
UMGD#1530320, VOL 0, ISS 0

Improving the Coastal Mean Dynamic Topogra-
phy by Geodetic Combination of Tide Gauge and

Satellite Altimetry
Ole B. Andersen, Karina Nielsen, Per Knudsen, Chris W. Hughes, P. L.
Woodworth, Rory Bingham, Luciana Fenoglio-Marc, M�ed�eric Gravelle,

Michael Kern, and Sara Padilla Polo

QUERY SHEET

This page lists questions we have about your paper. The numbers displayed at left can be
found in the text of the paper for reference. In addition, please review your paper as a
whole for correctness.

0Q1. Please check whether article title has been OK as typeset as the title given in
title page document ends with the word "estimates." Kindly check and amend
if necessary.

0Q2. Please note that there is a mismatch in number of authors between CATS and
manuscript hence one in the manuscript has been retained. Kindly check
whether the author names (first name followed by last name) and affiliations
are correct as presented in the proofs. Kindly provide department name for
all the affiliations.

0Q3. Please check and resupply the corresponding author’s email and postal
address if the given is inaccurate.

0Q4. Please check that the heading levels have been correctly format-
ted throughout.

0Q5. Please provide the place of publication for Andersen et al. 2016.
0Q6. Please provide the volume and page numbers for reference “Dinardo

et al. 2017.”
0Q7. Please provide the volume and page numbers for reference “Fenoglio-Marc

and Buchhaupt 2017.”
0Q8. Please update reference “Filmer et al. 2018," if possible.
0Q9. Please provide the volume or page numbers as appropriate for

“Foerste 2014.”
Q10. Please provide publisher name and location in reference "IERS 2010."
Q11. Please provide volume number in reference "Woodworth et al. 2017."

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

30 O. B. NDERSEN ET AL.



TABLE OF CONTENTS LISTING

The table of contents for the journal will list your paper exactly as it appears below:

Improving the Coastal Mean Dynamic Topography by Geodetic Combination of
Tide Gauge and Satellite Altimetry
Ole B. Andersen, Karina Nielsen, Per Knudsen, Chris W. Hughes, P. L.

Woodworth, Rory Bingham, Luciana Fenoglio-Marc, M�ed�eric Gravelle, Michael

Kern, and Sara Padilla Polo

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

MARINE GEODESY 31
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eUniversity of Bonn, Bonn, Germany; fLIENSs, Universit�e de La Rochelle-CNRS, La Rochelle,
France; gESA ESTEC, Noordwijk, The Netherlands; hLEGOS, CNRS-CNES-IRD-UPS, Toulouse, France

ABSTRACT
The ocean mean dynamic topography (MDT) is the surface
representation of the ocean circulation. The MDT may be
determined by the ocean approach, which involves temporal
averaging of numerical ocean circulation model information,
or by the geodetic approach, wherein the MDT is derived
using the ellipsoidal height of the mean sea surface (MSS), or
mean sea level (MSL) minus the geoid as the geoid. The ellips-
oidal height of the MSS might be estimated either by satellite
or coastal tide gauges by connecting the tide gauge datum to
the Earth-centred reference frame. In this article we present a
novel approach to improve the coastal MDT, where the solution
is based on both satellite altimetry and tide gauge data using
new set of 302 tide gauges with ellipsoidal heights through the
SONEL network. The approach was evaluated for the Northeast
Atlantic coast where a dense network of GNSS-surveyed tide
gauges is available. The typical misfit between tide gauge and
satellite or oceanographic MDT was found to be around 9 cm.
This misfit was found to be mainly due to small scale geoid
errors. Similarly, we found, that a single tide gauge places only
weak constraints on the coastal dynamic topography.
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KEYWORDS
Mean dynamic topography;
satellite altimetry;
tide gauge

IntroductionQ4

The ocean’s mean dynamic topography (MDT) is the surface representation
of ocean circulation. It is of interest to oceanographers to study the ocean’s
surface currents (Wunsch and Stammer 1997), and to geodesists for
example linking height datums globally, particularly in regions where geo-
detic land-ties (connection by levelling to the land vertical datum) through
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GNSS measured tide gauges are not possible (Featherstone and Filmer
2012; Woodworth et al. 2013).

The ocean MDT may be determined by the oceanographic approach or
the geodetic approach (Huang 2017; Woodworth et al. 2013). The oceano-
graphic approach involves the use of an ocean circulation models and the
MDT is computed through temporal averaging over a given period.

The geodetic approach involves either satellite derived ellipsoidal mean
sea surface models (MSS) (Andersen and Knudsen 2009) or mean sea level
(MSL) observations from tide gauges expressed as ellipsoidal heights from
colocated GNSS observations.

Figure 1 illustrates the way that the MSS or MSL is determined using
geodetic methods like satellite altimetry and tide gauges. Once referenced
to the same reference ellipsoid MSS and MSL represent the same
“quantity,” but in the following we have used the terminology MSL for
individual point observations (from tide gauges) and MSS for satellite
derived grids.

From the ellipsoidal MSS or MSL data the MDT can be derived through
a purely geometrical approach based on the simple equation

MDT ¼ MSS� N (1)

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Figure 1. Satellite and tide gauge observations of the ellipsoidal mean sea surface (MSS) or
mean sea level (MSL) relative to the tide gauge datum. The geoid height is called (N); the
figure shows the terms of the equations derived in Tide Gauge MDT section. The figure is
modified from Thierry Guyot (LIENSs).
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The MSS and/or MSL and geoid (N) must be given relative to same tide
system and with respect to the same reference ellipsoid. We used the mean
tide system and the TOPEX ellipsoid, with a semi major axis of
6,378,136.3 m and an inverse flattening of 298.257. Other ellipsoids or tide
systems can be used through transformation. GNSS measurements, that are
initially consistent with the WGS84 reference frame, are usually aligned
with the International Terrestrial Reference Frame (ITRF) for Earth science
applications that require a high degree of accuracy (IERS 2010). Thus, the
GNSS ellipsoidal heights were here transformed to the most up-to-date
ITRF realisation at the time of the study (the ITRF08 (Altamimi, Collilieux,
and M�etivier 2011), which is associated with the GRS80 ellipsoid). In
comparison or integration with satellite derived MDT these height are then
converted to be consistent with the TOPEX ellipsoid and the mean-tide
system following (Ekman 1989).

This work continues the attempt to improve the coastal mean dynamic
topography supporting ESA effort in the use of geoid information for height
system unifications and connections (Amjadiparvar et al. 2013; Gerlach and
Rummel 2013; Gruber, Gerlach, and Haagmans 2012; Rummel 2012). New
and more accurate geoid information is applied from the ESA mission
Gravity field and Ocean Circulation Explorer (GOCE) made available via the
international centre for global Earth Models (IGCEM, http://icgem.gfz-
potsdam.de/home). We test a novel approach to derive an improved coastal
MDT along the Northeast European coast using a geodetic combination
of a satellite MDT at sea combined with a number of tide gauges derived
MDT values along the coast. In the following, we refer to this combined
geodetic approach as the GOCEþþ approach as the work describes the
result of the GOCEþþ study initiated by the European Space Agency (ESA).

We chose a common 5-year period 2003–2007 inclusive for this investiga-
tion for consistency. The period was chosen as it offered the highest number
of near-uninterrupted tide gauges with ellipsoidal height from GNSS. Out
MDT will consequently represent this period. higher Initially, data and meth-
ods are described along with the way the MDT is determined geodetically
from satellite and from tide gauges. For the chosen time period we then pre-
sent the updated set of 302 tide gauges with known ellipsoidal heights from
the GNSS data assembly centre for the Global Sea Level Observing System at
the Syst�eme d’Observation du Niveau des Eaux Littorales (SONEL, http://
www.sonel.org). Here we evaluate the degree to which the point measure-
ments of MDT at tide gauges can be reconciled with the broader scale
MDTs of ocean models and those derived from altimetry.

Subsequently we present an attempt to merge satellite MDT and tide
gauge MDT using an iterative method called GOCEþþ. The northeast
European shelf has a huge number of tide gauges including 100 ellipsoidal
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tide gauges in the SONEL network. This enables us to perform a compari-
son of the effect on including tide gauges in the coastal MDT solution.

Currently, synthetic aperture radar (SAR) altimetry is becoming available
with Cryosat-2 and Sentinel-3 to improve the mapping of the short scales
in the MSS. These data are an important step to improve future coastal
MDT models and we present an evaluation of the MDT and improvements
in the southern North Sea.

Data and methods

In the following subsections, we introduce the various datasets and
methods to derive the MDT. We introduce the oceanographic MDT used
for comparison as well as the satellite tide gauge data and the way geodetic
MDT is computed.

Ocean MDT

Seven ocean models were available for computation of MDT in the study.
These are three Nemo (Nucleus for European Modelling of the Ocean)
ORCA (Madec 2008) model integrations, one at a resolution of 1/4�
(NemoQ), and two at a resolution of 1/12� with slightly different versions of
the model code (Nemo12a, Nemo12b). Two Liverpool University implemen-
tations of the Massachusetts Institute of Technology (MIT) global ocean
circulation model (Marshall et al. 1997a, 1997b), assimilating hydrographic
information provided by the UK Met Office (Smith and Murphy 2007); one
in a coarse form (LivC), with a global resolution of 1� and a finer version
(LivS) with an increased resolution of 1/5��1/6� in the North Atlantic. The
final two models are products of the ECCO consortium to calculate ocean
state estimates by assimilating a wide variety of data, including geodetic data.
EccoG (ECCO-Godae) has a global resolution of 1� (K€ohl, Stammer, and
Cornuelle 2007) producing a model state and evolution which is perfectly
consistent with the model equations. Ecco2 (Menemenlis, Fukumori, and Lee
2005a; Menemenlis et al. 2005b) is a finer resolution model (specified
as �18 km, but supplied on a 0.25 degree grid), with a looser assimilation
scheme designed to match only certain patterns within the observations.
All ocean models incorporate climatology for their initiation, as well as wind
and atmospheric forcing from meteorological reanalyses. All models are
averaged over the chosen period of 2003–2007 inclusive.

Satellite MDT

Computing the satellite MDT is conceptually simple with the use of
Eq. (1). However, there are several complications in computing the satellite
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MDT. The major complication is the fact, that the geoid is typically given
with limited resolution (typically hundreds of kilometers) compared to the
MSS (tens of kilometers).

Subtracting a geoid N given in spherical harmonic coefficients up to
a certain degree and order L the resulting dynamic topography estimate,

MDTR ¼ MDT þ DNL; (2)

where the derived MDTR consists of the MDT plus an un-modelled part
of the geoid of spherical harmonic degrees and orders higher than L
appearing as an omission error due to spherical harmonic coefficients
which are omitted in the geoid model. This error decreases with increasing
degree and order L of the geoid. The GOCE satellite has been paramount
to reduce the geoid error in global geoids where the degree and order of
satellite only GOCE geoids is typically around 250.

Consequently, a filter needs to be derived and applied to Eq. (2) to
eliminate the DNL without removing real MDT signal in the filtering. It is
naturally important to design appropriate linear or non-linear filters for
this operation (Bingham and Haines 2006; Bingham et al. 2011; Sanchez-
Reales, Andersen, and Vigo 2016).

We decided to use the alternative approach to limit the omission error
DNL by using a geoid and a MSS given at the same resolution. We used the
European Improved Gravity model of the Earth by New techniques (EIGEN)
combined 6C4 geoid to degree and order 2190 due to consistency with the
MSS. This EIGEN6C4 geoid (Foerste 2014) consists of a combination of
GRACE and GOCE up to degree and order 260 augmented with the DTU10
surface gravity data. For the investigation, we used the DTU10MSS (Andersen
and Knudsen 2009; Andersen, Knudsen, and Stenseng 2016). This is
computed as an average of satellite altimetry over the period 1993–2009;
but is mapped to the 2003–2007 average by using the difference in AVISO
(Archiving, Validation, and Interpretation of Satellite Oceanographic data)
absolute dynamic topography (ADT) averages over the two periods.
DTU10MSS was preferred because this model is consistent with various geoids
like the EIGEN6C4 and the TUM13 (Fecher, Pail, and Gruber 2015) geoid
(the gravity anomaly dataset is derived from the DTU10MSS, so the difference
does not add artificial small-scale errors into the dynamic topography).

Altimetric MSS is corrected for the ocean’s inverted barometer (IB)
response (static atmospheric loading effect) using Wunsch and Stammer
(1997) and a correction for periods shorter than the sampling of the Topex
and Jason satellite via the Dynamic Atmosphere Correction. This correction
is applied, as it reduces the sea surface variability leading to a more stable
estimation of the mean. In our approach, we decided to restore the effect of
the atmosphere on the sea surface to be consistent with the tide gauge mean.
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The total error of the satellite derived MDT will be a combination of the
geoid omission errors along with errors in both the MSS and the geoid
coefficients (commission errors). The satellite MDT is typically less accurate
in the coastal zone due to a combination of less accurate altimetric observa-
tions, less accurate geoid mapping due to large bathymetry/topography varia-
tions and the fact that the MDT changes more rapidly in the coastal zone.

Tide gauge MDT

Using global tide gauges for comparisons and combination with satellite
MDT implies that the tide gauges height is linked into a Earth-centred
global reference frame using GNSS measurements at the local tide gauges
transforming the observations to ellipsoidal heights. This link usually relies
on two quantities: the GNSS-derived ellipsoidal height of a tide gauge
benchmark in the global reference (hGNSS in Figure 1), obtained from the
processing of permanent or episodic GNSS measurements, and the height
of this benchmark with respect to the tide gauge datum (HGNSS_datum in
Figure 1). The latter is always known f from the Permanent Service for
Mean Sea Level (PSMSL) (Holgate et al. 2013) When the benchmark height
is not available, a supplemental measurement is needed to connect this
benchmark to one where GNSS ellipsoidal height is known (mostly using
spirit levelling). This is commonly called a geodetic tie (Woodworth et al.
2017), and ultimately yields A in Figure 1.

Tide gauges with permanent GNSS
The use of GNSS for monitoring the tide gauge sites stability is optimised
when it is processed continuously and globally (W€oppelmann and Marcos
2016). Thus, the availability of positions and vertical velocity of tide gauge
co-located permanent GNSS stations was a priority for the investigation.
The geodetic ties of 113 RLR tide gauges with nearby permanent GNSS
stations were collected from the SONEL data assembly centre (http://www.
sonel.org). Fourteen additional ties were recovered for the German tide
gauges, which are not in the RLR dataset yet (http://pegelonline.wsv.de).
For most of these permanent GNSS stations, the ellipsoidal height
(associated to an epoch and an uncertainty) was extracted from the last
GPS solution (ULR6a) of the ULR analysis centre provided on SONEL
(Santamar�ıa-G�omez et al. 2017). The vertical velocities were then used to
propagate the ellipsoidal height from the reference epoch to the average
epoch of the selected period 2003–2007 (2005.5). For permanent stations,
that were not included in this solution, the ellipsoidal heights were
obtained from the average of three positions per day, processed using the
Canadian CSRS-PPP tool (https://webapp.geod.nrcan.gc.ca/geod/tools-
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outils/ppp.php), also expressed in the ITRF08 reference frame. For the
ULR6 stations that did not satisfy the “robust” velocity criteria defined by
SONEL, the propagation to the epoch 2005.5 could not be performed and
the stations were rejected.

Tide gauges with episodic measurements
Ellipsoidal heights from GNSS campaigns at tide gauge sites were retrieved
from different sources; mostly via Woodworth et al. (2013, 2015),
Featherstone and Filmer (2012), Lin et al. (2015) and SONEL, and led to
189 additional RLR ellipsoidal heights.

For most of the ellipsoidal heights coming from episodic GNSS measure-
ments, the epoch and the uncertainty is unknown. This is a source of error,
and it was not possible to propagate the heights to the mean epochs of the
selected period (they were adopted as is, as for permanent GNSS stations
without enough data to obtain a robust velocity and the heights coming
from the CSRS-PPP tool). These stations were associated with a cm uncer-
tainty (arbitrary based on our personal experience).

Computing the mean sea level
For the RLR stations, the monthly time series from PSMSL were used to
compute the MSL over the 2003–2007 period. For records with more than
70% of data over this period, a classic average was calculated. For the remain-
der 54 stations we applied simultaneous observations from satellite altimetry
data to fill the gap. This was done in three stages: first, a least squares fit of
IB-corrected tide gauge data on an annual cycle, semiannual cycle, linear
trend, and altimeter time series was computed for every altimeter point
(using the AVISO gridded dynamic topography, www.aviso.altimetry.fr/en)
within 150 km of the tide gauge. Second, the altimeter point for which the
resulting fit explained the largest percentage variance of the tide gauge data
was selected, and tide gauge data predicted from that least squares fit for
every month. Third, the predicted tide gauge time series was used to fill gaps
in the tide gauge data, with an additional linear trend added over each gap to
ensure the bestfit the end points. This yield a dataset of 302 ellipsoidal MSL
values for the 2003–2007 period globally distributed (Figure 2).

Following Eq. (1), the MDT computation at a tide gauge implies sub-
tracting the geoid height from the ellipsoidal MSL. Thus, at a tide gauge
site, Eq. (1) can be written as follows (Figure 1):

MDTTG ¼ hMSL � NTG (3)

where MDTTG is the MDT value at the tide gauge, hMSL is the tide gauge
ellipsoidal MSL and NTG is the geoid value at the tide gauge. hMSL can be

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

MARINE GEODESY 7

https://webapp.geod.nrcan.gc.ca/geod/tools-outils/ppp.php
http://www.aviso.altimetry.fr/en
oand
Sticky Note
replace measurements with

oand
Sticky Note
please insert GNSS

oand
Sticky Note
Should be bold headline. 



developed as follows:
hMSL ¼ hdatum þMSL (4)

where hdatum is the ellipsoidal height of the datum of the tide gauge meas-
urements and MSL value as observed by the tide gauge with respect to
this datum.

hdatum is obtained by adding the ellipsoidal height of the nearby GNSS
station (hGNSSÞ and the ellipsoidal height difference between the points
(DHdat� gnssÞ:

hdatum ¼ hGNSS þ DHdat� gnss (5)

DHdat� gnss is equal to the geodetic tie used (tiedat� gnssÞ only if it comes
from differential GNSS (and the tie is geometric and expresses indeed
a difference of ellipsoidal heights). If the geodetic tie comes from spirit
levelling, it expresses a difference in elevations and the geoid gradient has
to be taken into account:

DHdat� gnss ¼ tiedat� gnss þ NTG � NGNSS (6)

where tiedat� gnss is the geodetic tie used. Here it comes from spirit levelling
and NGNSS is the geoid value at the tide gauge-co-located GNSS point from
which the tie has been derived. At the end, Eq. (3) becomes:

MDTTG ¼ hGNSS þ tiedat� gnss þMSL � NTG (7)

if the tiedat� gnss is a difference of ellipsoidal heights, and:
MDTTG ¼ hGNSS þ tiedat� gnss þMSL � NGNSS (8)
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Figure 2. Ellipsoidal Mean sea level at tide gauges over (2003–2007).
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if tiedat� gnss is a difference of elevations. Note that Eqs. (7) and (8) are the
same if the GNSS point is very close (few meters) to the tide gauge (in that
case, the geoid heights at the tide gauge (NTG) and at the GNSS (NGNSS)
are equal).

Computing the MDT values at the tide gauges from the ellipsoidal MSL
implies identifying the type of the geodetic tie in order to determine
whether the geoid value has to be extracted at the tide gauge position or at
the colocated GNSS point. We assumed that the GNSS point was situated
in the vicinity of the tide gauge for episodic GNSS point and that the geoid
difference between the locations is negligible.

For some countries the tide gauges benchmark (if available) are not
linked to the national vertical datum. For such this suggested unification is
particularly important to establish a height system and enables such links.

For tide gauges with permanent GNSS stations, the geodetic ties were
explicitly accounted for, but for episodic GNSS it was assumed (for lack of
any other information) that no tie was necessary. In strong geoid gradients
areas, the impact could reach more than ten centimetres (Figure 13). The
importance of the geoid extraction point indicates the equal importance of
the correct position of the tide gauge: particular care has been taken to
check the coordinates of the 302 selected tide gauges.

Evaluation and representativeness of tide gauge MDT

The tide gauge measurements with geocentric position information dis-
cussed above have been converted to MDT estimates by subtracting a geoid
from the MSS thus defined, that is by applying Eqs. (7) or (8) as appropri-
ate. Here we evaluate the degree to which the point measurements of MDT
at tide gauges can be reconciled with the broader scale MDTs of ocean
models and those derived from altimetry, considering the effect of different
geoids and different truncations. Note that, for this comparison with mod-
els (most of which do not include atmospheric pressure as a forcing), we
again apply the IB correction to all MDTs derived from tide gauges
or altimetry.

As the global mean value of MDT from ocean models is ill-defined, we
subtract this off from all mapped products. To do this in a consistent way
given the different spatial domains of the different products, we first choose
a reference model with global coverage (Ecco2) and subtract off the global
mean MDT from this model. For other mapped products, we subtract off
the spatial average of the difference from the de-meaned Ecco2, over their
common domain. For comparisons purely at tide gauge positions below,
we further subtract the median of differences from the tide gauge MDT
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across all available sites, so statistics relate to the spatial variations in MDT
and not the absolute values.

In addition to the Aviso MDT, we also use a second altimeter-derived
MDT labelled here TUM13, which is formed from the DTU2010 MSS
minus the TUM13 geoid. This was smoothed with a spatially varying
Wiener filter chosen using a signal size estimate from the Nemo12a ocean
model and noise based on the assumption that variations in a known
smooth region of the Pacific are all noise. The same product was also used
in Filmer et al. (2018).

The ordering of the tide gauges follows the PSMSL coastal ordering. This
starts with Norway, running anticlockwise around Europe, Africa and Asia,
then covers Australia and the Pacific, before running anticlockwise around
the Americas starting with Alaska and ending with Arctic Canada, before
finally moving to Antarctica (the last point only). See Appendix 1 for
more detail.

Several considerations can be made immediately from Figure 3. The
match is generally good, but the tide gauges show a systematic high bias
between about numbers 182 and 200, corresponding to the Pacific Islands.
The two prominent downward spikes (121 and 138) are Aburatsubo (near
Tokyo) and Mikuni (fairly nearby, but on the opposite, north coast of
mainland Japan). Tectonic activity is an obvious concern, but the many
other Japanese records look good. Other “spikes” are common to tide
gauges and models, and represent excursions off the main coastline
to islands.

Table 1 shows summary statistics based on these comparisons. The dis-
tribution is clearly non-Gaussian, with long tails and a more compact cen-
tral region, leading to a high excess kurtosis (kurtosis-3; a Gaussian
distribution has an excess kurtosis of zero, https://www.itl.nist.gov/div898/
handbook/eda/section3/eda35b.htm). We see that the global MDTs which
produce the worst comparisons tend to have lower kurtosis, becoming
closer to Gaussian values. This provokes a tentative interpretation, that the
global MDT errors tend to be more Gaussian, and the errors at tide gauges
include more extreme values, probably due to missing fine-scale geoid
information. This will be investigated in more detail below.

It is clear, that the data are able to discriminate between models, espe-
cially when ignoring the tails of the distributions. By far the most import-
ant factor is the quality of the geoid, and in particular its fine scale
structure corresponding to limiting the omission error in Eq. (2). This is
similar to what was seen by Huang (2017). This is illustrated by Figure 4,
which repeats Figure 3 but with the EIGEN6-C4 geoid truncated at degree
300 roughly corresponding to the degree and order of a satellite only geoid
from GOCE.
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Figure 3. The MDT at 302 tide gauges (black open circles) using the EIGEN-6C4 geoid to its full
resolution, compared with predictions from seven ocean models (colours), and two satellite-
derived MDTs (black). Large open circles represent sites with continuous GNSS, and small open
circles those with episodic GNSS. Continuous GNSS, but an estimated MSL/MSS error of >0.04
m is shown as a double circle (five sites).

Table 1. Statistics comparing the coastal MDT at tide gauges estimated using the EIGEN-6C4
geoid to full resolution, against 8 different global MDTs extrapolated to the same positions

Global MDT Std 1 sigma 2 sigma Min Max Skewness
Excess
Kurtosis

N
missing

% err
<9 cm

Nemo12a 0.132 0.097 0.142 � 0.775 0.571 � 0.33 7.69 0 67
NemoQ 0.123 0.095 0.127 � 0.588 0.617 þ0.43 5.41 0 68
Aviso 0.134 0.099 0.131 � 0.727 0.556 � 0.21 6.27 3 65
DTU10TUM13 0.131 0.109 0.139 � 0.726 0.589 þ0.10 4.47 4 62
Nemo12b 0.139 0.101 0.157 � 0.586 0.633 þ0.60 4.45 0 64
Ecco2 0.145 0.121 0.153 � 0.471 0.706 þ0.99 3.18 1 54
Livs 0.161 0.132 0.177 � 0.632 0.753 þ0.75 3.24 3 54
EccoG 0.158 0.150 0.159 � 0.600 0.540 � 0.14 0.63 7 40
Livc 0.163 0.153 0.169 � 0.572 0.546 � 0.05 0.62 7 42

Height values are in metres. The pdfs are non-Gaussian, so they are characterised by half the range which con-
tains the number of values which would be expected to fall within 1 sigma in a Gaussian distribution (one
sigma equiv), or quarter the range for two sigma. Also given are the minimum and maximum values (TG-MDT
after subtracting the median), and the number of missing values (because some MDTs do not have data in
some regions). Where there are no missing values, there are 302 points being compared.
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The spatial distribution of the various MDT measurements can be seen
from Figure 5. The map cannot show all details; however the general pat-
terns are visible. We note that the MDT at the gauge on the east coast of
South Africa (Richards Bay) agrees well with the Aviso global MDT, how-
ever the resolution of the thin strip of ocean to the west of the Agulhas
current is crucial, as nearby ocean values are very different. More detailed
examinations reveal similar results for the Gulf Stream, Kuroshio, and East
Australian Current.

The distribution of misfits for these tide gauge values relative to the vari-
ous global oceanographic MDT models is shown in Figure 6. A broader,
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Figure 4. Repeat of Figure 3 but with the EIGEN-6c4 geoid truncated at degree 300.
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more Gaussian distribution (peaks close to 1 with this normalization) are
found with the coarse resolution models (livc, livs, eccog). It also illustrates
the fact that the better comparisons (narrower distributions) have higher
peaks than would be expected for a Gaussian distribution, consistent with
the high kurtosis discussed above.

The PDFs in Figure 6 appear to have a longer positive tail than the associ-
ated negative tail. A long positive tail suggests that tide gauges are at positions,
which are special in some way, leading to a systematic sign in the misfits,
where they are large. We hypothesise that this is reflecting the fact that, being
coastal, many tide gauges are close to the top of a steep continental slope,
which produces a local geoid maximum at small length scales. In the absence
of sufficient in situ gravity data, such maxima are likely to be reduced by
smoothing, leading to the geoid product estimate being lower than the true
geoid, and hence the MDT being higher than the true value.

With this interpretation, high kurtosis and a longer positive tail in the
PDF would be diagnostic of an artificially smooth geoid. We can test this
interpretation by calculating the statistics using various degrees of smooth-
ing, produced by truncating the geoid at different resolutions. At the same
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Figure 5. The spatial pattern of the Aviso MDT compared with the tide gauge MDT based on
the EIGEN-6c4 geoid. Where the Aviso MDT has no data (mainly ice-covered regions), the Ecco2
model is shown instead.
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time, this allows us to see the effect of resolution on the size of the misfit.
The results are shown in Figure 7. The long positive tail and high kurtosis
do occur when the geoid is poorly resolved, supporting our interpretation.
The effect seems to peak at truncations of around degree 300–600, corre-
sponding to length scales of about 40–70 km, but remains even with the
full resolution geoid. We interpret this as being a measure of the missing
in situ information limiting the resolution of the geoid in some places.

The error standard deviation results show large and continuous improve-
ments with increasing resolution, but begin to plateau at around degree
700, again suggestive of a limit to the added value of the in situ data. The
values taken from different parts of the distribution are quite consistent
(and lower than the overall standard deviation), apart from the value repre-
sentative of the upper, more extreme values, confirming that the positive
tail has the larger departure from a Gaussian distribution.

In an attempt to determine which are the best models and geoids to use,
we rank the 27 possible comparisons of 9 global MDTs with 3 geoids,
according to the size of the misfits. The global MDTs include the 7 ocean
models described in the Methods section, plus two observational products:
AVISO and TUM13.

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

Figure 6. PDFs of the misfits between the tide gauge MDT using the EIGEN-6C4 geoid to its
full resolution, and the various global products (median values subtracted). The PDFs are nor-
malised relative to a Gaussian with the same standard deviation, and are offset by ±1 from
their neighbours. Numbers to the right represent the number of available points for comparison
in each case.

14 O. B. NDERSEN ET AL.



The non-Gaussian nature of the PDFs means that no single statistic is
representative of the distribution, so we use three different measures: stand-
ard deviation, width of the part of the PDF containing the central 68% of
the data, and width of the part containing the central 95%. The resultant
rankings are shown in Figure 8. The three geoids are EIGEN-6C4 (Foerste
2014), GOCO05c (Fecher, Pail, and Gruber 2017) and EGM2008 (Pavlis
et al. 2012). The GOCO05c product was extended from its native resolution
of degree 720 using EGM2008 coefficients at higher degrees All three
geoids therefore include information up to degree 2190.

The low-resolution ocean MDT models, LivC, EccoG and LivS, consist-
ently perform poorly, and NemoQ, Aviso and Nemo12a consistently per-
form well, with TUM13 and Nemo12b in the middle, and Ecco2 closer to
the poor end. It is perhaps to be expected that the “observational” prod-
ucts, Aviso and TUM13, should do well, being the most strongly con-
strained to the real ocean. It is also natural that TUM13 should be slightly
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Figure 7. Statistics of misfit between Nemo12a and tide gauge MDTs using the EIGEN-6c4
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width containing 47.5% below or above the median. These would all be the same for a
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worse, as it does not include any dynamical constraints, unlike AVISO.
However, the ocean model results are interesting. The three low-resolution
models perform almost equally poorly, despite assimilation of geodetic data
into one of them (EccoG).

The ranking of geoids is less consistent (unsurprisingly given the import-
ance of fine scale information which is derived from very similar, incom-
plete sources in all cases), with different geoids performing best under
different ranking criteria.

Looking back at Table 1, the final column shows the percentage of com-
parisons which were within 9 cm, after matching the medians. For a
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Figure 8. Ranking of quality of comparison of MDTs at tide gauges using three geoids, com-
pared with 9 global products. Three different criteria are used as described in the text.
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Gaussian distribution, this would be 68.2% if 9 cm represented one stand-
ard deviation. We can see from this that the best global MDTs have
“typical” errors of around 9 cm, if “typical” is defined as analogous to one
standard deviation of a Gaussian distribution. This error is similar to the
findings for Norway as presented by (Ophaug, Breili, and Gerlach 2015).

GOCE11 combined coastal MDT

The satellite derived satellite MDT is generally less accurate in the coastal
region due to the sparse coverage of valid altimetry observations. For a
description of the satellite MDT se Data and methods section. Because of
the degradation in both MSS and geoid artifacts in the coastal region are
typically seen as MDT contours crossing the coastline when plotting these.

In the GOCEþþ project we attempted to derive a coastal MDT by
inserting MDT values over land and subsequently smoothing these into the
ocean using an iterative spatial filter. The land values can be based on the
tide gauge MDT values, the satellite-based MDT in the coastal grid cells, or
a combination of both.

Land values

In the tide gauge-based solution the tide gauge MDT values are used to fill
in the land values. This is done by linearly interpolating the MDT values
from either tide gauges or from the MDT model in the coastal zone onto
the entire grid of land cells.

In the satellite-based solution the land value for a given coastal grid
point is estimated as the average of the raw MDT grid values in a box cen-
tered on the coastal grid cell. The size of this box is by default chosen to
be nine times nine grid points which approximately corresponds to a one
time one-degree box, as all grids for the test is at 1/8 degree resolution.
Hence a local average (defined by the size of the box) for each coastal grid
cell is used as a representation of the land value. It is important to notice
that the altimetry-based land values will not have the constraining effect
provided by the tide gauge MDT values, but only provide an additional
smoothing effect ensuring a less noisy MDT along the coast.

In the combined solution, coastlines without tide gauges are supple-
mented with altimetry-based land values as described above. Subsequently
the land values along the coast are simply interpolated to all land grid cells
using linear or nearest neighbour interpolation.
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Filtering

To smooth the raw MDT values a spatial filter is applied. The filter is an
average or box filter where the kernel is a nx times ny matrix, where nx
and ny are the number of kernel points in the east-west and north-south
direction, respectively. In the north–south direction, the size of the filter is
fixed with a default value of two while it is scaled by the latitude in the
east-west direction. The filter is iteratively applied over both land and
ocean grid cells causing the simple average filter to converge toward a
Gaussian filter. However, at each iteration, the land values are reset to their
original value. This has the effect of maintaining the coastal values and
increasing the smoothing in the coastal regions without affecting the open
ocean. In general, ten iterations are used.

Software

The methodology was implemented in the publically available software
“coastMDT” which allows estimation of the coastal MDT in a given region
(see the detailed description of the software and how to access it in
Appendix 2). Figure 9 shows a flowchart of the software “coastMDT”. The
green boxes represent data input to the software; the purple boxes the func-
tionality and the blue box the final product. The functionality can briefly
be explained in the following steps:

� Step 0: The tide gauge data is references to the same ellipsoid as the
altimetry data.

� Step 1: The raw gridded satellite and tide gauge MDTs are derived.
� Step 2: A region of interest is selected based on a longitude and lati-

tude range.
� Step 3: Land values are estimated based on the methods described in

Land values section.
� Step 4: Filtering over both land and ocean grid cells is applied.
� Step 5: Plotting, error estimation, and saving of the final MDT.

Results

The GOCE11 Northeast Atlantic MDT model

As a demonstration of the combined coastal MDT based on the GOCEþþ
approach the raw and filtered solutions are shown for the Northeast
Atlantic coastline (Figure 10). The coastal values in the example are based
on a combination of the tide gauge and altimetry as described above. The
tide gauges used in this section all lie in the range of numbers 2 to 98 as
used in Figures 3 and 4 and described in Appendix 1.
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Figure 11 displays the MDT solutions along the Northeast Atlantic coast-
line, from Norway to the southern tip of Spain following the labelling in
Figure 10. The black curve is the unfiltered MDT corresponding to the raw
DTU10MSS-EIGEN4C difference. The blue and red curves represent the
coastal MDTs based on a combination of satellite altimetry and tide gauge
MDT, and satellite altimetry only, respectively. For comparison, we have
included the comparison to a typical satellite MDT. Here we used a MDT
derived in the same way as the DTU13MDT (Knudsen et al. 2011) namely
based on the satellite MDT values of MSS minus geoid filtered with a
Gaussian filter with radius 0.7 degrees and with no land values (shown in
green). There is no doubt, that the filtering improves the stability of the
MDT solution and that the various filtered solutions generally agree. In
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Figure 9. Flowchart of the software “coastMDT”.

Figure 10. Northeast Atlantic tide gauges and MDT, Left the numbering of the grid points
used for the evaluation of the GOCEþþ model. Middle. An example of the raw MDT, right, the
filtered MDT, where the land values are based on a combination of tide gauges and altimetry.
The location of the tide gauges and the corresponding MDT value is shown with crosses.
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some places there are deviations up to �10 cm for example index 350–450,
500–650, and 800–900, which corresponds to the coastline along the inner
Danish waters, the North Sea, and the Bay of Biscay. However, it is difficult
to quantify the quality of the GOCEþþ approach visually from this plot.

To evaluate the uncertainty of the MDT solution we apply a bootstrap
approach. Since the individual grid points are correlated, we divide the raw
MDT data set into blocks, which we assume are uncorrelated. We then cre-
ate a large number N of artificial data sets by sampling with replacement
among the different blocks. For each of the bootstrap data set we derive a
filtered MDT solution. In this way, we get a distribution of solutions from
which we can estimate the standard deviation of the MDT.

For the validation we select the tide gauges along the Danish, German
and French coastlines as the representation of tide gauges is dense here
(corresponding to coastal grid points labelled between 300 and 900
in Figure 10). To have independent data for the validation we randomly
divide the tide gauges into two groups; 20% for validation and 80% which
are used to derive the MDT solution. We can then estimate the RMSE
as a measure for the quality of the different solutions. Because the result
will depend on which of the tide gauges that are used to derive the solu-
tion, we repeat the exercise 100 times. This provides a distribution of the
RMSE for the different solutions.

The RMSE distributions for the solutions are shown in Figure 12. In the
solutions, land values have been from either altimetry or a combination of
altimetry and tide gauges both have medians of 5.8 cm. The MDT without
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Figure 11. MDT solutions along the Northeast Atlantic. The black curve represents the unfil-
tered MDT, the blue curve represents the MDT solution where the land values are a combin-
ation of the satellite and tide gauge MDT values, the red curve represents the MDT solution
where the land values are based on the unfiltered satellite MDT values, and the Green curve
represents the MDT solution where a Gaussian filter and no land MDT values has been used.
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land values filtered with a classical Gaussian filter of 0.7 degrees exhibits
a median of 6.3 cm. In this investigation we notice a clear improvement
if we include land-based MDT values or not. However, we only see
a marginal difference if we use satellite altimetry or a combination of
satellite altimetry and tide gauge MDT as land values.

Cryosat-2 validation of GOCE11 MDT

Currently SAR altimetry is becoming available with Cryosat-2 and Sentinel-
3A/3B to improve the mapping of the short scales in the MSS (Huang
2017). Hence, we evaluate the potential of using SAR altimetry in future
geodetic MDT models as SAR altimetry has not been used for MSS compu-
tation. In the coastal zone, satellite altimeter data processed with SAR
methodology provide water height observations of higher resolution and
accuracy compared to the conventional pulse-limited altimeters (Dinardo
et al. 2017). Hence, we expect that they should improve the estimation of
the MDT in the coastal stripe within 100 km from land. We assess the
CryoSat-2 altimetry products over a time interval of 6-years from October
2010 to November 2017 along the North-eastern coasts of the Atlantic
Ocean to quantify this.

The SAR data are from ESA Grid Processing on Demand (G-POD) pro-
cessor enables processed with two different SAR retracking methodologies,
called SAMOSA-2 (Ray et al. 2014) and SAMOSAþ (Dinardo et al. 2017).
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Figure 12. RMSE distributions for the MDT solutions; The MDT using combined tide gauge and
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The second provides improved coastal data compared to the first, differences
are both in the waveforms generation (Hamming weighting window on the
burst data prior to the azimuth Fast Fourier Transform (FFT), zero-padding
prior to the range FFT, doubling of the extension for the radar range swath)
and in the retracking methodology. We use here SAMOSAþ and its corre-
sponding Pseudo-LRM data, also called reduced SAR altimetry (RDSAR). This
latter is generated by the TUDABo processor (http://wiki.services.eoportal.org/
tiki-index.php?page¼G-PODþservices) and retracked using the TU-Darmstadt
Adaptive Leading Edge Sub-waveform retracker (TALES) and Spatio-Temporal
Altimeter Waveform Retracking (STAR) sub-waveform retrackers (Fenoglio-
Marc and Buchhaupt 2017; Roscher, Uebbing, and Kusche 2017). The quality
of RDSAR and LRM data are comparable. LRM was disregarded near coast in
the estimation of past MSS. The impact of the new SAMOSAþ data quality
on the MDT estimation is seen from an estimate of a new MDT by averaging
the 6 years of CryoSat-2 data on a 0.25� 0.25 degree grid. We then compare
it to the reference geodetic MDT output of this project. The standard devi-
ation of differences between the reference MDT surface and the MDT surfaces
constructed from SAMOSAþ, TALES and STAR open sea and coastal data
are 6.7 cm for SAMOSAþ, 8.5 cm for TALES and 6.9 cm for STAR, respect-
ively. The largest difference between the reference MDT and the new MDT
surfaces is in the coastal zone. Figure 13 shows the difference between the
reference MDT and the new MDT surfaces. The best agreement with the
reference MDT (smallest differences in the German Bight) is obtained using
the SAMOSAþ data (Figure 13, left) followed by the RDSAR STAR data,
while with RDSAR TALES the agreement is lower.

Discussion, recommendations, and conclusion

In the GOCEþþ project we have tested a new approach to improve the
MDT in the coastal zone, where the solution is based on both satellite
altimetry and tide gauge data. The tide gauge MDT values are integrated
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22 O. B. NDERSEN ET AL.

http://wiki.services.eoportal.org/tiki-index.php?page=G-POD+services
http://wiki.services.eoportal.org/tiki-index.php?page=G-POD+services
oand
Sticky Note
Please remove text from "generated upto services). Link is not working. 

oand
Sticky Note
Please remove reference Fenoglio-Marc and Buchthaupt 2017



into the geodetic MDT by inserting these as land values and subsequently
using an iterative average filter to smooth the tide gauge MDT values into
the altimetry-based MDT. The approach was evaluated for the Northeast
Atlantic coast where a dense representation of tide gauges is present. A val-
idation of the coastal MDT was conducted by comparing the solution to
that obtained from tide gauges. To ensure independent data for the valid-
ation only 80% of the tide gauges were included in the MDT solution. The
new approach showed a small but clear improvement in terms of RMSE
compared to the classical spatial Gaussian filter.

In this investigation, the land values were assigned using linear interpol-
ation, which is not optimal when the tide gauges are unevenly distributed
along the coastline or if the distance between them is large (see the hetero-
geneous distribution of the tide gauges on Figure 2). An improved future
approach could be to consider the correlation pattern potentially from
ocean model MDTs when interpolating the land values. The GOCEþþ
approach to derive a coastal MDT based on altimetry and tide gauge data
was implemented as an R package “coastMDT” which is freely available for
further research. The package can be used with the provided test data used
here or with data provided by the user.

The typical misfit between tide gauge and satellite or oceanographic
MDT was found to be around 9 cm. This misfit was found to be mainly
due to small scale geoid errors. Similarly, a single tide gauge places only
weak constraints on the coastal dynamic topography, especially when the
non-Gaussian nature of the errors means that much larger misfits are pos-
sible. Optimal use of the tide gauges thus relies on exploiting the coherence
of the MDT along the coast, together with a good quantification of errors
in the tide gauge values. Preliminary analyses have shown that sea level
variations at tide gauges bear very different relationships to nearby open
ocean values from satellite altimetry, depending on the site considered.

Where variability at gauges agrees with open ocean altimetry, it seems
safe to assume that the tide gauge mean should also reflect the ocean mean
dynamic topography. Where it does not, there are three possibilities: the
data quality may be poor, the local geoid error may be large, or local
coastal processes may be important. Possible processes are wave setup and
low salinity intrusions due to freshwater input from rivers, both of which
have been suggested to contribute tens of centimetres in places. In fact,
some gauges are far enough up rivers that they may reflect river flow more
directly. Altimetry closer to the coast would help to distinguish between
these possibilities.

Improved mapping of coastal currents and short scale geoid signals will
be important to improve coastal MDT. This can be done through the inte-
gration with very high-resolution ocean model. Local analysis into the
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Norwegian MDT demonstrated the value of SAR altimetry in mapping
local coastal topographies from CryoSat-2 (Id�zanovi�c, Ophaug, and
Andersen 2017). Along the Norwegian coast strong levelling ties between
tide gauges permit a comparison, which is not dependent on direct GPS
measurements at each gauge. The addition of measurements very close to
the coast was found to help in avoiding errors due to coastal currents, seen
in both the satellite data and ocean model. The remaining error, however,
was found to be dominated by small-scale geoid error, which can only be
addressed by local gravity measurements.

Similar investigations into Australian coastal MDT also highlighted the
small-scale geoid error, at larger amplitude in this case, with sporadic mis-
matches of 0.1–0.2 m (Filmer et al. 2018). In some cases, these were found
to be in regions of complex coastal geometry (in one case the gauge is
some distance from the coast). In this investigation, we found that addition
of CryoSat-2 data had the potential to improve the coastal resolution. In
this case, however, another issue was also identified: the availability of tide
model data was found to be a limiting factor, which was overcome by
switching from the GOT4.8 to the FES2012 tidal model. This highlights the
importance of reassessing altimeter correction models as new, more-coastal
data become available.

The biggest challenge for unified calculation of a coastal and global
MDT is clearly the lack of small-scale geoid information for comparison
with point measurements from tide gauges. This is a problem with varying
geographical impact, which will ultimately only be overcome by use of local
measurements; either of gravity in a region surrounding the point in ques-
tion, or of geopotential at the point (see later).

A second challenge is the limited number of tide gauges with GPS ties
(Woodworth et al. 2017). We have identified 302 such gauges in this pro-
ject, in comparison to 1007 datum-controlled records, which overlap the
satellite altimetry era (1993 onwards). The vertical velocity of the GNSS sta-
tion used was known for only 141 of these 302 tide gauges (47%), the
epoch of the height for only 160 (53%). Thus, for a significant number of
the selected tide gauges, it was not possible to propagate the height at the
chosen epoch 2005.5. Actually, 90% of the 400 coastal (closer than 20 km)
ULR6 vertical velocities being in absolute value below 3.5 mm year� 1, it
can be assumed that the maximum error of an ellipsoidal height at an
unknown epoch with an unknown velocity is around 4 cm if we consider
that this unknown epoch is between 1995.0 and 2017.0 (and so distant to a
maximum period of 11.5 years from the chosen period 2005.5). Even with-
out additional data, the present investigations have highlighted a number
of ways in which immediate progress can be made based on observations,
which are currently available or will become available in the next few years.
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The accuracy of the tide gauge location can also have an impact on the
MDT value through the geoid value extraction. The locations used in this
study were taken from the PSMSL and SONEL databanks which strives to
locate the tide gauges as accurate as possible. To estimate the impact of
possible remaining errors in the locations of the tide gauges used, a geoid
slope map has been computed over a global 40 km wide coastal strip from
the EGM2008 model (Pavlis et al. 2012). The histogram on Figure 14 shows
a median equal to 0.014 m km� 1.

A number of recommendations for future directions on both short-term
horizon of a few years, and a longer-term decadal time scale can be found
from the GOCEþþ results at (http://gocehsu.eu). The recommendations
detail our view on how to use and our strategies to improved GNSS cover-
age at tide including strategies to account for local vertical land movement
when computing tide-gauge MDT.

The strategies for deriving an optimal MDT will play out very differently
in different regions. In well-surveyed regions with many tide gauges, the
tide gauge data is likely to play a significant role in constraining the coastal
solutions. In poorly surveyed regions, where tide gauge data are sparse,
there will be no along-coast averaging effect, and the sporadic measure-
ments with correspondingly large errors (given the lack of information
about short length-scale variability) are unlikely to make a significant con-
tribution. As an example, the Pacific island measurements appear to have
both random and systematic errors of order 0.1 m. On the other hand,
model data show that the MDT remains within 0.02 m of the coastal MDT
out to distances of hundreds of kilometres from most islands meaning that
the satellite data will produce the greater constraint. In order for isolated
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tide gauges to make a significant contribution, it is crucial that local geoid
information be improved, and the improvement be quantified.
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Appendix 1

Tide gauge locations.

The locations of the 302 tide gauges used in this study, showing the numbering scheme
used in the various plots within the article. The solid circles represent the first tide gauge
in each colour.

Appendix 2

Software

The methodology described in the previous sections was implemented in a software pack-
age “coastMDT “written in the open source language “R”. The software is freely available
from GitHub (https://github.com/cavios/coastMDT) including installation instructions and
documentation.

The package “coastMDT” offers the user the possibility to derive a geodetic MDT for
a selected region of interest. In relation to the package a collection of data sets is also
available including the MSS/MDT values at the tide gauge stations for the combined
GOCO05C (Fecher et al.2017) and EIGEN 6C4 geoids (Foerste 2014) as well as the DTU
10 & 15MSS (Andersen et al.2016). The gridded datasets are all given with a resolution of
a 1/8� 1/8 degree. A detailed description of the functions in the package is found in the
CoastMDT user manual and complete example of how to use the package to derive the
MDT is described in the coastMDT tutorial.
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Figure A1. Positions of tide gauges used in this study, showing the numbering scheme used in
plots. The solid circles represent the first tide gauge in each colour.
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