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SRAL/SIRAL Syntetic Interferometric Radar Altimeter
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9.0 Outline of the chapter

Two thirds of the globe is covered with water, and large parts of the ocean are not
covered with marine gravity observations. In large parts of the Southern Pacific
Ocean the distance between surveys lines are several hundred kilometres thus only
resolving signals of twice that distance. Satellite altimetry can provide information of
the height of the oceans over nearly 60% of the Earth surface. These data can be used
to derive a high resolution global marine gravity field with an accuracy ranging
between 2 - 4 mGal.

In this chapter satellite altimetric data are introduced and the importance to global
geoid and gravity mapping are demonstrated. Individual satellite altimetry
observations might not provide as accurate measure of the gravity field as those by
marine gravity, but the ability to provide a near global uniform accurate gravity field
makes satellite altimetry un-surpassed and essential for determining the high
resolution global marine gravity field of the Earth.

Initially the altimetric sea surface height observations is described. Then the
process of isolating residual geoid signal is covered. Subsequently, methods for
converting altimetric sea surface height observations and/or sea surface slopes to
global marine gravity are described. The accuracy of the global marine gravity field is
presented along with methods for combining satellite altimetry with marine and
airborne gravity using least squares collocation. Finally some of the current frontiers
and trends in development of next generation global marine gravity fields are covered.

9.1 Altimetry data

Prior to the space age global marine geoid and gravity field mapping of the worlds
ocean relied on sparse measurements from surveying ships and tide gauge stations
located along irregular local coastline. During the last three decades, satellite radar
altimetry has revolutionized marine geodesy and proven to be an essential tool for
recovery of the global marine geoid and gravity field especially in areas of sparse ship
coverage (Zlotniki, 1984). Individual satellite altimetry observations might not
provide as accurate direct gravity field observations as marine gravity, but the ability
to provide near global accurately gravity field makes satellite altimetry un-surpassed
for determining the global marine gravity field of the Earth.

Altimeter observations of sea surface height offer a fundamentally different way to
measure the local gravity than that provided by space gravity missions such as
GRACE, CHAMP or GOCE. Space gravity missions measure the gravity field
directly at an altitude of 250-700 km. However, due to upward continuation short
wavelength scale features in the gravity field is attenuated. Consequently only long
wavelength features can be obtained from space gravity field missions. In terms of
space-borne instrumentation only altimeters can measure the high resolution gravity
field from space (in the range of 5-100 km). This is because the satellite altimetry
indirectly measures gravity via measuring the geoid height variations at the sea-
surface (by measuring sea surface height variations). Hereby satellite altimetry
provide observations directly at the sea surface which is far closer to the gravity field
sources in the Earth crust responsible for gravity field variations in the 5-100 km
wavelength.



The height of the oceans closely assembles an equipotential surface of gravity and
dense observations of the height of the ocean have become an increasing important
supplement to traditional terrestrial, ship borne and airborne observations.

Satellite altimetry works conceptually by the satellite transmitting a short pulse of
microwave radiation with known power towards the sea surface, where it interacts
with it. Part of the signal is returned to the altimeter where the travel time is measured
accurately using atomic clocks. Accurate determination of sea surface height from the
altimeter range measurement involves a number of corrections: those expressing the
behavior of the radar pulse through the atmosphere, and those correcting for sea state

and other geophysical signals.

Satellite Duration Inclination | Repeat Track noise
(degrees) |times distance  at|(m)
(days) Equator (km)
Geosat 1984-1988 |108 ~3,17 4,150 0.07
ERS-1 1991-1996 |98 3,35,356 900, 75, 8 0.06
ERS-2 1995-2006 |98 35 75 0.05
TOPEX/Poseidon | 1992-2006 |66 ~9.9156 315 0.04
Jason-1 2002-2008 |66 ~9.9156 315 0.03
Jason-2 2008 -> 66 ~9.9156 315 0.03
GFO 2001-2008 |108 17 150 0.06
Envisat 2001 -> 98 35 75 0.04
ICESat 2002 -> 94 90 ‘110° 0.04
Cryosat-2 2010 -> 88 369 7 0.01

Table 9.1 Specifications for recent and ongoing satellite missions carrying altimeters.

During the design of a satellite mission one of the first steps is to make a decision
of how the satellite is flown and how the orbital parameters are defined (e.g.,
inclination with respect to the Equator and repeat time). This will define the
observational pattern of the satellite given by the ground track distance in Table 9.1
and also shown in Figure 9.1, where the denser ground tracks is preferred for
recovering high resolution marine gravity. The inclination in Table 9.1also determines
the maximum latitude covered by the satellites. All altimetric satellites leave a polar
gap of different size which stresses the importance of recovering gravity in the Polar
Regions through project like the Arctic Gravity field (ArcGP) project (Kenyon and
Forsberg, 2008). An inspection of the different inclinations in Table 9.1 reveals, that
the ERS and Envisat satellites leave smaller polar gap than the TOPEX/Poseidon,
Jason, Geosat and GFO. ICESat laser mission leaves a polar gap with a radius of 400
km and the newly launched Cryosat-2 leaves a polar gap with only 200 km.

Data from satellite altimeters are available as either exact repeat mission (ERM) in
which the sea surface height observations are being repeated at regular intervals at a
low spatial resolution. Such design is very important for oceanography and climate
science, but not applicable for high resolution gravity field modelling at least for its
stationary part. The geodetic mission (GM) data are far more interesting for geodesy.
In the GM the satellite flies in a non-repeating orbit or an orbit with a very long repeat
and hence, the sea surface height observations are only taken once at each location but
at a much higher spatial density. Consequently, this configuration creates a much
denser mesh of observations as shown in Figure 9.1.



During the last twenty years or so, the six eight satellites carrying altimeters
(Geosat, GFO, ERS-1, ERS-2, Envisat, TOPEX/POSEIDON, Jason-1 and Jason-2)
have recorded more than 60 years of ERM observations (over a period of 25 years),
whereas less than 2.5 years of GM altimetry have been recorded. The only two
geodetic missions were performed by the ERS-1 and Geosat satellites. During 199 the
ERS-1 performed two interleaved repeats of 168 days resulting in a uniform global
dataset having 7 km along track resolution and 8 km across track resolution at the
Equator. The Geosat GM lasted 1.5 years during 1985 and 1986. However, these data
were not declassified by the US navy until 1995. The Geosat GM did not have a
constant across track distance, as Geosat was put in a drifting ~3-day orbit during the
GM. A total of 35 million altimetric sea surface height observations with an average
track distance of 6 km at the Equator are available from this mission within the +/-
72°parallels. Examples of the ground track pattern measured by the TOPEX & Jason-
1 ERM; ERS and Envisat ERM; Geosat ERM and ERS-1 ERM are shown in Figure
9.1.
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Figure 9.1. Ground tracks patterns in the North Sea for Exact Repeat Missions
(upper) versus Geodetic Missions (lower). The TOPEX/Poseidon and Jason satellites
(upper left); ERS-1, ERS-2 and Envisat ERM (upper right); Geosat GM (lower left),
and ERS-1 GM (lower right).



The major problem for the recovery of high resolution gravity is the fact that only
the old and relatively in-accurate GM data (compared with present day altimeters)
have adequate spatial resolution. Consequently the geodetic community has made
every effort possible in order to enhance the quality and the resolution of the GM
data. This is because the accuracy of the derived gravity field is directly proportional
to the accuracy with which the sea surface height can be determined.

Sea surface height accuracy has been improved dramatically over the last decade
through a reanalysis of the old data applying a technique called retracking. Retracking
describes the way a mathematical model is fitted to the returned power from the sea
surface also called the waveform. From the parameters derived to fit the chosen
mathematical model the sea surface height is derived. Below retracking is briefly
introduced for interested readers.

9.2 Retracking

Over the ocean the power returned from the sea surface has a characteristic waveform
shape as a function of time which was mathematically described by Brown (1977),
and this general form has since been called a Brown waveform. A total of six
parameters can be seen to determine the waveform as shown in Figure 9.2. These are:
the epoch time at mid height, the trailing edge slope, the leading edge slope, the
skewness, the thermal noise (Py) and the amplitude of the signal (P).
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Figure 9.2 The returned power as a function of recording time for a typical altimetric
observation over the ocean modeled as a Brown waveform. The figure has been
modified from ESA (www.esa.int)

The epoch time at mid height where the waveform have risen to half its full power, is
defined to determine the exact time of the return pulse defining the height of the sea
surface (by multiplying with the speed of the radar pulse and dividing by 2 for the
return of he signal). The ‘leading edge slope’ reflects the scattering of the radar signal
by the sea surface. Higher waves will create more uniform distribution of the returned



power and consequently, the ‘leading edge slope’ will be low. In the opposite
situation where the surface is flat (acting like a mirror) the power will be returned
instantly, and the leading edge and trailing edge slopes will be nearly vertical.

Maus et al. (1998) pointed out that in the least squares estimation of the six
parameters defining the Brown waveform, the correlation between the ‘leading edge
slope’ and the epoch time is very high. This leads to the development of a secondary
re-analyzing of the waveform data through re-tracking (also called repicking) of each
18 Hz individual waveforms. In this secondary run the leading edge slope or
equivalently the significant wave height is fixed from the first re-tracking run through
smoothing and the estimation can be limited to a few parameters which result in a
much more robust and smooth sea surface height estimation as shown in Figure 9.2.
This proved to be particularly important particularly for the ERS-1 data where the
thermal noise (Py) is suppressed.

The second important finding was the fact that between 6-9 % of the (ERS-1) data
are rejected globally by the Brown retracker applied by the space agencies, as their
retracker proved to be too restrictive. This leads to the development of a suite of more
tolerant retrackers by Berry et al. (2005) to account for reflections from various
surfaces. This later proved to be particularly important in coastal and polar region
where the percentage of non-Brown waveforms increases dramatically (Andersen et
al. 2010). This increased the number of altimetric observations significantly as also
shown later in Figure 9.27. This development will be further described in section
9.13.4, as a major contributor to the improvement of high resolution global marine
gravity field modeling over the last 10 years can be directly associated with retracking
and improved accuracy of sea surface height estimation.

9.3 Sea surface height observations

Altimeter data are distributed through agencies like, EUMETSAT, AVISO,
PO.DAAC and NOAA. In addition to these operational data centers, the Radar
Altimeter Database System (RADS) delivers harmonized, validated and cross-
calibrated sea level database from all altimetric missions.

The altimeter measures the range to the sea surface and the (retracked) altimetric
range observations are initially corrected for a number of range corrections to model
the behavior of the speed of the radar pulse (speed of light) through the atmosphere.
The range corrections also accounts for the interaction with the sea surface through
the sea state correction (e.g., Andersen and Scharroo 2009; Fu and Cazenave 2001).
The height of the spacecraft is determined relative to the reference ellipsoid through
Precise Orbit Determination and more recently including GPS (Fu and Cazenave,
2001). Combining the knowledge of the height of the spacecraft with the corrected
range gives the sea surface height relative to the reference ellipsoid as also shown in
Figure 9.3. The sea surface height /4 can, in its most simple form, be described
according to the following expression

h=N+(+e (9.1)

Where N is the geoid height above the reference ellipsoid, { is the time-variable sea
surface topography, and e is the error.

In geodesy the geoid N (or the geoid slope) is the important signal. In
oceanography the sea surface topography ('is of prime interest.
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Figure 9.3 Schematic illustration of the satellite altimeter measuring principle. The sea
surface height (h) relative to the reference ellipsoid is the sum of the Geoid N and ocean
topography. Figure modified from AVISO.

The geoid N can be described in terms of a long wavelength reference geoid Nggr, and
residuals AN to this. Similarly the sea surface topography can be described in terms of
a mean dynamic topography (Cupr) and a time varying sea surface topography ({(2))
also called the dynamic ocean topography (DOT). Normally the largest contributors to
the time varying sea surface topography ({(¢)) are removed as part of the standard set
of geophysical corrections. These include the tidal correction and the dynamic
atmosphere correction. The ocean tide correction is responsible for more than 75% of
the total signal variance (Ray et al. 1991). The dynamic atmosphere account for less
than 10% of the total signal variance and include a correction for the atmospheric
pressure effect, as the sea level react as a huge inverted barometer coming up with the
atmospheric pressure is low and going down when the pressure is high.

This way the time varying sea surface topography (((#)) will only contain
contributions from primarily wind and other high frequency effects. Sea surface
height can then be written like:

h=Np, +AN+C,,r +S(t) +e (9.2)

The interesting quantity for gravity field modeling is the residual geoid height AN. The
accuracy with which this quantity can be determined is directly related to the accuracy
with which the other contributors in equation (9.2) can be determined. Consequently, it
is important to model and remove these as accurately as possible which is the focus of
the subsequent section.



Assuming that Nrgr, (vpr and {(t) are all of long wavelength characters then these are
almost identical between two neighbouring altimetric point (4;,4;) some kilometres
apart. Consequently the difference becomes equal to the slope of the residual geoid
signal along the altimeter track like

h;—h; ~AN,—AN; +e~0ON +e (9.3)

The geoid slopes is closely related to the deflections of the vertical (DOV) in the
north and east direction called (§, n) as defined in (2.101) and later in this chapter
their use with altimetry will be described in detail.

The major argument of using DOV rather than geoid heights is the fact that DOV
values are less contaminated by long-wavelength errors as will be demonstrated easier
to process as the user does not need to go to model and remove long wavelength
signals and particularly the time-variable dynamic sea surface topography ({(t) .

There are, however two drawbacks of using slopes compared with direct height
observations. The first stems from the inclination of the satellites (108° and 98° for
Geosat and ERS, respectively). This means, that at low latitudes the geoid slope in the
north-south direction is derived much more accurately, than the east-west slope.
Similarly the north-south-slope is less accurate derived at the turning latitudes of the
satellites (se Sandwell and Smith 1997 for details). The second drawback is the fact
that in shallow water regions, the spatial scales of the time-variable dynamic
topography ({(t)) is scaled down with the square root of the depth and also amplified
and the assumption that this quantity is identical from one altimetric observations to
the next becomes questionably and the noise e is increased.

To get from along track slopes in (9.3) to DOV in the north and eastern directions
several possibilities exist. By definition the along-track DOV called 04 below defined
as the along-track gradient of the geoid (with opposite sign) along the track given like

oh=—" 9.4)

with s being the along track distance. Consequently a gridded geoid surface is needed.
This can be created from e.g., a cubic spline fit to the along track altimetric geoid
height data. Then the along track derivative is obtained by differentiating the spline.
This approach, however, gives noisy DOV due to the interpolation error of the spline.

A better result is obtained by approximating the along-track DOV by the slope of
two successive geoid heights.

N =Ny
d

oh = 9.5)

where d is the along track point spacing and the location of 0/ is the mean location of
the two points. In order to derive the northern and eastern DOV from the along track
DOV the following equation system is set up to determine these using several points
in a small cell (cf. sec. 1.9)

Oh, +v, =&cosa, +nsing, i=1..n (9.6)



where v; is the residual, o; is the azimuth of 0k, n is the number of points and (&,n) is
the north and east component of the DOV. It must be noticed that the along-track
DOV from different satellite mission and at different latitudes have different azimuth,
which complicate the use of (9.6) for resolving gridded northern and eastern DOV
from along-track DOV.

At crossover location where one north going track crosses a south going track, the
north and east components of the DOV can be directly derived from the two along
track DOV observations. This gives far better determination of the slopes. However
crossover locations are infrequently spaced. A thorough description of the individual
steps in the method is given by Hwang et al. (2002)

9.3.1 Mean sea surface and mean dynamic topography

In a perfect world altimetric observations would be available over infinite time. This
would mean, that the dynamic topography ((#) average out from repeated observations
along exact repeated ground tracks making (C (#) = 0) in (9.2). The surface defined by
the repeated satellite observations would then be the mean sea surface (/,s5), which is
the sum of the geoid height N and the mean dynamic topography ({upr). This way (9.2)
reduces to

hyss= N + Quprt e = Nger + AN + Quprt e 9.7)

In case a “perfect” MSS with adequate resolutions existed then AN could be determined
directly from this model. Present day MSS models like DNSCO8MSS are derived using
the most accurate filtering of the temporal sea surface variability with a limited time
span and simultaneously obtaining the highest spatial resolution. This is normally
achieved by combining data from the highly accurate exact repeat mission (ERM), with
data from the older non-repeating geodetic mission (GM) like ERS-1 and Geosat.

This also means that in between the repeat tracks the mean sea surface is only
determined by the GM data. In order to obtain the “best” high resolution marine gravity
field experiments have shown that it is better to use the remove-restore of the geoid
signal and crossover adjustment on individual tracks as proposed in the subsequent
sections without applying the MSS.

The mean dynamic topography (MDT) is the quantity bridging the geoid and the
MSS and the quantity constraining large scale ocean circulation. This equations also
state, that a better estimation of the geoid and altimetric MSS is, in particular, expected
to improve the determination of the mean ocean circulation (Wunsch 1993).

The MDT has long wavelength character and ranges between +/- 1.8 meter as shown
in Figure 9.4 with highest values around the Equator and lowest values towards the
poles which shows that a major part of the MDT is due to thermal expansion in the
upper layer of the ocean.

In order to derive gravity from residual geoid signal it is important to remove the
MDT contribution from the MSS as mentioned in (9.2). Failure to do this will introduce
a false gravity signal in the altimetric derived gravity signal. The lower part of Figure
9.4 shows exactly this effect from failure to account for the effect of the MDT. The
false gravity signal ranges up to 3-5 mGal in the large current regions even though the
figure only shows the smoothed gravity effect ranging up to 2 mGal.
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Figure 9.4. The Mean dynamic topography (upper figure) and the false gravity signal
(lower figure) caused by the mean dynamic topography (PGMO7A) if this is not
removed from the sea surface height observations prior to gravity field determination.

9.3.2 Remove-restore for satellite altimetry

The use of remove restore technique is extremely important for the efficient
computation of short wavelength gravity field using altimetric sea surface height data.
By removing a known reference geoid model (e.g. EGM96 or EGM2008) a residual
geoid field is obtained, which is statistically more homogeneous and smoother than
the total field. The removal of a reference field has the effect, that gravity field
information outside the data-area is implicitly accounted for and the covariance
functions will have smaller correlation distance (Part II, eq. 2.82). Therefore the
computation can be carried out in smaller a region.

Along with the reference geoid the mean dynamic topography ({ypr) must also be
removed as described above. This gives the residual sea surface height 4,.; from (9.2)
like
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hres= AN + (1) + e 9-8)

It is important to be aware of how much signal is removed along with the
remove/restore of the geoid signal. This will be a function of the accuracy of the geoid
as well as the degree and order used for the spherical harmonic expansion. An
example of this is the new EGM2008 geoid (Pavlis, ibid) which removes signal up to
spherical harmonic degree and order 2160. This is far more than most other geoid
model like EGM96, GGMO02, EIGEN-GL04, which only models geoid signal up to
spherical harmonic degree and order 360, 200 and 150, respectively.

The residual signal can e.g. be evaluated using the Tscherning/Rapp degree
variance model (Tscherning and Rapp 1974)

O_iTT — A (&jHl 1_2161 (99)
(i-DG-2)i+4) R ST

where the Bjerhammer radius Rg = R-7 km and R is the radius of the Earth, A =
1571496 m*/s*, i is the degree and «; is the error degree variance of EGM2008.

Evaluating (9.9) gives a residual geoid signal of 4-5 cm and a correlation length of
7-9 km once EGM2008 has been removed up to degree and order 2160. This
compares to a residual signal of 30-40 cm and correlation length of 20-25 km for the
EGM96 geoid model complete up to degree and order 360.

9.3.3 Dynamic sea surface topography

The amplitude of the dynamic sea surface topography {(z) - recalling that ocean tides
and atmospheric pressure have been removed - will be largest in the major current
systems such as the Gulf Stream, the Kuroshio Extension in the Pacific Ocean, the
Antarctic Circumpolar Current, and in the coastal regions as seen in Figure 9.5.
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Figure 9.5 Standard deviation of the timevarying dynamic sea surface topography
from 6 years of Envisat altimetry.
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Data from repeated ERM like T/P, JASON1+2, GFO, ERS-2 and Envisat efficiently
average out the dynamic sea surface topography through multiple observations at the
same locations. However, the ground track spacing of these satellites (>75 km) does
not enable adequate resolution for retrieving the high resolution gravity field. In non-
repeating geodetic mission data the sea surface height observations are observed once
and consequently measures must be taken to remove the dynamic sea surface
topography that will otherwise contaminate the residual geoid height signal.

The dynamic sea surface topography &(#) are mainly caused by wind, waves and
pressure and generally has a long wavelength characters with wavelength longer than
100-200 km. Failure to remove this signal will create along track stripes in the derived
gravity field known as the “orange skin” effect after the texture of an orange. The
effect on one of the first altimetric mean sea surfaces is illustrated in Figure 9.6.

MSS(OSU95 - EGM96)

_ o H {m)
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Figure 9.6. The “orange skin” effect in the Kuroshio Extension in the Pacific Ocean
from un-modelled dynamic sea surface topography. The picture shows the OSU95
mean sea surface (Yi 1995) relative to EGMY96 (after Hernandez and Schaeffer 2000).
The same orange skin effect will be visible if gravity is derived from these data.

Erroneous track related “orange skin” signal will result in large along track gravity
field errors. One way of avoiding this is to use DOV values in stead of heights as
stated previously.

Another way is so use sea surface height observations but to perform a cross over
adjustment on the data. A cross-over adjustment uses the fact that the geoid residuals
should be identical at all locations where ascending tracks cross descending tracks
hereby mutually adjusting the tracks to limit track related errors. The cross-over
adjustment is the subject of section 9.4.
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9.4 Crossover adjustment

In order to remove the dynamic topography on particularly non-repeating geodetic
mission tracks from the ERS-1 and Geosat missions a crossover adjustment is applied.
The location where a descending track intersects an ascending track is called the single
satellite crossover location. Altimetric satellites are designed to create a fine
interweaved net of tracks and diamonds for the use of orbit computation (se figure 9.1)
and for GM missions this mesh is extremely fine. The crossover adjustment is carried
out to limit track related errors and other long wavelength errors by minimizing height
differences at crossover location between ascending and descending tracks.

The motivation for performing crossover adjustment is the assumption that the geoid
signal is stationary at each location. With the launch of GRACE temporal geoid
variations have been demonstrated (e.g., Chambers et al. 2007), but these are extremely
small, and for the current investigation it can be assumed that the geoid is static.

Consequently the geoid height should be the same on ascending and descending
tracks at crossing locations. On the contrary dynamic sea level signals should be
different. Crossover discrepancies are computed as differences in sea surface heights
between observations on north and south going tracks, like d;j=h;-h;.

For very short arcs the track related errors can be modelled by a constant bias terms
for each track, then

hi—h;,=a,—a;+v, (9.10)

where (a;, a;,) are the unknown bias parameters related to the north and south-going
track and vj; are the residuals. On matrix form, this observation equation takes the form
d= Ax + v, where x is a vector containing the unknown bias parameters. These are then
estimated in a least squares adjustment (e.g. by minimizing the residuals, v;) like

x=A"C,'A+cc")A'Cd (9.11)

The equation system has a rank deficiency of one, so a constraint is needed. The
constraint C, used is normally that the mean value of the biases should be zero, c"x=0.
(Knudsen, 1993)

For medium length arcs (e.g., shorter than 2000 km) the track related errors can be
modelled by bias and tilt terms. Then the residuals, v;;, are minimized in a least squares
adjustment of

hi—h; =(a,+bu;)—(a;+b,u)+v, (9.12)
For longer arcs (e.g., longer than 2000 km) the track related errors are not conveniently
modelled using linear models (bias + tilt) but must be modelled using cosines and sine
terms like

h,—h, =(a,+¢;siny; +d,cosp;)—(a, +c,siny, +d, cos ) +v; (9.13)

where (h;-h;) 1s a cross-over difference and (a;, b; ¢; d;, a;, b; c;. d;) are the unknown
bias, tilt and higher order parameters. ; and p; are the coordinates along the i'th and the
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J'th track of the cross-over points of the j'th and i'th track respectively. Here once could
use orbital angles (true anomaly) times or longitudes coordinates but these are not
exactly linear function of one another.

After remove the reference geoid (EGM96 or EGM2008) only relative short
altimetry tracks needs to be investigated as shown in section 9.3.2. Consequently, a
crossover adjustment using bias and tilt is adequate. In this case the cross-over
adjustment has a rank deficiency of four and the free or unknown surface is described
by a bilinear function (Schrama 1989, Knudsen and Brovelli1991):

D = s +8,; + 834, + 8,001, (9.14)
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200 22 24 26 28 30 32 34 36 38 40

Figure 9.7 Left. lllustration of the free surface in a bias and tilt crossover adjustment.
Right: Gravity difference (mGal) along neighbouring areas of independent crossover
adjustments for the KMS98 gravity field crossing the Hawaiian chain along 180 E. The
block sizes used for the crossover adjustment is 2 ° latitude by 10 ° longitude with a 1°
boundary in the computation.

The rank deficiency problem is illustrated in Figure 9.7 for a free surface in a bias
and tilt cross-over adjustment. The problem may be solved by fixing two parallel tracks
(Rummel 1993). Then two "master" tracks have to be selected, what can be difficult,
since criteria for judging some tracks better than others are needed (here ERM tracks
can be used). Normally, it is more attractive to do a "free cross-over adjustment" by
applying a constraint that minimizes the free surface, eq. (9.12), so the solution
projected on the null space is zero. Such a constraint is given by Knudsen and Brovelli
(1991) where a week minimum variance constraint is used.

Occasionally, the combined effect of removing the mean dynamic topography &upr
and the free surface is that the altimetric surface does not have zero mean after the
crossover adjustment, even if the area of computation is larger than the wavelengths
included in the geoid model removed during the processing of the data. It may be
corrected by re-estimating the parameter, si, 5;, 53, and s4, of the free surface, (9.14),
and removing them from the data. The drawback is that some long wavelength parts of
the residual geoid are removed. Hence, the altimeter observations will only represent
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the relatively short wavelength parts of the geoid residuals, ON, and the time-variable
dynamic topography,d¢, that is

h® =0N +0& +v (9.15)

The deviations between the altimeter data and the geoid model may alternatively be
removed before the crossover adjustment by fitting each of the individual tracks to the
geoid model. Again using a bias and a tilt for each track this may be carried out in a
least squares adjustment minimizing the residuals, Vi, along the i 'th track. That is

h, =a; +b’u, +V, (9.16)

The residuals, Vi, contain geoid and stationary SST of wavelengths shorter than the
length of the i'th track. For sufficiently long tracks the residuals may be used as geoid
height observations. However, the cross-over discrepancies have not been minimized.

A joint fitting of the tracks to a geoid model and an adjustment of the cross-over
discrepancies can be obtained by minimizing the residuals, v; and Vi in (9.12) and
(9.16), simultaneously (e.g. a;=a’; and b=b"). In that case no rank deficiency and
subsequent free surface problems exist, but relative weights of the residuals have to be
determined in order to obtain satisfactory results. Hence, if a relative weight, w, is
applied on the residuals in (9.16), an adjustment of the following expression is carried
out:

Zv; + WZ V; =min 9.17)

If the relative weight, w, is small the cross-over discrepancies are primarily minimized;
if w is large the individual tracks are primarily fitted to the geoid model.

X-over adjusted ERS-1-GM altimetric heights minus EGMY% geoid

dhed 03 000 050 s o,

Figure 9.8. The effect of a crossover adjustment on the Geosat (right) and ERS-1
(left) GM observations shown in Figure 9.1.
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Figure 9.8. Apriori and a-posteori crossover differences after a crossover adjustment
of ERS-1 geodetic mission observations. Figure courtesy of Rummel (1993)
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The effect of a crossover adjustment on the Geosat and ERS-1 geodetic mission
observations, shown in Figure 9.8, in a test example in the North Sea with illustration
of the statistics of the effect of a-priori differences after a crossover adjustment,
shown in Figure 9.9. The original Geosat and ERS-1 GM data prior to crossover
adjustment is shown in Figure 9.1. Notice that the colour scale for Figure 9.1 and 9.8
is the same. The North Sea is known for very large dynamic sea surface topography
signal. The crossover adjustment was carried out on the Geosat and ERS-I
independently and the resulting crossover adjusted picture shows a high degree of
agreement between the two datasets. The comparison confirms that the residual signal
is a consistent signal in both datasets and that the crossover adjustment has efficiently
removed the dynamic ocean surface topography which leaves only the following
signal in the residual sea surface height

he<AN+e  (9.18)

A careful inspection of Figure 9.8 reveals that the two datasets are not completely
identical and some small differences still remain. The differences are typically outliers
that can be picked up by the editing procedure described below, but also some
residual track related signal can be seen.

The various steps described in this and the preceding sections have efficiently
removed a reference geoid signal, the mean dynamic topography, and the time
variable sea surface height signal in the geodetic mission data. This way, only the
residual geoid signal remains in the altimetric sea surface height observations. This
data will be used to derive global high resolution marine gravity field in the next
sections. However, prior to that it is important to describe the data editing and the
error-budget of the sea surface height data as well as the huge improvement in data
quality achieved through retracking the last 5-10 years.

9.5 Data editing, data quality and error-budget
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The quality of the derived high resolution gravity field is fundamentally dependent on
the accuracy of the sea surface height observations and it is important to be aware of
the accuracy of the input data as well as to carry out careful editing of the data.

All altimetric data have been edited for gross errors by the space agencies and the
data distribution centres like AVISO, PODAAC or RADS. However, errors still
remain due to wrong processing (e.g., retracking and wrong corrections), as well
environmental errors like the presence of sea ice or coast. These errors frequently
require more sophisticated methods to detect and remove.

Most outliers can be edited out by using standard editing criteria on the following
information associated with the satellite altimetry data. All range and environment
corrections should be present and within certain thresholds. The sea surface height
and slope should be below a certain threshold.

As threshold either global numbers or local numbers based on the local conditions
can be used (i.e, Hwang et al. 2003). One example of local conditional error removal
technique is the technique used for the derivation of the DNSCO08 global marine
gravity field. This editing was applied on the residual geoid heights after the removal
of dynamic topography (crossover adjustment). This editing technique uses an
efficient iterative de-spiking routine in which each altimetric observation is compared
with the interpolated value from the nearest 64 points. For the interpolation a
correlations length of 20 km is applied to slightly smooth interpolation. If the point
departs from the interpolated value by more than 2.5 times the standard deviation of
the 64 local points the point is removed. This process was repeated iteratively using
the reduced dataset until no further data points were removed. This was normally
achieved in 3-5 iterations and generally removed between 3% and 6% of the
altimetric sea surface height observations.

The main contributors to the errors e on the individual altimetric observations are
the following:

e=e,,  +e.. +e

orbit tides range + eretrack + eenvimnmem‘

te (9.19)

noise
where

eorbir 18 the radial orbit error

€rides 18 the error due to residual tidal signal

erange 18 the error on the range correction.

ererrak 18 the error due to retracking

eenvironment 18 the error due to the presence of sea ice or coast

€noise 1S the measurement noise.

For the use of DOV, the error on sea surface slopes must be derived. These are found

from
= —\'eIZJreZZ (9.20)

d

Where e; and e, are the standard deviation on the consecutive sea surface height
observations /; and /,, and d is the distance.

For the un-retracked ERS-1 GM satellite altimetry, the error budget sums up to
around 5-8 cm RMS (Scharroo, personal communication). This is roughly the same
for the Geosat (Chelton et al. 1987). The error due to remaining tidal signal will
increase in shallow water regions where the applied models are known to degrade
(Andersen and Scharroo 2010). The various errors will be addressed more carefully in
section 9.11 which focuses on accuracy improvement. The error budget is naturally
smaller than the sum of the errors in the applied models through the crossover

€5
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adjustment which will removes long wavelength “errors” as well as long wavelength
signal.

Figure 9.10 shows the huge improvement in the accuracy of sea surface slopes
from retracking. The figure is courtesy of David Sandwell and shows the sea surface
slope along six repeated ERS-1 profiles crossing the south Pacific with both high and
low significant wave-heights. Slope errors were calculated using the 18Hz
measurements and slightly low pass filtering. A slope error of 1 p-rad generally
translate into a gravity error of 1 mGal (Sandwell and Smith, 2005), so the retracking
algorithm reduces the RMS error by 62% compared with the RMS error for the
standard un-retracked data which corresponds to a 38 per cent improvement in range
precision (Sandwell and Smith, 2005; Deng et al., 2003)

Improvement in the height or slope accuracy through retracking directly translates
into an improvement in both the accuracy but also of the resolution of the obtained
gravity field. The higher accuracy of the sea surface height data means that the
derived gravity field can be smoothed less, which again means that higher frequencies
are retained in the derived gravity field. This was also demonstrated by Andersen et

I,, D

slope (urad)

no retracking
rms = 8.23 urad

40
g o
e a—
< a0l ‘4} 1-parameter retracking
rms = 4.01 prad
-80

-57 -56 -55 -54 -53 -52 -51 -50 -49 -48
latitude

Figure 9.10 Six repeated along-track sea surface slope profiles in the South Pacific
Ocean. Upper profile is derived from the onboard tracker available in the waveform
data record (RMS = 8.23 urad). Lower profiles have been derived from a I-
parameter retracking algorithm constrained by smoothing the rise-time and
amplitude parameters as in the text (RMS = 4.01 urad). Figure courtesy of David
Sandwell.

In many ways the ability to squeeze out more accurate gravity field information from
retracking and reprocessing existing ERS-1 and Geosat GM datasets are close to
being exhausted.

Fortunately, there are several new datasets coming in the near future which will
bring a huge improvement in data accuracy, coverage and quality. The Cryosat-2 will
firstly improve the coverage of the Arctic Ocean as it has an inclination of 88 degrees
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bringing it 200 km from the North Pole. Secondly the repeat period is 369 days which
gives higher ground track density than even the ERS-1 geodetic mission. Finally, the
accuracy of the Delay-Doppler altimeter onboard Cryosat-2 will be a factor 2-3 better
than the ERS-1 and Geosat altimeters theoretically bringing it down to 1 cm for 1-Hz
data (Jensen and Rainey, 2005).

As for the error budget of the future ESA Sentinel-3 SRAL satellite to be launched
around 2014 R. Francis, (personal communication, 2009) quotes a 0.8 cm height
accuracy for the Ku-band SAR altimeter for a SWH of 2 meters. The height accuracy
values for Cryosat-2 and Sentinel-3 should be compared with the 6 cm height
accuracy for the ERS-1 and Geosat GM data so these satellites are expected to bring a
quantum leap forward in accuracy of future gravity fields.

Finally, as both Jason-1 and Envisat are getting close to end of mission, there are a
possibility that one of these satellites will be placed into a non-repeating geodetic
mission for a limited time.

9.6 Gravity recovery from altimetry.

For the use with satellite altimetry it is adequate to use a spherical approximation as
described Part 2.5. The short wavelength residual geoid height N signal, isolated from
satellite altimetry in the previous sections, can be expressed in terms of a linear
functional applied on the anomalous potential 7 known as Brun’s formula (2.36)

N=L,(T)=L (9.21)
y

Where y is normal gravity and 7 can be expanded into fully normalized spherical
harmonic functions on the surface of a sphere with a radius R like in (Part 111, eq. 3.14).
The anomalous potential 7 is a harmonic function satisfying Laplace’s equation outside
the masses

o’T o’T o°T
= Tt =
o9 04 O
and Poissons equation (AT = -4myp) inside the masses (p is density)

AT

(9.22)

For the gravity anomaly Ag we use the spherical approximation is related to the
anomalous potential through the following functional similar to (2.100) like
Ag =L, (T) :—a—T—2Z (9.23)
or r

This equation is frequently called the fundamental equation of physical geodesy.
Combining (9.23) and (9.21) shows that the gravity anomaly is related to the negative
of the geoid slope (V) which is the quantity that can be computed from the altimetric
sea surface heights.

For deriving gravity from altimetric sea surface slopes the deflections of the vertical
(DOV) in the north and east direction (&, #) along the spherical unit vectors (e,,e,) can
be expressed similar to (1.183) like

E=L,(T)=1¢, + &, (9.24)

where

20



1 oT

yrop
1
yrcos(@) 04

(9.25)

In the derivation of marine gravity from satellite altimetry two approaches are
generally used.

One 1is the stochastic approach which predicts gravity directly from the
observations using least-squares collocation (LSC). The major advantage of LSC for
marine gravity field prediction is the fact that randomly spaced hybrid type data can be
incorporated using statistical information about the errors in the data, and at the same
time provide corresponding statistical information about the quality of the output
gravity values. The drawback of LSC is the fact that it is very computational intensive,
even with present day’s computers. This approach is described in section 9.7.

The other approach explores deterministic methods for the solution to Laplace’s
equation. This method requires global integration for the prediction of gravity in
every single prediction point, which calls for huge computations and very fast
computational methods. One particularly efficient method is a spectral approximation
which requires that data have been interpolated onto a regular grid. This method has
been widely used in the determination of global marine gravity during the last decade
and is the scope of section 9.8

A hybrid approach in which LSC is used to interpolate the altimetric data points
and fast spectral methods are used to evaluate (9.23) has also been widely used for
local and global gravity field recovery and will be described in section 9.9.

9.7 Least Squares Collocation for altimetry.

Least Squares Collocation (LSC) can be used to simultaneously determine both the
signal and the error components (Wunsch & Zlotnicki 1984, Mazzega & Houry 1989,
and Knudsen 1991). The generalised form, which is presented here, has been
documented by authors such as Tscherning and Rapp (1974), Rapp (1993) and applied
to satellite altimetry by Knudsen (1993).

In its general form the relationship between the observations y; and the anomalous
potential can be written in the form

v, =L(T)+e, (9.26)

where L; is one of the functionals specified in section 9.6, and ¢; is an additive noise.
The gravity anomalies Ag are predicted from residual altimetric geoid anomalies 4
using the form

Ag :CAgh (Cyy + Dy, )71 h 9.27)

Alternatively the gravity anomalies are predicted from residual geoid slope £using

Ag=C,,.(C,.+D,) e (9.28)

Age

An estimate of the a-posteriori error covariance of the gravity estimate is
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O parg = CAgAg - CAgh (C + Dy, )_1 CAghT (9.29)

or for residual geoid slopes
O-AgAg = CAgAg - CAgg (Cgs + Dgg )71 C ! (930)

Age

where the covariance matrices Cyy, Cagh , Cagag, Cer, Cag. are the covariance matrices
between height-height, gravity height, gravity-gravity, slope-slope and slope-gravity.
The covariance matrices Dy, and D, contain the noise variance of the geoid height and
slopes, respectively. The elements of the covariance matrices of (9.27) and (9.28) can
e.g. be calculated according to a mathematical model fitted to the observations using a
program like “covfit” in the GRAVSOFT library (Forsberg and Tscherning, 2008). If
the different signal and error components are uncorrelated then the covariance values,
C; and Dj;, are obtained by modifying the covariance to account for each of the signal
and error components. For satellite observed sea surface height and the associated error
the situation consists of several (assumed) uncorrelated terms and the covariances can
be computed like

Cuy =Cuy + C.»;g

9.31)
D hh = D CorbitCorbit + D ClidesCrides + D €rangeCrange + D €11k Crirk + Denoi.yeennixe + Deenveuw

The covariance values can be obtained using the kernel functions. The kernel associated
with the gravity field can be derived using the spherical harmonic approximation for 7'
(3.14) and the a-priori variances. The covariance between the anomalous potential 7 in
the points P(p,A) and Q(¢’,1") is expressed as

E(P.0)= Y Yo" Pcosy) 932)

i=2 j=0

where o,/ are degree variances and y is the spherical distance between the two points P
and Q. Hence, €q.9.32 only depends on the distance between P and Q and neither on
their locations nor on their azimuth (e.g. a homogeneous and isotropic kernel).
Expressions associated with geoid heights and gravity anomalies and DOV can be
obtained by applying their respective functionals on E(P,Q), using covariance
propagation like e.g. Cyy=LMLME(P,Q))) for the geoid height following (5.48). Then

o0

2
Cw = z (%) o/ P(cosy)

i=2

2
N

sete Zz‘,(—r JGiTTE(COSV/) 9.33)
= (-1

C p—y
Crag = Z(%} o/ B(cosy)

i=2
Accurate determination of the covariance function is important and is the subject of

many studies in geodesy. An often used approach is to compute empirical covariances
(program “empcov” of the GRAVSOFT package (Forsberg and Tscherning, 2008).
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Subsequently, these values might be fitted to preselected model-covariance functions
like the Tscherning/Rapp model.

Modelling of the covariance function associated with the gravity field is described
in Knudsen (1987a). As degree variance model, a Tscherning/Rapp model described
in (9.9) can be used. The modeled covariance function associated with height, gravity
anomalies and DOV is shown in Figure 9.11 using degree variances for OSU91A to
degree and order 360 (Rapp et al., 1991) with a scale factor of 0.207, gives the
following typical covariance functions.
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Figure 9.11 Covariance functions associated with height anomalies, gravity anomalies
and DOV in the upper panels. Cross-covariance between gravity and height, DOV and
gravity and DOV and height in the lower three panels (data from Tscherning 1997).

The ability to handle irregularly sampled data of various origins without the degradation
due to interpolation makes LSC very well suited for computation of vertical gravity
anomalies from along track satellite altimetry. The use of LSC should be considered
upon creating local gravity fields where the computational cost is much smaller. A
study by Hwang and Parson (1995) demonstrated the use of LSC for computing gravity
field in a limited area around Iceland.

The ability of LSC to handle irregularly sampled data of different origin is shown in
section 9.11, where the gravity field is predicted in coastal regions from altimetry and
airborne gravity. In coastal regions LSC has the further advantage over methods the
FFT method as the latter might suffer from high frequency noise due to the Gibbs
phenomenon. (Bracewell 1978)

On global scales the computation of high-resolution gravity fields using LSC is
simply not computationally feasible because of the huge amount of data (>10® altimetric
observations globally). Even a computation of a local gravity field within a small cell of
1° by 1° can be problematic, as this cell might easily contains more than 2000 altimetric
data points which needs to be analysed in order to compute accurate covariance
functions. However, computational power is steadily increasing, and the use of LSC for
future evaluation of global high resolution altimetric gravity field will become feasible
in the near future. Therefore methods and approximations are currently being
investigated in order to enable global computation of marine gravity using LSC.
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9.7.1 Interpolation using least Squares Collocation

For the production of existing global altimetric gravity fields LSC can conveniently
be used in combination with spectral methods like Fast Fourier Techniques (described
in the next section). This section will show how LSC can efficiently used to perform the
interpolation of the altimetric observations onto a regular grid which is required for the
evaluation of gravity using fast spectral techniques.

Interpolation by LSC can be handled by the “geogrid” program in the GRAVSOFT
software package (Forsberg and Tscherning, 2008) and will not be described here. This
chapter will more focus on the adaption of the covariance function to local condition in
the special case of interpolation of altimetric observations.

The local LSC prediction method in this program assumes a two dimensional
isotropic covariance function described using a second order Markov function (Moritz
1987) as

C(r)=C,(1+)e '™ (9.34)
(04

r 1s the two-dimensional distance between the prediction point and computation point,
and Cj is the signal variance, and a is the correlation length (where a 50% correlation
is obtained).

A special modification to the second order Markov function in (9.34) is sometimes
applied for the interpolation of satellite altimetry due to the fact that the satellite
observations are provided along individual tracks and an error might be associated
with all observations along a specific track. This is particularly so in coastal regions
where the spatial scale of the sea surface variability can become so short and large
that the assumption used in the cross-over adjustment (modelled the signal using
linear bias and tilt) becomes problematic.

A closer inspection of Figure 9.8 and Figure 9.18 illustrate this problem. To the
north in the picture and in the German Bight in the lower right corner of the figure,
some residual track related signal can be seen which also demonstrate that the
crossover adjustment is not “perfect”.

In order to limit the effect of this unwanted signal this error is modelled as an
along track signal and in the interpolation this is accounted for by adding a covariance
function for this error in the interpolation procedure. The error covariance function for
this track related signal is applied to observations on the same track only (hereby
assuming the error to be temporally uncorrelated)

Hence, for observations on the same track, the covariance function is modified to
become

C(r)= C,(1+1)e ™'+ D0(1+%) erh (9.35)
(04

where Dy is the variance of the residual sea surface height and the f is the correlation
length of this signal. For observations on different tracks Dy is fixed at zero yielding
an expression similar to (9.34).

Interpolation will unavoidably filter the observations; so much case must be taken
in creating the optimal interpolation to limit this effect to create the most accurate
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gravity field anomalies. This along track modification to the second order Markov
covariance function was originally derived for the KMS02 gravity field determination
and subsequently refined for the DNSCO8 gravity field prediction (Andersen and
Knudsen 1997; Andersen et al. 2009). A practical use of this interpolation technique
and the selection of interpolation parameters for the development of KMS02 will be
shown in section 9.10.

9.8 Deterministic methods

Stokes integral formula and the solution to Stokes boundary value problem, have been
described in chapter 3 and Stokes formula (3,100) have been widely used to compute
geoid undulations from gravity anomaly observations primarily on land. On the
ocean, the problem is reversed as the satellites observes residual geoid signal. With
satellite altimetry, the inverse Stokes’s formula, also known as the Molodensky's
formula can be used to compute marine gravity anomalies from satellite altimeter
derived sea surface heights (or geoid anomalies).
The inverse Stokes formula is a surface integral like

he, = rp 6w -” sin (l///2)

(9.36)

where i is the spherical distance between the integration point (@A) and the
computation point (¢p , Ap).

Due to the properties of this integral kernel, the influence of more remote zones
decreases rapidly and when using a remove/restore technique the integration radius
can be limited to a few degrees (Wang 2001). There is a strong singularity at the
innermost cell where sin® (y/2) goes to zero. The approximation of this was treated by
Lemoine et al. (1998).

The inverse Hotine’s formula is related to the inverse Stokes formula and describes
the relationship between the geoid undulations and the gravity disturbance and can be
found in Zhang and Sideris (1996) and is similar to (3.20).

Gravity and geoid anomalies can also be derived from observations of north and
east components of the DOV (&#) using the inverse Vening Meinesz formula and the
deflection-geoid formula (Hwang 1998).

{ifg} 4”{ }” (§cosa+77s1na){ }da (9.37)

where the kernel function H for the inverse Vening Meinesz formula related to
deflection-geoid is given by

cos(y/2) 1 N 3+ 2sin(y /2)
2sin(y /2)  sin(y/2)  1+sin(y/2) (9.38)

H(y) =
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Where y is the spherical distance. The corresponding kernel function C for the
deflection-geoid formula is given by

Cly)= —COt%-l—%Sil’H// (9.39)
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Figure 9.12 The functions H(y) and C(y) as a function of spherical distance y

Examples of the two kernel functions are shown in Figure 9.12. Formulas for
handling the innermost zone effect around zero spherical distance can be found in
Hwang (1998) who showed that the asymptotic behaviour of the H(y) and C(y) for
small y reduces to

Hy)x——=  Cw)=—=  (940)
v v

The global evaluation of both the inverse Stokes integral and the inverse Vening
Meinisz integral are allied to the surface spherical harmonic analysis and synthesis
processes, and all the above formulas requires globally distributed observations for
the accurate computation of a single gravity value. However, some modifications are
required to make high frequency global gravity field modelling using this approach
feasible. This is the subject of the following section.

9.9 Fast spectral methods for altimetric gravity prediction.

Due to the enormous amount of altimetric data fast spectral methods have been
used in all present global high-resolution gravity fields in one way or the other.
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The most widely used spectral methods is the discrete Fast Fourier Techniques which
has several advantages for fast computation, but which required data to be available as
regular interpolated discrete values.

The fast spectral methods can be applied to evaluate the inverse Stokes integral
(9.36) relating altimetric heights to gravity anomalies or for the the evaluation of the
surface integrals related to DOV in (9.38) or for evaluating the fundamental equation
of physical geodesy relating geoid height to gravity (9.23).

It is still assumed that the long wavelength of the gravity field is adequately
provided by set of spherical harmonic constituents (EGM96 or EGM2008) and that
the long wavelength part of the signal is completely removed using the remove-
restore technique. This way, accurate but approximate evaluations can be made over a
limited spherical cap centred at the evaluation point. This way only a limited part of
the global dataset must be investigated for the computation. The advantage is that this
opens up for parallel computing as different areas can be computed independent of
each other on different computers.

The second assumption is the data are regularly distributed in a grid. Such
approximation requires that another step is introduced, namely, an interpolation or a
gridding. One possible interpolation process was described in section 9.7.1 using least
squares collocation, but other interpolation processes like spline interpolation can also
be used. Once data are available on a regular grid, the evaluation of the integral
equations in (9.36) and (9.37) can very efficient be handled using spectral
computational methods like Fast Fourier Transform.

9.9.1 Fast Fourier Techniques for altimetric gravity

One of the fundamental advantages in terms of high resolution marine gravity field
prediction is that FFT directly gives the result on the same grid as the input grid. This
means that a single FFT run immediately gives the result in all data points.
Furthermore the increased computational power is more or less linearly dependent on
the number of grid points which makes evaluation on very dense grids like global 1 or
2 minute grids possible. This means that the user should already in the interpolation
step use the resolution of the wanted gravity grid.

The drawback of using FFT is the fact that data has to be provided on a
homogenous interpolated grid which requires interpolation in the case of satellite
altimetry. Furthermore FFT assumes data to be given at the same altitude but this is
generally the case for satellite altimetry except for the few cases where data in e.g.,
lakes are used.

Gravity anomalies can be evaluated using spherical 1-D FFT methods. The
spherical 1-D Fourier transformation was devised by Hagmanns et al (1993). In this
method FFT is only applied in the longitude direction along each fixed parallel (¢y). If
a two dimensional grid is wanted, this can be achieved by combing sequences of 1-D
FFT summarizing over all latitude bands. One dimensional spherical method has
successfully been applied by e.g., Hwang et al. (1998) for recovering gravity
anomalies from satellite altimetry.

2D FFT methods are available as spherical 2D FFT techniques (Strang van Hess,
1990) or multiband 2D spherical FFT technique (Forsberg and Sideris, 1993) as
planar 2D FFT techniques (Schwarz et al., 1990). The detailed evaluation of the pros
and cons of the various methods can be found in Part 7 of this book or in Liu and
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Sideris (1997). The planar 2D requires the use of a flat Earth approximation and the
introduction of a local Cartesian coordinate system.

For the sake of simplicity the derivation below is shown for a flat Earth
approximation. Therefore, the computation of gravity anomalies is valid if the area
only extends a few hundred kilometres in each direction (Part 7, section 7.2). The flat
Earth approximation is applicable as the remove-restore technique using either
EGM96 or EGM2008, typically removes wavelength longer than one hundred km
ensuring that only data within a limited cap is needed for the computation.

In the flat Earth approximation a local Cartesian coordinate system (x,y,z) is
introduced and the formulas 9.24 and 9.25 reduces to

Ag = _a_T — 21 ~ _a_T
0z R, Oz
L= _1ar (9.41)
y oy
__1lor
7« Y o
which in the frequency domain becomes
k
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Where F(T) represents the two dimensional discrete FFT of the grid of 7 values;
|k |= k2 + j and k,, k, are the wave-numbers equal to one over half the wavelength

in the x and y direction, respectively.

Equation 9.42 shows, that the vertical derivative used to obtain gravity from
residual geoid height in (9.41) is conveniently substituted by a Fourier transform and
multiplication with the wave number followed by an inverse Fourier Transform.

The multiplication with the wave number amplifies short wavelength
corresponding to high wave numbers, and filtering is required. This filtering process
is treated in the section below.

Gravity anomalies can also be computed from DOV using the approximate relation
(9.41) into the Laplace equation relating vertical gravity gradient with east and north
DOV (Rummel and Haagmans, 1990).

2 2 2
T 0T T _,_ g on 0%

+ =
o’z o*x 0%y oz ox

(9.43)

In this way the vertical gravity gradient can be computed using a local grid of east and
north DOV.
Applying the 2D Fourier transformation to (9.43) becomes
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In Cartesian approximation Ag is harmonic too and so the formulas for upward
continuation holds, which gives:

F(Ag(k,z)) = F(Ag(k,0)exp > (9.45)

Using (9.45) in (9.44) the relationship in the Fourier domain between the DOV and
gravity anomalies is given in the form

F(8g) =i (kP )+, () (9.46)
So to compute gravity using altimetric DOV, initially grids of the north and east DOV
components must be constructed (Sandwell and Smith, 1997; Hwang and Parson,
1996). Then these grids are Fourier transformed and then the grids are multiplied and
added as given by 9.46 and the resultant grid is inverse Fourier transformed.

Using the planar approximation of the inverse Vening Meinesz formula (9.37) for
the prediction of gravity using DOV and using the asymptotic representation in (9.40)
for small spherical distances, Hwang (1998) demonstrated that the deterministic
approach using the inverse Vening Meinesz formula also leads to (9.46), and that in
the frequency domain it was equivalent to the stochastic approach of least squares
collocation.

Finally a word on edge effects should be given. Before the FFT transform is
applied to the residual geoid grid it is important to extend the computation region
outside the data region and to apply a cosine taper to the outer parts of the grid. This
is done to avoid spectral leakage caused by wavelengths that are not periodic within
the area. Detailed description of this can be found in section 7.2.3

All available global altimetric gravity fields have take advantage of the FFT in
their derivation in one way of the other for the computation of gravity on 1 or 2
minute global grids. The global marine gravity field by Sandwell and Smith (1997,
2009) and also the NCTU gravity field by Hwang (2002) applied the formulas 9.46
using DOV derived from sea surface slopes, whereas the KMS and DNSC fields
(Andersen and Knudsen 1998; 2009) applied the upper formula in (9.42) to the
gridded residual geoid signal derived from the altimetric sea surface heights.

9.9.2 Filtering

For satellite altimetry noise will always be present due to un-modelled tides, orbit
errors or other contribution to residual sea surface height variability as described in
section 9.5. This noise can be assumed to be of white noise nature, and will be
amplified in the high-pass filtering operation of predicting gravity from geoid heights
(9.42).

In order to limit this effect an optimal filter was designed that both handles the
assumed white noise, but also handles the power spectral density of the gravity field
signal. The power spectral density of the geoid spectrum is assumed to follow a Kaula
rule power law (Kaula, 1966) who demonstrated, that the geoid height power
spectrum decays like k™* where k is the radial wavenumber.
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The filtering is obtained by frequency domain least squares collocation with a
Wiener filter (Nash and Jordan 1978, Forsberg 1997)

F(AG) =®®$F(N) (9.47)

NN ee

where @ is the power spectral density and e is the assumed noise on the interpolated
altimetric geoid undulations. Forsberg and Solheim (1988) confirmed that, assuming
white noise signal and a Kaula rule for the spectral decay assumption, the ®xy will
decay like k™ and devised the following modification to eq. (9.42)

k

F(AG) =
(46) 1+ ck*

F(N) =k B(k)F(N) (9.48)

The parameter c¢ is an empirical parameter which can be interpreted as a proxy of the
“resolution” that can be obtained given data. The parameter is normally fine-tuned
from the local variability of the gravity field and noise on the residual geoid heights
(se Figure 9.16 below).

The “resolution” is here taken as the wavelength, corresponding to the wave-number &
1/4

where f(k) = 0.5 corresponding to where A=27¢"'".

9.10 Practical computation of global high resolution marine gravity

For most practical purposes the global marine gravity fields are computed or
evaluated on 1 or 2 minute global grids corresponding to 3.75 km or roughly 2 km at
the Equator. Altimetry does not support 2 km spatial resolution with the densest cross-
track and along track spacing between observations being around 6 km. Furthermore
the interpolation and the filtering applied in (9.48) suppresses wavelength shorter than
roughly 10 - 15 km. The one minute grid is generally chosen to limit the loss of
information in the interpolation process. For the DNSCO08 gravity field, the 1 minute
resolution is also chosen to ease the joint use of the suite of global DNSCO08 fields
(gravity, bathymetry, mean sea surface, mean dynamic topography, and prediction
error) by giving all on a common global grid.

Below, the way that the KMS02 and DNSCO08 global marine gravity fields were
computed are presented to illustrate the various parameters choice in order for the
reader to be able to understand the physical meaning of the choices as well as to assist
the reader to derive their own altimetric gravity fields making their own experiments
and choices.

The way the gravity field is practically computed is by patching up the Earth in a
number of tiles or regions and to compute each tile or region separately. The 2°
latitude by 10° longitude used for KMS02 can be seen in Figure 9.15 below. For the
derivation of the DNSCO8 gravity field smaller tiles of the size of 2° latitude by 5°
longitude were used. For both fields a 0.5° additional margin outside the data region
was added to taper the geoid signal to zero at the boundaries in order to avoid Gibbs
effects in the FFT computation.

The interpolation of scattered along-track anomalies onto a regular grid is the first
step in the process. This step is crucial to the accuracy of the gravity field so much
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care must be taken in choosing the optimum parameters for the covariance function
(9.35) used in this step. For the KMS02 gravity field, the following parameter choices
were made for the signal variance (C,) and the correlation length ().
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Figure 9.13 Magnitude of residual geoid signal (unit is cm).

Figure 9.13 shows the magnitude of the residual geoid signal which was used for the
computation of the signal variance (C,). The signal and hence it variance, is seen to be
largest in the tectonic active regions like the spreading and subduction zones.

The next parameter in (9.35) is the correlation length of the residual geoid signal
(«). The correlation length is shown in Figure 9.14 from a computation in 1° by 1°
blocks. The correlation length largely reflects the depth of the ocean with relative
small correlation length found for regions of smaller depths which are especially
found along the spreading zones.
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Figure 9.14 Correlation length of the signal (o) computed as the half-width of the

empirical covariance functions in 1 °by 1 °blocks.
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The additional two parameter introduced into the second order Markov covariance
function to model residual along-track errors are the variance (D,) and correlation
length () of this signal. The correlation length (/) was empirically determined to be
100 km assuming the error to be of long wavelength compared with the correlation
length of the residual gravity signal ().

In order to avoid problems with possible correlation between the quantities in (9.35),
the D, was kept fixed for the interpolation in each 2° by 10 ° tile. The value should
reflect regions of high oceanographic noise. Hence it was approximated by a scaled
version of the RMS of the sea surface height computed from six years of ERS-2
repeat observations and the magnitude range between (0.5 cm)” and (4 cm)®. The

average RMS of the sea surface variance within each tile is shown in Figure 9.15.
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Figure 9.15 The RMS of residual sea surface height used to determine the along track
residual sea surface variance D, parameter in (9.35) averaged over each 2° latitude
by 10 ° longitude tiles. This clearly indicates the location of major current systems.

The interpolated residual geoid height grids in each tile were then used to compute
gravity anomalies using the multiband spherical 2D FFT technique. The conversion of
geoid heights to gravity anomalies enhances shorter wavelength, and the Wiener filter
described in 9.48 was applied using the filter parameter shown in Figure 9.16.
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Figure 9.16 The resolution parameter c in (9.47) used for the filtering of the gravity
field (DNSCOSGRA).

Like several parameters for the interpolation, this parameter is strongly linked with
the standard deviation of the sea surface height (se figure 9.5). The resolution
parameters reflect the sea surface variability with high values in the major global
current systems like the Gulf Stream, the Kuroshio and the Antarctic Circumpolar
Currents. It should be interpreted in the way that increased filtering, thus resulting in
“lower resolution” (higher c) is required in the most energetic regions to account for
the increased “noise”. Furthermore the presence of sea ice at latitude north and south
of 70° requires increased filtering in these regions.

The DNSCO08 and KMS02 were both derived in a global set of tiles (Andersen and
Knudsen 1998; 2009) but with different tile sizes and different processing parameters.
For KMS02 the mosaic of 90 times 72 tiles were subsequently patched together, but for
DNSCO8 the smaller were tiled together with tapered overlay to avoid gradients along
the tile-edges that could occasionally be seen in KMS02.

Finally the long wavelength gravity effect was restored using EGM96 in the case of
KMSO02 and EGMO08 in the case of DNSCOS to give the total gravity field signal. This
process also adds gravity on land. The final DNSC08 Global marine gravity field is
shown in Figure 9.17
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Figure 9.17. The DNSCO08 global gravity field. The altimetric gravity field over the

oceans has been augmented with interpolated values from EGM2008 over land.

In this section the basic choice of parameter and their physical interpretation and fine-
tuning was described for the conversion between gridded altimetric observations for
the derivation of global marine gravity field. The subsequent section shows an
example of the computation in one extended 5 by 9 degree tile in the North Sea with a
geological interpretation.

9.10.1 North Sea example.

This section illustrate the practical steps in computing marine gravity from satellite
altimetry starting using the same dataset as presented in Figure 9.1 and 9.8. Here the
process starts with residual geoid heights after the EGM96 have been removed and
the data have been crossover adjusted.

The sea surface height observations representing the residual geoid height are
shown in Figure 9.18. Only ERS-1 GM data are considered in this example and only
one 5° latitude by 9° longitude tile in the North Sea is considered. The standard
deviation of the altimetric residual geoid heights are 4.8 cm with maximum value of
59 cm.

Some residual track-related errors are still visible after the crossover adjustment by
the two blue arrows in Figure 9.18 to the north towards the southern tip of Norway
and to the south eastern part of the North Sea in the German Bight. Notice that the
errors to the north are associated with tracks that also appear in the German Bight.
These small errors can be handled using the extension to the Gauss Markov
covariance function (9.34) as shown in (9.35).

In Figure 9.18 the thick red arrow indicate a small positive signal which will be
shown below to be associated with a strong gravity signal related to a buried volcano.
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Figure 9.18. The crossover adjusted ERS-1 geodetic mission sea surface height
observations in the North Sea relative to the EGM96 geoid. The blue arrows indicate

regions of imperfect crossover adjustment and the red arrow the location of a buried
volcano.

These values are subsequently interpolated by LSC using the modified second
order Gauss Markov covariance functions formulas (9.35) with the fine-tuned
parameters for signals and correlations length shown in Figure 9.14 and Figure 9.15.
The result of the interpolated residual geoid height grid on 1 minute resolution is
shown in Figure 9.19. The standard deviation of the interpolated grid is 4.1 cm with
maximum value of 42 cm.

Notice that the residual along track geoid signal in the northern part of the region
has been removed in the interpolated field. Also notice how the interpolation un-
avoidable extrapolate signal towards and onto the coast.

060 030 000 030 060 g

Figure 9.19. The interpolated residual sea surface height observations.
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Subsequently the interpolated residual geoid height values in Figure 9.19 were used to
compute residual gravity anomalies using FFT applying a Wiener filter (9.48) with a
choice of “resolution parameter” of 15 km taken from an inspection of Figure 9.16.
The residual gravity signal relative to EGM96 had a standard deviation of 5.2 mGal
with a maximum value of 38 mGal on top of the buried volcano close to the southern
tip of Norway marked in Figure 9.18.

Altimetric gravity anomalies minus EGM96 geoid

2000 —10.00 000 1000 2000 mGal

Figure 9.20. The residual gridded gravity anomalies (relatively to EGMY6).

The final step in the gravity field prediction is to restore the EGM96 gravity
contribution gives the full marine altimetric gravity field which is shown in Figure
9.21. Now the standard deviation has been increased to 15 mGal and the maximum
value is 42 mGal and the minimum value is -41 mGal. Comparison with local marine
gravity observations in the region reduces from more than 8§ mGal to better than 4
mGal.

The most distinct feature is a buried volcano south of Norway which is not
resolved by EGM96, but clearly resolved using satellite altimetry. This peak anomaly
of 42 mQGal is found right at this buried volcano and the peak negative value of -41
m@Gal is found just to the east of this.

This free-air gravity field map also shows other distinct geological features related
to the tectonics of the North Sea. One is the north-south going “Horn Graben” close to
Denmark which is not resolved from EGM96. The other is the “Viking Graben”
which is not very well resolved by EGM96 either.
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Figure 9.21. The altimetric marine gravity field with EGM96 restored. All values are
in mGal. Some major geological features of the region have been added to the map.

9.11 Accuracy of present-day altimetric marine gravity fields.

Since the late 1990™ several global marine gravity fields have become available on 1
or 2’ resolution for free download on the Internet: The NCTU fields (Hwang et al.
2002); the Sandwell & Smith fields — versions from 9.1 to version 18.1 (Sandwell and
Smith 1997); the KMS02/DNSCO08 fields (Andersen and Knudsen 2005), and the
GSFC fields (Wang 2001). During the last decade waveform retracking in one form or
the other has been applied by Laxon and McAdoo (1998) who retracked altimetry in
the Arctic Ocean using a robust retracker, Hwang (2003) who retracked altimetry in
the China Sea; Fairhead et al. (2004) who retracked/repicked data in several coastal
regions, and finally the DNSCO08 and SS who applied retracking to the later versions
of their marine gravity field (Andersen et al., 2009; Sandwell and Smith 2005; 2009).

Numerous local and global marine gravity anomalies have been created using a
variety of successful techniques (e.g., Haxby (1987); Balmino et al. (1987); Sandwell
(1992); Knudsen (1991); Knudsen et al. (1992); Tscherning et al. (1993); CLS
(Hernandez and Shaeffer 2000), NCTU (2001) and OSU (Y1 1995).

In order to illustrate the history of improvement in altimetric marine gravity field
mapping over the last 10-15 years 321.400 unclassified marine gravity observations
with accuracy of 2-4 mGal were provided by the National Geospatial-intelligence
Agency (NGA) for the validation of altimetric gravity fields. This dataset covers the
region between 25°N and 45°N and 275°E and 325°E corresponding to the region from
the US east coast and out to the Mid-Atlantic spreading zone. The Gulf Stream flows
northeast across the region and introduces an error of the order of 2-3 mGal because
of increased sea surface height variability. Therefore, the comparison should NOT be
viewed as representative for the general accuracy of global altimetric gravity fields,
but more as an illustration of the general improvement in gravity field modeling
during the last decade. Actually, the Gulf Stream region is one of the regions where
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altimetry performs the worst compared with marine gravity observations and where
most smoothing has to be applied as shown in Figure 9.16.
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Figure 9.22 Color coded difference between interpolated satellite altimetry gravity
and 321.400 marine data in the Northwest Atlantic Ocean. The difference between
marine data and the KMSO02 global marine gravity field is shown in the left panel, and
the corresponding comparison for DNSCOS8 is shown in the right panel. A closer
inspection reveals that the DNSCO0S is significant better in coastal regions.

321.400 Standard Maximum Difference
obs Deviation (mGal) (mGal)
KMS99 5.69 73.74
KMSO02 5.05 49.38
DNSCO08 3.92 36.91
EGM2008 3.94 36.90
SSVi12.1 5.79 82.20
SS Vie6.1 4.88 45.29
SS V18.1 3.98 36.99
GSFC 00.1 6.14 89.91
NCTUO1 6.10 92.10

Table 9.2. Comparison with 321.400 marine gravity field observations in the Gulf
Stream region. For each of the global marine grids the standard deviation and the
maximum difference are given. SS fields by Sandwell & Smith (1997; 2009);
KMS02/DNSCO08 by Andersen and Knudsen (1998; 2009); EGM2008 by Pavlis et al.
2008),; GSFC field by Wang (2001) and NCTUOI is by Hwang et al. (2002);

A detailed comparison with this dataset is presented in Table 9.2 and the point by
point difference between measured and interpolated gravity field values in the region
is shown in Figure 9.22. A total of 9 global gravity fields released during the last
decade have been tested. The oldest fields are the KMS99 field (1999), followed by
the GSCF 0.1 (2000), the NCTU 01 (2001) and SS V12.1 (2001) and KMS02 (2002).
All of these have standard deviation with the 321400 gravity observations higher than
5 mGal.

A stready improvement in the accuracy of altimetric marine gravity field has been
observed during the last decade. With the release of EGM2008 and the global gravity
field (DNSCO08 and SS V18.1) a consistent comparison below the 4 mGal level has
been achieved. In terms of improvement this corresponds to more than 20%
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improvement in standard deviation compared with global marine gravity fields 7-10
years ago. One should notice that part of the 321.400 marine gravity field
observations have entered into the EGM2008 geopotential model as 5 minute mean
anomalies.

The detailed comparison in Figure 9.22 between individual marine gravity
observations and interpolated gravity from KMSO02 (left panel) and the DNSCO8GRA
(right panel) initially looks identical. However a close inspection of particularly the
coastal regions indicates that DNSCO8 is substantially better than KMS02 which is
the effect of retracking and improved ocean tide modelling. Both maps show a
red/blue anomaly pattern which closely follows the Gulf Stream. This could indicate
that the correction for mean dynamic topography ({upr) using the PGM2007A mean
dynamic topography model complete to degree and order 50 (Andersen and Knudsen
2009; Pavlis et al. 2007) and used for the derivation of EGM2008 does not have
adequate resolution, and that future corrections for mean dynamic topography should
remove even higher degree and order of the signal.

9.12 Integrating marine, airborne and satellite derived gravity

Marine gravity field are available from various different sources, like gravimeters
onboard marine vessels (e.g., ships and submarines), onboard aircrafts, manually
operated in the field, and finally from satellite altimetric measurements. These
different data sources should not be considered as competitors of gravity information
but rather a great opportunity to have complimentary sources of gravity information
and the only way to create a truly global gravity field including the Polar Regions.

Airborne gravimetry is a fast and economic method for local to regional scale
gravity mapping. Some of the biggest advantages are the uniform and seamless
coverage of land and sea, and the ability to cover remote and otherwise inaccessible
areas. The bias free property of airborne gravity data obtained by spring type
gravimeters is also an important point for geodetic applications; see Childers et al.
(2001) and Olesen et al. (2000). Ship borne gravity measurements are still one of the
the most accurate sources of gravity at sea, but the cost is large and furthermore the
ship needs a minimum water depth in order to be feasible.

Airborne and marine gravimeters observe the gravity directly, and can be used to
determine (any) offset, which might be present in the altimetric gravity field. The
three set of data are shown in Figure 9.23 for the test area on the west coast of
Greenland around the Disko Bay.

The gravity field derived from altimetric residual geoid height observations /# can
be merged with airborne and/or marine gravity observations Ag " using Least Squares
Collocation. The expression for gravity and a-posteriori variance GzAg on the predicted
gravity anomalies Ag are

Cy +D, Crag h
Ag =CogC ‘ 9.49
y ( Agh AgAg{ CAg'h CAg'Ag' + D,y Ag' ( )
and
Cu+ D, Cing B Cr,
O-zg = CAgAg - (CAghCAgAg{ CA , CA . : DA Cﬁé (950)
g’ g'Ag’ g' Aghg
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Cin » Cuagn , Cagug are the covariance matrices between height-height, gravity-height,
gravity-gravity. The covariance matrices Dy and D 4, contain the noise variance of the
geoid height and gravity observations, respectively. Gravity anomalies with hyphen like
Ag’ are the observed gravity from altimetry and/or ship. Ag are predicted gravity
anomalies.

9.12.1 East Greenland airborne and altimetric gravity example

The Disko Bay (Illulisat fjord) coastal region located on Greenland’s west coast
around latitude of 69°N and longitude 55°W is used as test region, as it has good
coverage of altimetric, marine and airborne observations as seen in Figure 9.23. This
area has seasonal ice cover and ice drift. A covariance function based on airborne
gravity residuals has been estimated and an analytic expression has been determined
(Knudsen 1987a).

For airborne gravity, an error model which takes into account the correlated noise
is used in this study. However, the effect of incorporating this feature was found to be
insignificant. This implies that even though the airborne data are filtered along track,
they may be considered as point values for our use. Predicted gravity anomalies, as
well as their associated error estimates, are finally derived from the normal equation
solution. More information about the study can be found in Olesen et al. (2001).
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Figure 9.23. Test area on the west coast of Greenland: The distribution of satellite
altimetry (gray dots) and airborne gravity (aligned black dots) together with the
difference between marine gravity and collocation results based on sea surface
heights observations and airborne gravity.

Input data Mean Std. dev.  Abs. max.
Airborne gravity -0.5 6.9 26
Satellite altimetry -9.5 5.4 24
Satellite altimetry + airborne gravity -0.7 3.6 18
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Table 9.3 Comparisons with marine gravity data (in mGal). Both the altimetric and
airborne gravity field has been interpolated onto the location of the marine
observations. Direct comparisons between co-located airborne observations and
marine observations compares better than 2 mGal (Olesen et al. 2000)

The result in Table 9.3 shows a very big improvement with the marine
observations with the agreement being improved from 6.9 to 3.6 mGal. Similarly the
bias of —9.5 mGal between marine and altimetric gravity is reduced to —0.7 by the
combined use of altimetry and airborne gravity. This demonstrates the potential for
improving coastal marine gravity field by merging different types of observations.

9.13 Altimetric gravity research frontiers

The previous sections have shown that the global altimetric gravity fields are
generally very accurate in the open ocean, but in coastal and Polar Regions the error
increases and this is naturally a focus area for future research. Gravity recovery is
particularly difficult in these regions, but on here the largest improvement can still be
gained from a dedicated effort in improving the accuracy of the sea surface height
observations.

The problems in shallow water and Polar Regions are due to several factors: The
waveform shape of the returned radar pulse will only infrequently follow a Brown
model and hence data are frequently rejected by the automatic retracking by the space
agencies. The presence of a coast will also distort the part of the illuminated region by
the altimeter or the radiometer used to determine the range or range corrections. Sea
state is also changing close to the coast and particularly the spatial extent of the tidal
signal is scaled down creating very complex tidal patterns which furthermore include
resonance and overtones. For the coastal regions, the use of spectral methods like the
Fourier Transform will also be problematic even though the removal of the highly
accurate EGM2008 model ensures that the recovered signal is not so much distorted
by the presence of land.

For the next generation of global altimetric gravity fields dedicated effort into
research in the following areas will be needed it for further gravity field improvement:

e Inclusion of new data types (ICESat, Cryosat-2, Sentinel-3)
e Improving the altimeter range corrections

e Improving the ocean tide correction

e Altimeter waveform re-tracking.

In the following an introduction into the problems and importance of these effects on
gravity field determination will be presented with examples from ongoing research.
Large part of the investigation relates directly to improving the accuracy of the sea
surface height observations and hence lowering the error e on the altimetric
observations (Eq 9.19)

9.13.1 ICESat and Cryosat-2

ICESat laser altimetry is a relative new and complementary data source to
conventional radar altimetry (Zwally et al. 2002). The important aspect of ICESat
is the fact that it has an inclination of 86° which brings it 400 km closer to the Pole
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than the ERS and Envisat satellites. In principle laser data can be processed and
used very much like radar altimetry. For the DNSCO8GRA these data were used in
the partly ice-covered parts of the Arctic Ocean (between 70°N - 86°N, 100°E -
270°E) and at latitudes above 80°N in all of the Arctic Ocean in order to extend the
MSS and gravity field towards the North Pole. Only a few months of the ICESat
data were available for DNSCO8 and since the termination of the mission in 2010 a
total of around 19 month was recorded. One further advantage of ICESAT is its
much smaller footprint compared with radar altimetry which means that it can in
principle resolve shorter wavelength of the gravity spectrum. The footprint of the
laser has a radius of roughly 70 meters observing at each 120 meters along track
where as the radius of conventional radar altimeter (ERS and Jason type) has a
radius of 5-10 km depending on the sea state.

Cryosat-2 was successfully launched in 2010. To meet the challenges of
measuring ice-sheet changes, Cryosat-2 carry a sophisticated radar altimeter called
SIRAL (Synthetic Aperture Radar Interferometric Radar Altimeter). It is capable
of carrying out Delay-Doppler observations in one direction during flight which
means that the resolution compared with conventional altimetry is increased by a
factor of 20 to around 300 meters. However over most of the oceans Cryosat-2 will
operate as a conventional altimeter. The accuracy of Cryosat-2 will be well below
the 1-cm level (Rainey et al., 2005) making it significantly better than conventional
satellite altimeters as seen in Table 9.1. This means that besides being useful for
the determination of the thickness of the ice, the Cryosat-2 can be used to recover
gravity anomalies over the ocean with unprecedented accuracy compared with
conventional satellite altimetry.
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Figure 9.25. Residual sea surface height observations in the Baffin Bay from ERS-
1 and the first 3 month of SAR processed Cryosat-2 data. The profile marked with
an arrow in the left figure is shown in the right figure with distance from the
northern point.

The first 3 month of Cryosat-2 SAR retracked residual sea surface height data in
the Baffin Bay is shown in Figure 9.25 overlayed the residual sea surface height
from ERS-1 used for the prediction of DNSCO8. Similar to the processing of ERS-
1 (se section 9.3-9.5) wavelength longer than 200 km have been removed from
Cryosat-2 but no crossover adjustment were preformed.

One SAR 5 Hz profile is marked in the left Figure with a blue arrow. The figure
to the right shows the Cryosat-2 residual sea surface height (relative to the DTU10



Mean sea surface and not to the geoid) in red and ERS-1 observations (grey)
within 5 km across-track from the SAR profile. Dramatic improvement in accuracy
of the Cryosat-2 data is clearly visible compared with the older ERS-1 satellite
data.

Cryoat-2 will furthermore improve the mapping of the Arctic Ocean as it has an
inclination of 92 degrees bringing it 200 km from the North Pole and for coastal
regions the footprint of some 300 meters of the Delay-Doppler signal will enable
gravity field mapping much closer to the coast.

9.13.2 Altimeter range corrections.

The determination of sea surface height close to the coast degrades due to the fact
that several range corrections degrade as the altimeter approaches the coast. The
radiometer used to correct the altimeter for both, dry and wet troposphere,
ionosphere has a much larger footprint than the altimeter and particularly the wet
troposphere correction is affected. Although much smaller than the dry
tropospheric range correction in magnitude, the wet troposphere correction is far
more complex showing rapid variations in both time and space and therefore also
needs careful attention in the coastal region. The correction can vary from just a
few millimeters in dry, cold air to more than 30 cm in hot, wet air.

The footprint of the radiometer is dependent on the height of the spacecraft and
the scanning frequency of the radiometer, but typical values of the footprint of the
main beam ranges between 20 and 30 km. This is considerably larger than the 4-10
km footprint of the altimeter as illustrated in Figure 9.25 for a pass across the
Western Mediterranean Sea. Consequently, the radiometer is contaminated by the
presence of land much earlier than the altimeter, as the spacecraft approaches and
coast and generally the main beam is affected up to 30 km from the coast. The wet
troposphere correction derived from the on-board radiometer is similarly affected,
and currently intensive research is performed to improve the wet troposphere
correction in coastal regions (e.g., Eymard and Obligis, 2006)
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Figure 9.25. An example of a Jason-1 track crossing the western Mediterranean
Sea. Blue dots indicate the footprint of the altimeter and the green circles shows
the size of the main radiometer beam. Figure from Eymard amd Obligis (2006).
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The analysis by Andersen and Scharroo (2009) showed that the accuracy of the wet
troposphere correction degrades from around 1.1 cm in the open ocean to roughly
half the accuracy around 30 km from the coast.

9.13.3 Ocean tides

The largest contributor to sea surface height error in shallow water is un-
questionably due to errors in present day ocean tide models (Andersen and
Scharroo, 2009). Even, though the determination of the ocean tides have
dramatically improved since the launch of TOPEX/Poseidon and most recent
investigations indicate that global models are now accurate to around 1-2 cm in the
global ocean (Andersen et al., 2006; Shum et al., 1997), there are still problems
close to the coast due to the fact that the tidal signal is scaled down and becoming
increasingly complex with the presence of overtides in shallow water regions
(Andersen, 1998; Andersen et al., 2006)

Figure 9.26 shows the difference in gravity field mapping for the Gulf of Maine
using two different ocean tide models. The plot to the left is a comparison between
marine gravity and interpolated gravity using KMS99 which used FES94 in its
derivation. The figure to the right represents the differences between marine
gravity and interpolated gravity from KMS02, which used the GOT00.2 ocean tide
model (Ray 2001). The largest improvement are clearly seen north of 42°N, which
is the location of the shelf break, which indicate the significant improvements from
the use of GOT 00.2 ocean tide model. Since this investigation was performed,
ocean tide modelling has improved even further with the release of new ocean tide
models called GOT 4.7.
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Figure 9.26. The difference between marine observations and altimetric gravity in
parts of the Gulf of Maine are colored. Left shows the differences for KMS99 and
right the differences for KMSO02. The color scale ranges +/- 10 mGal, and the
major difference between the two fields is explained by the use of GOT 00.2
compared with FES94 for the KMS99 gravity field to the left.

In the deep ocean, recent investigations showed that ocean tide has a height
accuracy of around 1.4 cm (Bosch 2008). However, global ocean tide models still
have errors exceeding 10-20 cm close to the coast as also demonstrated by Ray
(2008). Such signal can easily generate 5 - 10 mGal gravity error very close to the
coast. So improved coastal ocean tide modeling is still one of the key to improved
altimetric gravity field recovery in shallow water regions in the future.



9.13.4 Retracking in coastal and Polar Regions

As the satellite approaches the coast the characteristics of the sea surface changes,
and it is important to retrack the existing GM data using more tolerant methods in
order to increase the amount of data available to derive altimetric gravity.
Similarly, it is important to retrack satellites to increase the accuracy of the sea
surface height observations. This process involves two runs of retracking — a so
called double retracking - where the first retracking run is performed to increase
the number of observations, whereas the second run is performed to increase the
accuracy of the sea surface height retrieval also demonstrated in Figure 9.10.

The Geosat GM does not benefit much from retracking as it was very carefully
investigated and retracked originally by the US Navy. The data was recently
recompiled from various archives, reprocessed and retracked at NOAA, who
kindly provided the dataset to the scientific community (Lillibridge et al., 2005).

Due to special properties and the high inclination of the ERS-1 GM mission, the
data from this satellite clearly gains most from retracking. With the Arctic Ocean
being mostly permanently ice-covered, and the ERS-1 satellite covering up to the
82 parallel, retracking is the only way of obtaining altimetric gravity data at high
latitudes where very few of these data resemble open ocean Brown waveforms.
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Figure 9.27. Waveform shape distribution from 18 Hz un-averaged observations in
global coastal zone (excluding sea-ice) from the ERSI GM as a function of the
distance to the coast. Detailed description of waveform characteristics can be
found in Dowson et al. (2006).

Another benefit of tolerant retracking of the ERS-1 data is the fact that the
waveform changes rapidly in complexity as the altimeter approached the coast.
Numerous different echo shapes appear in the coastal zones caused by a variety of
surface effects including land contamination of the echo, off-ranging to inland
water, and the presence of unusually calm water in sheltered areas. For a detailed
description of different waveforms se Dowson et al. (2006).
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Even though coastal zone echoes are complex and rapidly changing, the
waveforms can be successfully retracked. Figure 9.27 illustrate that within 10 km
of the coast, a rapid increase in non-Brown model waveforms is seen; within 5 km
of the coast the majority of the echoes are non Brown model shaped. For the
derivation of the DNSCO8 gravity field, the Earth and Planetary Science Lab
(EAPRS) expert system (Berry et al. 1997; Berry et al. 2005) was adapted to
retrack 10 complex waveform shapes of the ERS-1 GM waveforms corresponding
to ice, inland water and land. In order to include ocean waveform retracking the
Southampton Ocean Center ocean retracker (Challenor and Srokosz 1989) was
added to the system.

Due to the presence of sea-ice in Polar Regions, these will be the regions where
retracking using multiple tolerant retrackers will provide the most new data and the
most significant improvements to gravity field determination. The region east of
Greenland (75°N < latitude < 80 °N, 320°E < longitude <350 °E) is well known for
the presence of sea ice. Here the number of ERS-1 data points that can be retrieved
from retracking is increased from 750 data points (un-retracked) to 22200 data
points (retracked) using the more tolerant retrackers as seen in Figure 9.28. Even
data in the narrow fjords are recovered.
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Figure 9.28. Altimetric height observations in the ice-covered regions east of
Greenland. The upper figure shows the number of data points that can be retrieved
using standard ESA retracked 1Hz data. The lower figure shows the amount of 1
Hz data that can be retrieved using more tolerant retrackers.

This vast improvement in data carries forward into an improvement of the derived
gravity field. This can be seen from a comparison with 900 airborne gravity data
from the Greenland/Svalbard KMS9803 survey bounded by 77°N-80°N, 30°W-5°E.
The accuracy of these airborne measurements is better than 2 mGal (Olesen, 2003)

Table 9.4. Comparison with 900 airborne gravity observations from the KMS9803
airborne survey. The standard deviation and maximum difference between the
airborne observation and various gravity fields are given.

900 points Std Max (mGal)
(mGal)

KMS02 9.4 51.2

Laxon and McAdoo (97) 7.2 46.2

ArcGP (01-06) 5.8 344

SS 16.1/18.1 82/59 449/374
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DSNCO08 4.1 24.0

The results of the comparison with 900 airborne gravity observations are shown in
Table 9.4 for six different gravity fields; the KMS02, Laxon and McAdoo (version
97), ArcGP (version (01-06), SS v. 16.1 and v. 18.1 and DNSCO8GRA. The Laxon
and McAdoo polar gravity field (version 97) was developed using an early attempt
with tolerant retracking of the ERS data (Laxon and McAdoo, 1998). The ArcGP
gravity field is derived from a combination of data from different sources such as
marine, airborne, altimetry etc. (Kenyon and Forsberg, 2008). For KMSO02 the lack
of retracked altimetry over the ice means that this field is not good at all. The
Laxon and McAdoo gravity field from retracked ERS data is significantly better,
and the ArcGP compilation of data performs even better. The DNSCO8GRA is
partly based on the ArcGP data, as ArcGP is part of data dataset used to derive the
EGM2008 geoid and gravity field. The huge amount of new data that can be
retrieved using suite of tolerant retrackers and particularly the sea-ice designed
retracker (Berry et al., 2005) brings the standard deviation of the comparison for
DNSCO8GRA all the way down to 4.1 mGal. In terms of variance reduction this is
nearly a 6-times improvement over KMS02.
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Appendix 9.1. Data resources

Altimetry Data.
Some of the major distributors of satellite altimetry are the following:

Radar Altimetry Database system (RADS)
http://rads.tudelft.nl

Archiving Validation, interpretation of satellite data (AVISO)
www.aviso.oceanobs.com/en/altimetry/index. html

National Ocean and Atmosphere Administration (NOAA)
http://ibis.grdl.noaa.gov/SAT/ocean_links.html

Jet Propulsion Lab (JPL-PODAAC)
http://podaac.jpl.nasa.gov/DATA CATALOG/index.html

International Altimeter Service (IAS):
http://ias.dgfi.badw.de/TAS

Altimetric gravity field ressources.

DTU Space (DNSC, DTU gravity field models)
http://space.dtu.dk (data and models)

University of California, San Diego (Sandwell and Smith gravity field models)
http://topex.ucsd.edu/marine_grav/mar_grav.html

NCTU National Chaotung University (Taiwan)
The NCTU1 global marine gravity field model is available on request from
Cheinway Hwang at hwang@geodesy.cv.nctu.edu.tw

Arctic Gravity Field Project (ArcGP)
Arctic gravity field grid
http://earth-info.nga.mil/GandG/wgs84/agp/readme new.html
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