the results to the EOMAP data in Figure 5.6, there are a lot of
significant residuals around the sea surface, which can occur because the DBSCAN
model includes sea surface photons, where there is underlying bathymetry. The
significant residuals are very likely a result of the included sea surface noise and
excluded low-density bathymetry. The statistics in Table 5.1 also reveal that with
a median of the residuals, of MedDBSCAN = −4 cm, the results from the DBSCAN
model tend to be estimated 4 cm closer to the sea surface than the EOMAP heights,
which is within the uncertainty of the EOMAP data, cf. 3.5b.
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6.2 Empirical Model
The smoothing filter that was applied to the DBSCAN model was also applied to
the empirical model results to ensure that the DBSCAN model and the empirical
model are compared on the same basis. The empirical model results are compared
to the EOMAP heights by computing the residuals and analyzing them as a function
of height and by regarding the statistics as in Sec. 6.1.

The empirical model captures the bathymetry very well as the results include very
little noise. However, it fails to include some of the low-density bathymetry, cf.
Figure 5.3. When comparing the results to the EOMAP data, the residuals reveal
that there are generally no significant deviations. However, statistics in Table 5.2
indicate that the results from the empirical model tend to be 21 cm closer to the sea
surface than the heights EOMAP heights.

Concerning the fact that the bias, visible in Figure 5.17, in the empirical model
results is more significant than that in the DBSCAN model results, hours of inves-
tigation by comparing the preprocessing scripts have been spent. The investigation
shows that the odd outliers are removed in the same way, the same approach for
correcting for the refraction is used, and the exact data for subtracting the geoid is
used; thus, the origin of the bias was not found.

An issue occurred during the interpolation process between the results from the em-
pirical model and the EOMAP data. As there are more decimals in the coordinates
of the EOMAP data than there are in the coordinates of the empirical model results,
23 points outside the EOMAP area are present in Figures 5.12 and 5.14b, cf. the
red circle in Figure 6.1.

(a)
(b)

Figure 6.1: Figures 5.12 and 5.14b with a red circle indicating the 23 points.

These 23 points make 0.02% and do not impact the overall performance measures of
the empirical model, except for the minimum value in Table 5.2. Furthermore, the
points do not change any conclusions based on the performance measures. Hence,
it was decided not to recompute the results with higher precision.
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6.3 Comparative Analysis
In [18], the performance was evaluated by creating a confusion matrix of labeled
signal and noise photons, where the precision, recall, and F-score are computed.
The truth values were manually labeled based on the land type signal confidence
of the ATL03 dataset. A confusion matrix was not chosen for this comparison as
the output of the empirical model does not label the photons per se. If a confusion
matrix was desired, the labels would need to be generated using the high confidence
heights and the raw ICESat-2 data. Furthermore, a confusion matrix will not provide
information where the model fails to predict the bathymetry.

In [19] and [22], they both used RMSE to evaluate the performance of the results
from ICESat-2 data. In [22], the resulting depths are compared with in situ depths,
and the RMSE is computed to be 0.68 m in the St. Thomas area in the Caribbean.
In [19], an indirect way of estimating the accuracy of the bathymetry derived from
the ICESat-2 data is used as there was no available in situ data, and the RMSE was
estimated to be lower than 0.5 m in Yongle Atoll, in the South China Sea.

As there are no available in situ data for Heron reef, it was decided to estimate the
accuracy by comparing with the high accuracy SDB EOMAP data. The accuracy of
the heights from the DBSCAN model and the empirical model is evaluated from the
coefficient of determination, R2, and the RMSE. The difference in the performance
parameters, RMSE and R2 are calculated to be,

R2
EM −R2

DBSCAN = 0.97− 0.84 = 0.13 (6.1)
RMSEEM − RMSEDBSCAN = 0.46m− 0.96m = −0.50m, (6.2)

which indicates that the results from the empirical model make a better linear fit
with the EOMAP data as the R2 parameter is closer to 1 and the RMSE parameter
is lower than that for the DBSCAN result. The performance of the DBSCAN model
is poorer because the model results contain much of the sea surface, cf. Figure 5.5.

The sea surface photons might be included because of uncertainties tied to the sea
surface’s computation. In this project, the sea surface is calculated from the median
of all heights with a buffer of 0.5 m as in [4]. Thus, the calculated sea surface is
a rough estimate. The sea surface might be slightly above or below, affecting the
refraction correction as it depends on the depth computed from the sea surface.
With a more precise computation of the sea surface, the DBSCAN model would
likely have included less of the sea surface and thus, have improved performance.
In [19], the sea surface is computed by including the fluctuations in the sea surface,
where the local MSL and the Root Mean Square (RMS) wave height were calculated
by the mean and standard deviation from the detected photons on the sea surface.

Comparing the RMSE from the two models with the ones in [19] and [22], the heights
from the empirical model have a lower RMSE compared to both [19] and [22]. The
RMSE for the DBSCAN model is significantly higher than that in [19] and slightly
higher than the one in [22].
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The differences in the medians for the residuals of the overall results of the two
models and the EOMAP data is,

MedEM −MedDBSCAN = −17 cm (6.3)

Hence, despite using the same data, parameters, and approach for the preprocessing
step, the bias is 17 cm bigger than that for the DBSCAN model.

The significance of the bias compared to actual bathymetry in the area is challenging
to address as the heights are not compared to in situ measurements. Instead, the
EOMAP data was used to evaluate the models’ performances. As the EOMAP
data is also a product of a model with results made from satellite data, there are
uncertainties tied to the data, cf. Figure 3.5b in Sec. 3.3, and the biases for both
the DBSCAN model and the empirical model are within that uncertainty.

Generally, both of the models are good at estimating the bathymetry from the
ICESat-2 data in the Heron reef area, where the waters are generally very clear and
the bottom is mostly made of sand. The area has great conditions for ICESat-2
to receive a clear bathymetry signal. The major differences in the performance of
the models are that the DBSCAN model results contain more sea surface noise, cf.
Figure 5.5 and contain less of the low density bathymetry, cf. Figure 5.3. However,
the empirical result seems to have a significantly bigger bias than the DBSCAN
model when a comparison is made with the EOMAP data, cf. Figure 5.17 and
Eq. 6.3. Furthermore, it appears that both the DBSCAN model and the empirical
model estimate the lower heights, < −10m differently compared to the EOMAP
heights, cf. Figure 5.15. The different heights can be due to different approaches to
correcting for refraction. As previously mentioned, there are uncertainties related
to the computation of the sea surface. The uncertainties also lead to uncertainty in
the refraction correction as it depends on depth, which depends on the sea surface.

Judging from the results and the literature that has been discussed in this chapter,
there is great potential for using machine learning to determine bathymetry in shal-
low water regions with clear waters as there is in the Heron reef. More data will
be needed with different water and seabed conditions to make a model that can be
implemented globally, as dirty water will result in more noisy data. Furthermore,
more data will be required to supplement the ICESat-2 data both to increase the
amount of data and because the ATLAS instrument has a limited range to ≈ 40m
depth.
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Chapter 7

Conclusion

The objectives of this project are to determine bathymetry in a particular area, cre-
ate a machine learning model that can determine bathymetry, compare the machine
learning model with the empirical model, and evaluate machine learning as a tool
for determining bathymetry.

An unsupervised machine learning model called DBSCAN has been implemented
to accommodate the challenge of finding bathymetry from ICESat-2 LiDAR data.
The critical parameters for using the DBSCAN algorithm, MinPts, and ε, are ob-
tained from a priori knowledge about how reflections from the sun interfere with the
amount of noise in the LiDAR data. The estimation of the parameters is inspired by
similar studies using DBSCAN to determine bathymetry and from generic methods
suggested for finding the parameters.

Generally, the DBSCAN model performed well and succeeded in finding bathymetry.
However, when compared to high accuracy SDB data from EOMAP, bias plots
revealed that the model had difficulty omitting the sea surface photons. Furthermore,
the model was challenged with finding the photons in low-density bathymetry areas.

The empirical model, from [4], which is used to compare with the DBSCAN model,
is a statistical interpolation method that classifies photons as high, medium, and
low confidence bathymetry. In this study, only the high confidence bathymetry is
considered. A smoothing filter equivalent to the one applied to the DBSCAN model
results have been used to ensure that a comparison is made on the same basis.

A comparative study of the two models shows that both the DBSCAN model and the
empirical performed well at determining bathymetry in the Heron reef area, which is
part of the great barrier reef in Australia. Results show that the empirical model was
better at omitting the sea surface photons, whereas the results from the DBSCAN
have included several. Furthermore, both models are challenged in the areas where
the bathymetry signal has a low point density. Furthermore, the empirical model
has a more significant bias than the DBSCAN model.

The RMSE for the overall results from the two models, are RMSEEM = 0.46m and
RMSEDBSCAN = 0.96m, and the coefficients of determination, R2, are R2

EM = 0.97
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and R2
DBSCAN = 0.84, respectively. Hence, the heights from the empirical model are

generally closer to the EOMAP heights than the heights from the DBSCAN model.
The reason for this is mainly that the DBSCAN results include a lot of the sea
surface.

However, statistics of residuals between the model results and the high accuracy
SDB from EOMAP reveal that the results from the empirical model have a bias of
−21 cm. The bias indicates that the resulting heights from the empirical model tend
to be 21 cm closer to the sea surface than the EOMAP heights. The preprocessing
of the raw ICESat-2 data includes removing the geoid, masking the area and signal
confidence, removing the sea surface, and refraction correction. The origin of the
bias has caused great wonder, and after hours of inspecting the scripts, the reason
for the bias was not found.

The model performances were compared to models in similar studies using ICESat-2
data, conducted in St. Thomas, in the Caribbean, and Yongle Atoll in the South
China Sea, respectively. The comparison showed that the RMSE of the empirical
model is performing slightly better than both models in the similar studies, and the
RMSE for the DBSCAN model is slightly poorer than both models in the studies.
In similar studies, only the results in one of the studies were compared to actual in
situ data. In the other study, the RMSE value was estimated indirectly from the
ICESat-2 data.

In this project, no in situ data were available. Thus, the EOMAP was used instead,
and throughout the evaluation of the DBSCAN model and the empirical model, the
uncertainty of the EOMAP data is considered.

Based on the performance of the DBSCAN model and the models from the literature
showcasing different types of machine learning models for the particular purpose
of determining bathymetry, it can be concluded that machine learning has great
potential for this specific topic.
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Chapter 8

Future Work

Throughout the project, the models have been compared in the Heron reef, a small
area with clear water. To test the model performance further, future work can
include expanding the area of interest to areas with more challenging conditions.

If more time were provided for finishing the project, the main focus would be to
improve the DBSCAN model to account for the low-density areas, and the included
sea surface noise. A way to do that can be by implementing another method of cal-
culating the sea surface, e.g., as in [19]. Furthermore, the model might be improved
by segmenting the data such that there will be a unique model for each segment.
The sizes of the segments and whether they should be in the vertical or horizontal
direction or by some points would require methodically moving forward as it appears
from the literature that all three have been done previously [19][20][21].

An alternative to applying the smoothing filter after using the DBSCAN algorithm
can be to apply the DBSCAN algorithm twice or combine it with other machine
learning algorithms. Other machine learning models could be; long short term mem-
ory (LSTM), random forest or support vector regression (SVR) as in [21]. However,
as these are all supervised machine learning algorithms, they will require ground
truth labeled data and significantly more data, which can be obtained by expanding
the area. In situ, data would be required to ensure sufficient accuracy of the results
from these supervised models. If the ground truth data comes from a model, the
machine learning model will not be better than the ground truth.

Ultimately, a contribution to the Seabed 2030 project could be made from the result-
ing heights. However, making a global bathymetry model will require a combination
of data as the ICESat-2 data is limited to ≈ 40m and only has a repeat cycle of
91 days. The combination could be including multi-spectral Sentinel-2 data as in
[19] and [21], Landsat-8 as in [23], or Worldview-2 which is used to generate the
EOMAP data [14].
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Appendix A

Data

A.1 List of Data Files

Table A.1: List of ICESat-2 data files.
ATL03_20190317220620_12130214_005_01.h5
ATL03_20190408085308_01540308_005_01.h5
ATL03_20190616174556_12130314_005_01.h5
ATL03_20190915132546_12130414_005_01.h5
ATL03_20191215090534_12130514_005_01.h5
ATL03_20200405153209_01540708_005_01.h5
ATL03_20200614002507_12130714_005_01.h5
ATL03_20200705111156_01540808_005_01.h5
ATL03_20201004065141_01540908_005_01.h5
ATL03_20201212154448_12130914_005_01.h5
ATL03_20210612070430_12131114_005_01.h5
ATL03_20211002133119_01541308_005_01.h5
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Appendix B

Results

B.1 Figures

Figure B.1: Slope map computed in QGIS from the EOMAP data.
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