

30552 – Lecture 11.

Advanced Satellite altimetry. In-SAR for Elevation and Icesat-2 for Bathymetry

Prof Ole B. Andersen, DTU Space, $f(x+\Delta x)=$ Geodesy and Earth Observation

DTU Space National Space Institute

Before we start:

If you feel ill, go home Keep your distance to others Wash or sanitize your hands Disinfect table and chair Respect guidelines and restrictions

N Invitation for virtual S6 launch event S6_Invitation_Virtual.pdf Under fileshare

CHARTING SEA LEVEL FOR COPERNICUS

ESA, the European Commission and EUMETSAT have the pleasure of inviting you to follow the launch of Copernicus Sentinel-6 Michael Freilich, the latest of the Sentinel satellites of the Copernicus programme on 21 November 2020 | 18:17 CET

· eesa

ONLINI EVENI

Streamed by ESA Web TV https://esawebtv.esa.int The ESA Web TV programme will start at 17:45 CET

Any change in the launch date and time will be announced on our website: www.esa.int/sentinel-6 and via ESA Facebook or via Twitter @esa_eo | @esaoperations

Figure of the Earth.

- Lecture 8.
- Bathymetry in the deep Ocean
- (gravity inversion)
- Today. IN-SAR for topography
- Laser altimetry for coastal bathymetry

Topography Bathymetry

Geodetic changes to figure

Seeber (2003): SAR does not belong to satellite geodesy, but is usually treated within "remote sensing" - well times are changing......

DTU Space

National Space Institute

Content

•Synthetic Aperture Radar (SAR). •"Synthetic Aperture" Azimuth and range accuracy •SAR and INSAR systems/satellites. Interferometric SAR (INSAR) **Observation principle** Height accuracy Data and Software **Differential INSAR (DINSAR) Deformation accuracy** Multiple INSAR and Persistent Scatterer and geodesy Next Generation altimeter Surface water and Ocean topography. SWOT Laser Altimetry for Bathymetry (Heidi Ranndal).

Acknowledging teaching material supplied by John Merryman Baconi(Measurement tech) Henning Skriver and Le Lueng Fu (NASA)

Beam limited (along) Pulse limited (across)

SAR receiver detects time and power/backscatter

Azimuth and Range resolution

• Azimuth resolution (Seeber 11.1) $\varepsilon \approx \frac{\lambda}{2}$

with

- ε resolution, (actually beam width)
- λ wavelength of the particular radiation, a
- *d* telescope diameter.
- 100 m resolution requires d> 100 meters

 ΔY

DTU

Synthetic Aperture.

Azimutal resolution

- $\epsilon = \lambda/D$
- $R_a = R \tan(\epsilon) = R \epsilon$
- $R_a = R \lambda / D$

Length of illumination is 2 R_{a}

Assuming that scattere remains stationary while satellite passage.

"Syntetic Aperture" becomes equal to 2 R_a . Hence $R_a^* = D / 2$

Observations from different "bursts" are separated using Delay Doppler. 10 DTU Space, Technical University of Denmark Space Geodesy 30552

SAR image amplitude

Danjal Longfors Berg (Masters projekt)

- Ship and Iceberg detection in Sentinel-1
- using Deep Learning (Heisenberg and Andersen).

Seaice.dk : State of the art SAR archive. 12 DTU Space, Technical University of Denmark

DTU Space

National Space Institute

SAR acquisition geometry and orbits

Wide-area acquisition modes

ESA TOPS animation: https://www.esa.int/esatv/Videos/2014/03/Sentinel-1_Radar_mission/SAR_scanning_animations_ESA_2013

Different SAR systems uses different wavelength (λ).

Different wavelength or	Band	Frequency [GHz]	Wavelength [cm]	
Frequencies have different characteristics /advantages. For ground: little penetration.	VHF	0.03-0.3	1000-100	
	UHF, P	0.3-1	100-30	
	L	1-2	30-15	
	S	2-4	15-7.5	
For ice: L band penetrates the Deepest (up to km) Ku band penetrate 1-100 cm Ka band very little.	С	4-8	7.5-3.75	
	Х	8-12.5	3.75-2.4	
	Ku	12.5-18	2.4-1.7	
	Ka	18-40	1.7-0.75	
	V	50-75	0.60-0.40	
	W	75-111	0.40-0.27	

1

Main spaceborne SAR missions

_

Selected acquisition mode parameters

Satellite	Launch date	Revis it time (days)	Mode	Wavelen gth (cm)	Incide nce angle (deg)	Image Size (km)		Resolution (m)	
						Ground Range	Azimut h	Ground range	Azimut h
ALOS-2 24.05 14	24.05.20 14	20 14	ScanSA R	24.25	8-70	350- 490	350	10-20	57-78
			Stripma p		8-70	50-70	70	3-9	3-5.3
COSMO- SkyMed- 1/2/3/4	08.06.20 07/09.12 .2010	1-8	Stripma p	3.11	20-60	40	40	3	3
Sentinel-	03.04.20	6-12	TOPS	5.55	30-46	250	250	5	20
1a/b	14/25.04 .2016		Stripma p		22-44	80	80	5	5
Radarsat-2	14.12.20 07	24	Stripma p	5.55	10-60	20-170	20-170	2.6-22	2.1-5.1
Ter <u>raSAR</u> - X/ TanDEM-X	15 Pesoluti 07/21.06 .2010	ons are o	p	oेे∙ aे। incider	n de angle o	of ³ 97 deg	(୬.OMerryn	mann)	3

•Synthetic Aperture Radar.

"Synthetic Aperture"

•Azimuth and range accuracy

•SAR and SARin systems/satellites.

Interferometric SAR

Observation principle

Height accuracy

Data and Software

What does phase differences mean

Differential INSAR (DINSAR)

Deformation accuracy

Multiple INSAR and Persistent Scattere and geodesy

Next Generation altimeter

Surface water and Ocean topography. SWOT

Laser Altimetry for Bathymetry (Heidi Ranndal).

Interferometric SAR.

Requires a Baseline (B) to observe object at different Vantage points Antenna transmit "bursts" with signal of same phase

Increase Range resolution looking at phase differences

Phase of a pixel ϕ includes scattere and range contrib: $\phi = \phi_s + \phi_p$

Where ϕ_s = scatter differences (we ignore)

$$\Phi_{\rm p} = R \ 4\pi / \lambda$$

 ϕ_p can only be measured modulo 2π

Differencing two images (Assuming $\phi s_1 = \phi s_2$)

Interferometric phase will be. $\phi_{int} = \phi_{p2} - \phi_{p1}$

Figure 11.9. InSAR geometry

DTU Space National Space Institute

Main geodetic applications Digital Elevation models

DTU

Two ways of obtaining IN-SAR

Single pass Across-track interferometry

Good for Digital Elevaion Models(DEM) Antennas separated. Height resolution (from full phase cycle)

$$\Delta h = \frac{\lambda}{2} \, \frac{R}{\overline{B}} \tan \theta.$$

Θ incident angleTypically 5-10 meters.(Seeber 11.17)

Limitations:

accuracy of phase obs SAR geometry Atmospheric effect

Shuttle Radar Topography Mission

Basic Geodetic Applications

Geodynamics

Repeat pass interferometry

Several days or month between

Requirement depends "on target" Target scattering behavior must not change too much.

Baseline must be reasonable short (hence accurate orbit). Max is around 1 km at 800 km altitude

Othervise Decorrelation.

Figure 3 Interferometric SAR for topographic mapping uses two apertures separated by a 'baseline,' *B*, to image the surface. The phase difference between the apertures for each image point, along with the range and knowledge of the baseline, can be used to infer the precise shape of the imaging triangle to derive the topographic height of the image point. At left, a range difference exists because the scene is viewed from two different vantage points. This is described by a shift in the point target response as presented in the text. At right, a range difference is generated by a change in the position of the scene from one time to the next, imaged from the same vantage point. This range difference is described by a scene shift, not a point target response shift; the mathematics is the same but for a sign change.

Example of Observation

Image containing power and phase will be Complex image

Looking at one returned Single Look Complex Image (SLC)

ESA SNAP toolbox.

https://step.esa.int/main/toolboxes/snap/

It can help you with a lot of the processing of SAR images i.e. phase unwrapping etc, Atmospheric corrections. And Geo-location. We generally use it for projects.

Single Look Complex (SLC) image

(i.e. a focused full-resolution SAR image)

The phase of an SLC image looks random

We try again 6 days later ...

Still random

How about the phase difference?

Luckily the phase *difference* is not random everywhere!

So what are the colours we see in an interferogram?

•Synthetic Aperture Radar.

•"Synthetic Aperture"

•Azimuth and range accuracy

•SAR and SARin systems/satellites.

Interferometric SAR

Observation principle

Height accuracy

Data and Software

What does phase differences mean

Differential and Multiple INSAR (DINSAR)

Deformation accuracy

Persistent Scattere and geodesy

Next Generation altimeter

Surface water and Ocean topography. SWOT

Laser Altimetry for Bathymetry (Heidi Ranndal).

Differential interferograms

2000

Differencing interferograms (or double difference interferogram) enhances deformations. In a differential interferogram ϕ_{flat} and ϕ_{topo} are removed based on an Earth ellipsoid and a Digital Elevation Model

30 **DTU Space, Technical University of Denmark**

Space Geodesy 30552

Sensitivity to motion (in pictures)

DTU

Volcanos

32 DTU Space, Technical

Multi-temporal DINSAR

Requires stable DOMINATING scatterer over time. Could be buildings

If these are geodetic tied to ground (using i.e. GPS) then deformation on Cm or better can be determined.

Point Scatterer: One pixel is dominated by a single large reflector

Distributed Scatterer: One pixel contains many small reflectors

Multi-temporal D-INSAR

Away from the radar

Towards the radar

Measurements are 1D (projection of 3D deformation along the SAR line-of-sight)

Multitemporal D-INSAR

• Deformation (subsidence) of Mexico City (i.e. due to extraction of freshwater)

Date [yyyy/mm/dd]

•Synthetic Aperture Radar. •"Synthetic Aperture" Azimuth and range accuracy •SAR and SARin systems/satellites. Interferometric SAR **Observation principle** Height accuracy Data and Software **Differential INSAR (DINSAR) Deformation accuracy** Multiple INSAR and Persistent Scattere and geodesy Next Generation altimeter Surface water and Ocean topography. SWOT

Laser Altimetry for Bathymetry (Heidi Ranndal).

Future.....

Precise height at NADIR using satellite altimetry (points).

Precise height variations away from NADIR using INSAR (pictures)

Why don't we merge these to get accurate height everywhere in the pictures

DTU Space SWOT National Space Institute Surface water & Ocean topography

SWOT orbits

Nominal Launch date : Sept 2021 First 6 months : 1-day orbit :

> 1st 3 months – instrument checkout 2nd 3 months - Dec-Feb 2022 – Science orbit

Ideal for ocean studies of rapidly evolving small mesoscales and submesoscales

3-year 21-day repeat orbit Nominally : Mar 2022 to Mar 2025 Full global coverage

1-day and 10-day sub-cycles for better mesoscale coverage

Targeting the smaller scales of ocean dynamics

41 DTU Space, Technical University of

Fig. 20.3 Geometry and resolution cells for a swath altimeter

SWOT height precision

Uncertainty of baseline roll (instrument) And Distance y away from nadir.

Space Geodesy 30552

Status on SWOT

We participate in SWOT Science team. I Visited JPL facility in January 2020 Launch delayed from Sep 2021 to Feb 2022 (due to covid)

Until then – we can use FF SAR of C2.

The main beam is 8 km in Radius, but if you use information from the side lobes the "total beam" can be considered to be much 3 x wider.

Taking SAR to the limit. Fully Focused SAR-

- Target must be stable over 2 sec
- Ocean is NOT.....
- Inland water is.....

Content

•Synthetic Aperture Radar. •Measurements •Theory

Interferometric SAR Topography Deformation. Differential INSAR (DINSAR) Multiple INSAR and Persistent Scattere

Next Generation altimeter Surface water and Ocean topography. SWOT

Laser Altimetry (Heidi Ranndal).