

Airborne Lidar and Radar Measurements In and Around Greenland CryoVEx 2006

L. Stenseng, S. M. Hvidegaard, H. Skourup, R. Forsberg, C. J. Andersen, and S. Hanson

Danish National Space Center Technical report No. ?, 2007

THE DANISH NATIONAL SPACECENTER IS A RESEARCH CENTER UNDER THE MINISTRY OF SCIENCE, TECHNOLOGY AND INNOVATION

Airborne Lidar and Radar Measurements In and Around Greenland, CryoVEx 2006

L. Stenseng, S. M. Hvidegaard, H. Skourup, R. Forsberg, C. J. Andersen, and S. Hanson

Danish National Space Center Technical report No. ?, Copenhagen, 2007

ISBN-13: 978-87-91694-??-? ISBN-10: 87-91694-??-?

http://www.space.dtu.dk

Contents

1	Intr	oduction	1						
2	Sun	nmary of the DNSC Operations	2						
	2.1	Overview of Day to Day activities	3						
3	Har	dware Installation	6						
4	Ove	erview of Acquired Data	8						
	4.1	Auxiliary Data	8						
	4.2	Summary	8						
5	Proc	cessing GPS and INS data	10						
	5.1	GPS Data Processing	11						
	5.2	Merging GPS and INS Data	12						
6	Proc	cessing Laser Scanner Data	14						
	6.1	Processing of Laser Scanner Data	16						
	6.2	Calibration of Laser Scanner Data	17						
	6.3	Estimation of Ice Thickness from Freeboard Height	19						
7	ASIRAS Data Processing								
	7.1	Processing of ASIRAS Data	22						
		7.1.1 Low Altitude Mode Pulse to Pulse Phase Correction for 2.5 kHz PRF .	22						
		7.1.2 Echo phase correction	23						
	7.2	CryoVEx 2006 ASIRAS processing results	24						
		7.2.1 Datation tests	24						
		7.2.2 Runway overflights and comparison with ALS-DEM	25						
		7.2.3 Retracker performance	26						
		7.2.4 Corner reflector overflights	29						
8	Geo	locating Downward Looking Camera	31						
9	Vali	dation Sites	33						
	9.1	EGIG Line, T05	34						
	9.2	EGIG Line, T12	35						
	9.3	Austfonna Icecap	37						
	9.4	Kongsvegen	40						
	9.5	Devon Icecap	42						

	9.6	Sea Ice	North of Alert	. 43
		9.6.1	Multi year sea ice	. 43
		9.6.2	first year sea ice	. 46
		9.6.3	Comparing multiple corner reflector overflights	. 47
10	Con	clusion	IS	50
Re	ferer	ıce		51
Α	File	Format	35	52
	A.1	ASIRA	AS L1b	. 52
	A.2	GPS .		. 63
	A.3	INS .		. 64
	A.4	Laser	Scanner	. 64
	A.5	Vertica	al Camera	. 64
В	Airt	orne L	og with GPS Track Plot	66
C	Proc	essed (GPS data	85
D	Proc	essed I	Laser Scanner Data	87
E	Airt	orne L	og of the ASIRAS Operations	89
F	Proc	cessed A	ASIRAS files	107
G	Proc	essed A	ASIRAS Profiles	111

Airborne Lidar and Radar Measurements In and Around Greenland, CryoVEx 2006

1 Introduction

The European Space Agency (ESA) CryoSat Validation Experiment (CryoVEx) 2006 took place during April and May 2006. During the period April 18 to May 18 the airborne part of this campaign was successfully carried out by the Danish National Space Center (DNSC) using a chartered Air Greenland Twin-Otter aircraft.

The DNSC fieldwork consisted of:

- Airborne data collection with the ASIRAS and laser scanner system following installation and certification of ASIRAS in the Air Greenland Twin Otter (Registration: OY-POF). The airborne operations were coordinated with ground and helicopter activities over land and sea ice in polar areas in Greenland, Svalbard, Canada, and the Arctic Ocean.
- Logistical support for participants in the CryoVEx 2006 experiment especially concerning access to military facilities in Thule Air Base and Canadian Forces Station Alert and aircraft support to the UK teams on the Greenland Ice Sheet.
- Support for the sea ice ground truth work by Finnish and UK teams off Alert.

In general the airborne activities were successful and the objectives were met. A few survey lines were canceled due to the weather conditions as well as the time plan had to be adjusted during the campaign, but overall the expected data collection was carried out. Following the campaign all hard disks with ASIRAS data were transfered to the Alfred Wegener Institute (AWI).

This report outlines the field operations and processing of the data collected by DNSC during the CryoVEx 2006 campaign. In addition examples from the datasets will be presented, some of which were presented in a preliminary form at the CryoSat Validation and Retrieval Team (CVRT) meeting, ESA-ESTEC, June 2006.

2 Summary of the DNSC Operations

After successful installation and certification in March 2006 of the joint ASIRAS and DNSC laser scanner system in the Air Greenland Twin Otter, the system was ready for operation for the April-May campaign. The installation of the system was this time carried out in the Air Greenland hangar in Kangerlussuaq after the first two days of the charter (April 18 and April 19) had been used to deploy the UK teams on their positions on the EGIG line on the ice sheet. This transport consisted of all together four flights from Kangerlussuaq to the T05 and T12 sites with cargo and personnel. A test flight was performed on April 20 after instrument installation and ground tests with assistance from Radar Systemtechnik's (RST) engineer. The next days were spent on a Danish project surveying the sea ice west of Greenland near the Disko Island until the UK teams were ready for overflights. These local flights were used for more extensive testing of the ASIRAS system and training of the DNSC scientists in operation and backup of the system.

The first main site overflight was carried out on April 25 with a repeated survey of one site (T05) on April 26. This was done since the overflight of T05 on April 25 was not optimal. The campaign flight tracks can be seen in Figure 1. Thereafter a few days of waiting followed caused by poor weather on the Greenland east coast and Svalbard. We succeeded in reaching Svalbard on April 30 in between low-pressure systems. Because of the delay, we decided to base our Svalbard operations out of Longyearbyen instead of Ny Ålesund as planned. Before the Austfonna overflight the Starlab Oceanpal GPS system was mounted on the aircraft to be tested during that flight. A planned sea ice flight on an Envisat track was canceled due to lack of sea ice near Svalbard. On April 2 and 3 the team transited to Thule Air Base via Station Nord, Northeast Greenland. The flight out of Svalbard was over the Kongsvegen glacier coordinated with the ground team there. Unfortunately the wind conditions made it difficult to follow the planned track. Over the Fram Strait an Envisat track was followed with some ASIRAS and laser scanner data acquired despite of some clouds in the area. Also a local flight out of Station Nord was carried out to resurvey previously surveyed lines in the Arctic Ocean.

From Thule Air Base the Devon site was overflown on April 5. The southern part of the track had to be aborted due to dangerous wind conditions. This was afterward discussed with the Devon ground team and it was agreed that they would focus their work near the summit of the ice cap where the best data was obtained. After transit to Canadian Forces Station Alert, Ellesmere Island, on May 8 sea ice flights were done in cooperation with the ground and helicopter work on the ice. Two sites on first year ice and multi year ice close to the station were selected where the work was focused. On May 10 corner reflector overflights were performed repeatedly for each site at different elevations together with runway and building calibration survey. Also longer flights of coordinated Twin Otter (laser scanning and ASIRAS radar altimetry) and helicopter electromagnetic (HEM) data acquisition were done. One of these flights involved placing of UK-SAMS GPS buoys along the line transmitting positions by satellite, as a test for aligning helicopter and Twin-Otter tracks during the future CryoSat calibration campaign.

The aim of the last part of the airborne work was to remeasure previously surveyed sea ice and inland ice margin lines and to assist a Danish glaciology team at Station Nord with transport of equipment and personnel to a local ice cap, Flade Isblink. On May 12 the Twin Otter transited from Alert to Station Nord with data acquisition over the sea ice in the Arctic Ocean and on May 14 the cargo flights to Flade Isblink was carried out. In order to protect the instruments, the ASIRAS system was unmounted before these local flights. The

Figure 1: Tracks flown during CryoVEx 2006 by the Air Greenland Twin Otter equipped with the DNSC laser scanner system and the ASIRAS radar.

last flights back to Kangerlussuaq were over the East Greenland ice sheet margin including several outlet glaciers with landings at airfields in Constable Pynt and Kulusuk. After returning to Kangerlussuaq on May 17 the equipment was unmounted.

2.1 Overview of Day to Day activities

- April 18-19: Deployment of UK teams to T05 and T12 on the ice sheet. Two flights per day. Installation of the instruments were started on April 19 after the last cargo flight.
- April 20: Installation and local test flight.
- April 21-24: West-coast sea ice project based in Qaarsut near Uummannaq. Extensive tests and training with RST on the ASIRAS system including the backup system.
- April 25-26: EGIG line overflights including the T05 and T12 sites with corner reflectors. The April 26 flight also included a sea ice flight off the west coast coordinated with

helicopter landings on the ice and a medical evacuation of the team on T12 due to illness.

- April 27-28: No flights due to bad weather on the Greenland east coast.
- April 29-30: Transit flights from Kangerlussuaq to Svalbard via the EGIG line, Constable Pynt, and Danmarkshavn. High level ASIRAS data acquisition over the ocean between East Greenland and Svalbard.
- May 1: Over-flight of the Austfonna ice cap including 3 of the 4 corner reflectors. Small leg over sea ice east of Svalbard to test the Oceanpal GPS system.
- May 2: Transit flight to Station Nord, Greenland via Kongsvegen glacier and Envisat track in the Fram Strait. Local sea ice survey from Station Nord.
- May 3: Transit to Thule with survey of the northern part of the Greenland ice sheet.
- May 4: No flight.
- May 5: Devon ice cap survey. Southern part of the track was aborted due to dangerous wind conditions. Upon consultation with the pilot it was decided not to resurvey the southern part of Devon due to the continued dangerous conditions at the low flight elevations and a heavy aircraft.
- May 6-7: No flight.
- May 8: Transit to Alert via Politikens Bræ, Qaanaaq, Peterman Glacier, and the ice sheet margin. Change of personnel (R. Forsberg and H. Skourup replaces L. Stenseng and S. M. Hvidegaard, Susanne Hanson continue to Alert for in situ work).
- May 9-11: Alert sea ice flights coordinated with sea ice ground observations and helicopter EM flights (HEM).
- May 12: Transit flight to Station Nord with sea ice survey (with HEM). Unmount ASIRAS.
- May 13: No flight.
- May 14: Cargo flight to local ice cap for Danish glaciologists.
- May 15: No flight.
- May 16-17: Transit flight to Kangerlussuaq via Constable Pynt and Kulusuk, East Greenland. Unmount equipment.
- May 18: Cargo flight to pick-up equipment for UK team.
- May 19: Shipment of equipment.
- Airborne field team:
- DNSC: R. Forsberg (RF), S. M. Hvidegaard (SMH), H. Skourup (HSK), and L. Stenseng (LS).
- RST: H. Lentz.

JD – Date	Flts	Track	Off B	ΤO	L	On B	Air	Operator
108 – April 18 th	Α	SFJ-T5	13:29			15:03	1h34	none
108 – April 18 th	В	T5-T12	15:15			15:49	0h34	none
108 – April 18 th	С	T12-SFJ	15:51			17:53	2h02	none
108 – April 18 th	D	SFJ-T12	18:40			20:23	1h43	none
108 – April 18 th	E	T12-SFJ	20:30			22:31	2h01	none
109 – April 19 th	Α	SFJ-T12	10:41			12:31	1h50	none
109 – April 19 th	В	T12-SFJ	12:36			14:34	1h58	none
109 – April 19 th	С	SFJ-T5	15:19			16:54	1h35	none
109 – April 19 th	D	T5-SFJ	17:00			18:40	1h40	none
110 – April 20 th		test	18:52	18:54	19:31	19:36	0h44	LS
111 – April 21 st		V1-V4	11:10	11:15	15:49	15:54	4h44	LS/SMH
113 – April 23 rd		А	21:49	21:54	01:54	01:59	4h10	SMH
114 – April 24 th		V5-V8	17:21	17:26	22:11	22:16	4h55	SMH
115 – April 25 th		X-EGIG	11:54	11:59	18:49	18:54	7h00	SMH
116 – April 26 th	Α	SFJ-JQA	12:53	12:58	14:57	15:02	2h09	SMH
116 – April 26 th	В	JQA-V-T12	16:02	16:07	19:40	19:45	3h43	SMH
116 – April 26 th	С	T12-SFJ	19:46	19:51	21:42	21:47	2h01	SMH
119 – April 29 th	Α	EGIG	11:07	11:11	16:54	16:59	5h52	SMH
119 – April 29 th	В	В	17:43	17:48	20:53	20:58	3h15	SMH
120 – April 30 th		DMH-LYR	08:22	08:27	11:57	12:02	3h40	SMH
121 – May 1 st		AUSTFON	10:13	10:18	15:38	15:43	5h30	SMH
122 – May 2 nd	Α	KV-EN	08:33	08:38	11:50	11:55	3h22	SMH
122 – May 2 nd	В	F	13:09	13:14	18:18	18:23	5h14	SMH
123 – May 3 rd		Н	10:42	10:47	16:06	16:11	5h29	SMH
125 – May 5 th		DEVON	12:56	13:01	17:29	17:34	4h38	HSK
126 – May 6 th			We	ekend T	hule Clo	osed		
127 – May 7 th								
128 – May 8 th	Α	TAB-NAQ	14:25	14:30	15:05	15:10	0h45	HSK
128 – May 8 th	В	NAQ-YLT	15:33	15:38	18:50	18:55	3h22	HSK/RF
129 – May 9 th		YLT-YLT	15:59	16:04	20:51	20:56	4h57	RF
130 – May 10 th		YLT-YLT	17:47	17:52	19:45	19:50	2h03	RF
131 – May 11 th		YLT-YLT	14:40	14:45	20:08	20:13	5h33	RF
132 – May 12 th		YLT-NRD	14:43	14:48	19:29	19:34	4h51	RF
133 – May 13 th				Statio	n Nord			
134 – May 14 th		Fla	ade Isblin	ık uplift,	8 flts		6h03	
135 – May 15 th	no flights							
136 – May 16 th		NRD-CNP	09:50	09:55	15:42	15:47	5h57	RF
137 – May 17 th		CNP-KUS	08:40	08:45	13:39	13:44	5h04	RF
138 – May 18 th		KUS-SFJ	14:30	14:35	18:01	18:06	3h36	RF
Total							127h00	

 Table 1: GRL06 Flights. Off B: Off Bloc, T O: Take Off, L: Landing, On B: On Bloc, Air: Airborne.

3 Hardware Installation

In the Air Greenland hangar in Kangerlussuaq the equipment was installed in the Twin Otter according to the experience from the test campaign in Nuuk in March 2006. No major difficulties were encountered. Table 2 gives the offsets between the instruments and Figure 2 sketches the approximate position of the instruments in the aircraft.

For the Twin-Otter new antenna cables had to be made to accommodate the longer distance between the ASIRAS instrument and the ASIRAS antenna. After a discussion between DNSC, RST and Air Greenland engineers it was agreed that the best compromise between practical installation in the aircraft and lowest lost due to short cables was cables of 240 cm each. These 240 cm cables were used throughout the CryoVEx 2006 campaign.

Figure 2: Sketch of approximate instrument positions.

to laser scanner	<i>dX</i> (m)	dY (m)	<i>dZ</i> (m)
from AIR1/AIR3 (front)	-3.70	+0.52	+1.58
from AIR2/AIR4 (rear)	+0.00	-0.35	+1.42
to ASIRAS antenna	<i>dX</i> (m)	dY (m)	<i>dZ</i> (m)
to ASIRAS antenna from AIR1/AIR3 (front)	<i>dX</i> (m) -3.37	<i>dY</i> (m) +0.47	<i>dZ</i> (m) +2.005

Table 2: The lever arm from the GPS antennas to the origin of the laser scanner, and to the back center of ASIRAS antenna frame (see arrow). Offset definition: *X* positive to the front, *Y* positive to the right and *Z* positive down.

(a) ASIRAS antenna mounted on OY-POF

(b) ASIRAS instrument installed in the rack with AIR4 (Trimble 4000).

Figure 3: Photos of the ASIRAS installation.

(a) Setup inside the cabin during survey.

(b) From left: Laser scanner, altimeter, camera (behind altimeter) and INS installed in aft luggage compartment.

(c) Laser scanner (center), altimeter (botom right) and camera (bottom left) seen from outside.

Figure 4: Photos of the laser installation.

4 Overview of Acquired Data

During the CryoVEx 2006 Campaign the DNSC collected around 4.5 Tb of ASIRAS data and 30 Gb of GPS, INS, Laser and photos with the airborne system. ASIRAS data were stored on hard disks and backed up to AIT-3 tapes after each flight, using the ASIRAS PC3. The tapes are stored at DNSC and the hard disks were delivered to AWI for processing. All other data were stored on a external hard disk, written to CD-roms and copied to the operators laptops to minimize the risk of data loss due to media failure.

An overview of the collected data can be seen in Table 3 and a more detailed list of data can be found in the following sections and relevant appendices.

4.1 Auxiliary Data

During the survey flights operator logs were kept for both the DNSC laser scanner system and the ASIRAS radar system. These logs have been stored as separate files together with the data files and can also be found in the Appendix B and E.

A downward looking camera was installed next to the laser scanner and operated during most flights to acquire visual documentation of the observed surface. Images were obtained every 2 seconds with a resolution of 640 by 480 pixels, with one pixel roughly corresponding to 1 by 1 m. These were logged directly on a dedicated PC laptop after initial tests on a rack mounted PC was unsuccessful. In addition to the downward looking camera, the operators took digital photographs and digital video out of the Twin Otter windows on irregular basis during flights. These photos have been gathered and stored together with the survey data files.

As a backup for the laser scanner instrument a profiling laser altimeter (Optech) was mounted next to the scanner. The instrument was tested but data were only sporadically stored as most flights were out of range of this altimeter.

4.2 Summary

Nearly all data were recovered during the campaign except for the few cases discussed above. The full set of raw data is now stored on the DNSC server system (with tape backup) and copies are kept on CD-roms except for the ASIRAS data, as described above. The hard disks with ASIRAS data have been delivered to AWI and the backup tapes are at DNSC. An overview of all collected data can be found in Table 3.

8

Remarks	q	с		đ	в	f	8	Ч	i	j	ш	и			0				
YLT2														×	×	×			
YLT1														×	×	×			
UMD1				×															
THU3											×								
THU2											×								
TAB1												×	×						
SFJ1	\times	×			×		×												
SCOR							×											×	
NRD2										×									
NRD1										×	\mathbf{X}^{l}						×	×	
LYR1								×	×										
KELY						×													\times
JQA1			×			×													
CNP0										×									×
CAM	\times		×	×	×	×	×	×	×		×	×	×	×	×	×	×	×	\times
ALT													×	×	×	×	×	×	\times
EGI	Ха	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	X^p	×	×
SCAN	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
AIR4		×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	\times
AIR3	\times	×	×	×	×	×	×		×	×	×	×	×	×	×	×	×	×	\times
AIR2	×	×	×	×	×	×	×	×	×	×	X^k	×	×	×	×	×			
AIR1	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×	×
JD – Date	110 – April 20 th	111 – April 21 st	113 – April 23 rd	114 – April 24 th	115 – April 25 th	116 – April 26 th	119 – April 29 th	120 – April 30 th	121 – May 1 st	122 – May 2 nd	123 – May 3 rd	125 – May 5 th	128 – May 8 th	129 – May 9 th	130 – May 10 th	131 – May 11 th	132 – May 12 th	136 – May 16 th	137 – May 17 th

Danish National Space Center

Table 3: Data acquired from reference stations and aircraft instruments.

 $^a\mathrm{EGI}$ file errors when read by readegi, output to screen OK $^b\mathrm{Test}$ Flight, WEBCAM PC stopped halfway

 $^{d}\mathbf{1}$ hour side-looking radar ^cwebcam PC error

^eEGI logging startet late

fno data in 2 scanner files

^gno scanner data hASIRAS HAM

*j*reflectors at KV. ASIRAS 2nd leg ⁱ4 reflectors possible

^ktwo files, mem card full ¹ref. GPS too short 14:34 landing 16:06 ^mASIRAS: Acad.+H6-7

"reflector at Devon o reflectors at sea ice $^p{\rm FGI}$ disc full, last hour missing; scan file missing due to accidental closure of PC

5 Processing GPS and INS data

Kinematic GPS is the key positioning method of the aircraft. GPS dual-frequency phase data were logged at 1 Hz using one or several ground base receivers at one or more reference sites, and 4 aircraft receivers; one of these dedicated to datetion for the ASIRAS system. The aircraft GPS receivers are named AIR1 (Trimble, 4000-SSI), AIR2 (Ashtech, Z-extreme), AIR3 (Javad, Legacy), and AIR4 (Trimble, 4000-SSI, connected to ASIRAS). AIR1 and AIR3 share the front GPS antenna; AIR2 and AIR4 the rear antenna. Antenna offsets are given in Table 2. Data were logged in the receivers internal memory during flights and downloaded to PC laptops upon landing. Most data were recovered and only a few files missing, see Table 3, but the redundancy of receivers meant that GPS data are available for all flights. The AIR2 Ashtech receiver had a problem with the memory card and did not collect data on the last 3 flights.

The GPS base stations to be used as reference stations for differential post processing of the GPS data are listed in Table 4. These stations were mounted on roofs or tripods in the field near the landing sites during the flights; the reference points were generally not marked. In a few cases data from permanent GPS stations have been used.

Name	Location	Hardware (ant. type)
CNP0	Constable Pynt, near runway	Javad (Marant)
JQA	Western part of Nuussuaq, near Qaarsut,	Javad (Marant)
	tripod on ground	
KELY	Kellyville permanent station	Ashtech Z-XII3
LYR1	Longyearbyen, tripod on ground	Javad (Regent)
	near NPI Hotel	
NRD1	Station Nord, on building 7 roof (light pole)	Javad (Regent)
NRD2	Station Nord, on snow next to apron	Javad (Regent)
NYA2	Ny Ålesund, permanent station	AOA Benchmark ACT
SCOR	Scoresbysund, permanent station	Ashtech UZ-12
SFJ1	Kangerlussuaq, on KISS building roof	Trimble 4000 SSI
	(between tile 16 & 17 of the outermost row)	
T12	On the ice sheet (8 m west of	Leica SR530
	T12 corner reflector	
TAB1	Thule Air Base, on snow pile	Javad (Regent)
	near Air Greenland hangar	
THU2	Thule Air Base, permanent station	Javad Legacy
THU3	Thule Air Base, permanent station	Ashtech UZ-12
UMD1	Uummannaq, at airfield point	Ashtech
YLT1	CFS Alert, tripod on ground	Javad (Regent)
	near Spinnaker Building	
YLT2	CFS Alert, tripod on ground	Javad (Marant)
	near garage	

Table 4: CryoVEx 2006 GPS Reference Stations

A Honeywell medium-grade inertial navigation system H764-G was used throughout the surveys to record inertially integrated position, velocity and attitude information. The unit has an on board GPS receiver for datetion and position updates of the built in Kalman filter. Data packets were obtained through a 1553 mil-spec serial communications bus and logged on a rack mounted PC with a 2 Gb Compact Flash memory card in binary format. Data from all flights have been secured except for the following cases:

April 10: On the test flight the INS failed to initialize properly.

April 29: INS data logging stopped premature.

May 12: The last hour of data is missing due to an operator error.

May 16: INS data corrupted in the first part of the flight.

Recordings and comments can be found in Table 3.

5.1 GPS Data Processing

GPS solutions is based on static and kinematic differential processing. First the position of the reference stations is determined using the SCOUT (Scripps Coordinate Update Tool) service operated by SOPAC (Scripps Orbit and Permanent Array Center) (http://sopac.ucsd.edu). SCOUT calculate the reference stations position in ITRF2000 using data from tree permanent GPS stations nearby. Even though there in the Arctic is several hundreds of kilometers to "nearby" permanent stations, the standard deviation of the found position is often within 2 cm.

Reference stations used during the CryoVEx 2006 campaign can be found in Table 4, note that data from permanent GPS stations in the Arctic also were used when available in 1 Hz.

The kinematic differential GPS processing were performed with GPSurvey (version 2.35) using precise IGS orbits and the Goad-Goodman tropospheric model. On each flight several solutions are made using different combinations of GPS reference stations and aircraft GPS receivers. The best solutions for each flight is shown in Table 5 and for a complete list of all GPS solutions see Appendix 23. On the last flight it was not possible to get an acceptable solution when using the GPSurvey software, instead a solution was calculated using CSRS-PPP (Canadian Spatial Reference System Precise Point Positioning) (http://http://www.geod.nrcan.gc.ca). Finally the GPS solutions were converted into binary format as specified in the ESA document by Cullen (2006) for the ASIRAS processing.

JD – Date	Flight	Reference	Rover	File name	Start (dech)	End (dech)	Ratio	Ref. var.
110 – April 20 th		SFJ1	2	110a2s1.p	18.6797	19.6058	1.2	1.279
111 – April 21 th		SFJ1	2	111a2s1.p	11.1047	15.9364	1.4	4.288
113 – April 23 th		JQA1	2	113a2jq1.p	21.7464	1.9142	10.7	0.971
114 – April 24 th		UMD1	4	114a4umd.p	17.3475	22.1919	1.2	12.898
115 – April 25 th		SFJ1	3	115a3s1.p	11.2297	18.8333	1.1	5.275
116 – April 26 th		KELY	1	116ba1ke.p	14.5003	21.7183	1.1	10.777
119 – April 29 th	a	SCOB	4	119aa4sc.p	11.0233	16.9733	1.1	11.276
119 – April 29 th	b	SCOB	2	119ba1sc.p	17.6714	20.0458	1.4	6.854
120 – April 30 th		LYR	2	120a2ly.p	8.4011	11.9989	1.4	4.443
121 – May 1 st		LYR	2	121a2lyb.p	9.9719	15.7003	1.3	4.003
122 – May 2 nd	a	NYA2	3	122aa3ny.p	8.3953	11.8858	15.2	1.103
122 – May 2 nd	b	NRD2	2	122ba2n2.p	13.0464	18.3406	1.1	7.310
123 – May 3 rd		NRD1	3	123a3n1.p	10.4317	14.5636	1.3	3.668
125 – May 5 th		TAB1	3	125a3t1.p	12.7356	17.5294	5.4	0.846
128 – May 8 th		TAB1	4	128a4t1.p	14.2514	18.9172	1.2	5.291
129 – May 9 th		YLT1	3	129a3y1.p	15.6186	21.0125	1.1	1.091
130 – May 10 th		YLT1	1	130a1y1.p	17.8161	19.9450	2.0	0.952
131 – May 11 th		YLT1	2	131a2y1.p	14.3092	20.2544	1.2	0.837
132 – May 12 th		NRD1	1	132a1n1.p	14.2928	19.6656	1.1	7.117
136 – May 16 th		SCOR	1	136a1sc.p	9.4267	15.7950	1.2	5.678
137 – May 17 th			3	137a3crr.p ¹	8.5319	18.1400		

Table 5: Processed GPS data selected for further use.

5.2 Merging GPS and INS Data

The position and attitude information is extracted from the INS data packets and averaged to 10 Hz. The averaging to 10 Hz has proven to be a good balance between file size and resolution in time. To obtain a higher resolution in the time domain and preserve precision the post processed GPS and the INS data is merged by draping the INS derived positions onto the GPS positions. This draping is done by modeling the function 1 by a low pass filtered smooth correction curve, which is added to the INS.

$$\epsilon(t) = P_{GPS}(t) - P_{INS}(t) \tag{1}$$

This way a smooth GPS-INS solution is obtained, which can be used for geolocation of laser and camera observation. The full resolution INS data were also converted into binary format as specified in the ESA document for the ASIRAS processing by Cullen (2006).

Figure 5: Draping high rate INS derived heights (blue) onto precise GPS heights (red) to get high rate, precise heights (black).

Date - JD	Flight	Filename	Gps Solution	Start [dechr]	Stop [dechr]	Receiver
111 – April 21 th		111a2.pos	111a2s1.p	11.200	15.890	2
113 – April 23 th		113a2.pos	113a2jq1.p	21.800	25.910	2
114 – April 24 th		114a4.pos	114a4umd.p	17.370	22.190	4
115 – April 25 th		115a3.pos	115a3s1.p	12.400	18.820	3
116 – April 26 th	a	116aa1.pos	116ba1ke.p	14.510	9.800	1
116 – April 26 th	b	116ba1.pos	116ba1ke.p	16.050	9.800	1
119 – April 29 th	а	119aa4.pos	119aa4sc.p	11.030	9.800	4
119 – April 29 th	b	119ba2.pos	119ba2sc.p	17.821	9.600	2
120 – April 30 th		120a2.pos	120a2ly.p	8.410	11.980	2
121 – May 1 st		121a2.pos	121a2lyb.p	10.200	15.680	2
122 – May 2 nd	a	122aa3.pos	122aa3ny.p	8.550	9.800	3
122 – May 2 nd	b	122ba2.pos	122ba2n2.p	13.100	9.800	2
123 – May 3 ^{ed}		123a3.pos	123a3n1.p	10.500	14.560	3
125 – May 5 th		125a3.pos	125a3t1.p	12.850	17.500	3
128 – May 8 th	а	128aa4.pos	128a4t1.p	14.260	9.800	4
128 – May 8 th	b	128ba4.pos	128a4t1.p	15.230	9.400	4
129 – May 9 th		129a3.pos	129a3y1.p	16.050	21.000	3
130 – May 10 th		130a1.pos	130a1y1.p	17.820	19.810	1
131 – May 11 th		131a2.pos	131a2y1.p	15.000	20.180	2
132 – May 12 th		132a1.pos	132a1n1.p	14.300	18.940	1
136 – May 16 th		136a1.pos	136a1sc.p	14.400	15.770	1
137 – May 17 th		137a3.pos	137a3crr.p	8.761	18.110	3

Table 6: INS data processing.

13

6 Processing Laser Scanner Data

A Riegl laser scanner (LMS-Q140i-60) was used to measure the distance between the aircraft and the surface, with a range resolution of 5 cm. The nominal data logging rate is 40 scans/second; each scan consists of 208 single laser shots in a 60° cross track swath. The laser scanner data were logged as hourly files on a PC laptop. The files are time tagged by a 1 PPS signal from the AIR1 GPS receiver with start time of the scans given by the operator as the file name. It should be noted that this procedure gives a slight risk of timing errors of 1 second (approximately 60 m on ground) however after processing it is easy to identify and correct these time errors by visual inspection. Table 7 shows the laser scanner files logged during the campaign. The typical files size is about 200 Mb for one hour in the standard binary file format. Backup of the data was made on hard disk and CD-roms after flights.

Figure 6: Sketch of the Riegl laser scanner principle. (1)Laser and photo diode assembly. (2)Swath pattern. (3)Rotating mirror.

- 1. The laser (1) emits a pulse and start a timer, see Figure 6.
- 2. The pulse is then reflected in a direction dictated by the mirror (3).
- 3. If the pulse hits a target that reflects it is returned to the mirror (3) that reflects it into the photo diode (1) and hereby stops the timer.
- 4. The mirror (3) is now rotated by a small angle before the process is repeated.

After initial quality control of the laser scanner data, it was seen that scans was missing on a regular basis. The reason for this was believed to be increased vibrations of the laptop PC in the new aircraft installation. This lead to a shift in storage method in the PC from the standard hard disk to a 2 Gb Compact Flash memory card. This reduced the data loss from approximately 1 out of 4 to 1 out of 40 scans.

Laser scanner data were recovered for most flight lines except a few cases where fog or low clouds were encountered or system/operator errors occur. Also a loss of INS data will hinder the laser scanner data in being processed.

JD – Date	Filename	2dd	Start	Stop	Comments
110 – April 20 th	184530.2dd	Т	18.760840	19.483950	scans missing
111 – April 21 st	111530.2dd	Т	11.258335	11.384583	scans missing
1	120600.2dd	Т	12.100001	13.007563	each 40 line
	130130.2dd	Т	13.025007	13.551934	approximately
	133400.2dd	Т	13.566669	14.932408	
113 – April 23 rd	231800.2dd	Т	22.583340	23.282623	
1	223500.2dd	Т	23.300004	0.175676	
	001130.2dd	Т	0.191668	1.124059	
114 – April 24 th	173030.2dd	Т	17.508333	18.498814	
1	183030.2dd	Т	18.508333	19.430473	
	192630.2dd	Т	19.441673	20.402421	
	202500.2dd	Т	20.416670	21.071510	
115 – April 25 th	121000.2dd	Т	12.166669	13.178247	scans missing
1	131130.2dd	Т	13.191670	13.915370	0
	135530.2dd	Т	13.925001	14.755536	
	144600.2dd	Т	14.766673	15.742513	
	154530.2dd	Т	15.758338	16.893572	
	165430.2dd	Т	16.908335	17.790917	
116b – April 26 th	161130.2dd	Т	16.191669	17.063527	scans missing
1	170430.2dd	Т	17.075005	17.075660	no data recorded
	184900.2dd	Т	18.816671	18.817555	no data recorded
	195130.2dd	Т	19.858335	20.763953	
	204630.2dd	Т	20.775000	21.047358	
	210900.2dd	Т	21.150003	21.421910	
119a – April 29 th	121800.2dd	Т	12.300005	13.007190	scans missing
1	130100.2dd	Т	13.016668	14.001007	0
	140100.2dd	Т	14.016673	14.870217	
	145300.2dd	Т	14.883334	15.755477	
119b – April 29 th	193630.2dd	Т	19.608338	19.645226	scans missing
120 – April 30 th	083300.2dd	Т	8.550001	9.533487	scans missing
I	093230.2dd	Т	9.541673	9.759714	every 4-5 scan missing
121 – May 1 st	111700.2dd	Т	11.283337	12.244791	every 30-40 missing
	121500.2dd	Т	12.250004	13.175074	8
	131230.2dd	Т	13.208338	13.932468	
	135700.2dd	Т	13.950001	14.762312	
122a – May 2 nd	084030.2dd	Т	8.675005	9.262118	scans missing
	102815.2dd	Т	10.470840	10.471224	0
	103930.2dd	Т	10.658340	11.436391	
	112700.2dd	Т	11.450001	11.839090	
122b – May 2 nd	131300.2dd	Т	13.216667	14.186186	scans missing
,	141200.2dd	Т	14.200004	15.093821	0
	150600.2dd	Т	15.100007	15.614641	
	161100.2dd	Т	16.183338	17.165768	
	171030.2dd	Т	17.175002	18.303756	
123 – Mav 3 rd	104930.2dd	Т	10.825005	11.961294	scans missing
	115830.2dd	Т	11.975001	12.964702	0
	125830.2dd	Т	12.975006	13.902230	
	135500.2dd	Т	13.916673	14.936772	
	145700.2dd	Т	14.950000	15.482581	
125 Mary Eth			10 1 - 0001	11100000	·
123 - 10ay 3	130900.2dd	Т	13.150001	14.128076	scans missing

Continued on next page

JD – Date	Filename	2dd	Start	Stop	Comments
	143900.2dd	Т	14.650005	15.629081	
	153900.2dd	Т	15.650004	15.749702	
	162000.2dd	Т	16.333337	17.439360	
128 – May 8 th	143500.2dd	Т	14.583336	15.050474	scans missing
	162800.2dd	Т	16.466767	17.022718	
	171400.2dd	Т	17.233503	18.375890	
	182400.2dd	Т	18.400105	18.847553	
129 – May 9 th	160300.2dd	Т	16.050005	17.071888	scans missing
	170530.2dd	Т	17.091673	18.119551	
	180800.2dd	Т	18.133334	19.118778	
	190800.2dd	Т	19.133339	20.128485	
	200900.2dd	Т	20.150005	20.887151	
130 – May 10 th	175500.2dd	Т	17.916670	19.283643	scans missing
	193200.2dd	Т	19.533335	19.759668	C C
131 – May 11 th	154300.2dd	Т	15.716668	16.903191	scans missing
	165500.2dd	Т	16.916669	17.982145	C C
	180000.2dd	Т	18.000006	19.189834	
	191200.2dd	Т	19.200006	19.205010	
132 – May 12 th	143500.2dd	Т	14.583334	15.857933	scans missing
	155300.2dd	Т	15.883336	16.951398	
	165800.2dd	Т	16.966667	18.206486	
	181330.2dd	Т	-		no data
	190200.2dd	Т	19.033336	19.501453	
136 – May 16 th	095300.2dd	Т	9.883336	11.013569	scans missing
	110730.2dd	Т	11.125007	11.219440	
	112130.2dd	Т	11.358338	12.585829	
	123600.2dd	Т	12.600002	13.699031	
	134300.2dd	Т	13.716669	14.550885	
137 – May 17 th	083900.2dd	Т	8.650003	8.865336	scans missing
	091400.2dd	Т	9.233336	9.611292	
	095700.2dd	Т	9.950005	11.244140	
	111600.2dd	T	11.266668	12.223921	
	121400.2dd	T	12.233336	13.284667	
	143100.2dd	T	14.516668	15.641005	
	153900.2dd	T	15.650003	16.808849	
	165000.2dd	T	16.833335	17.499100	
	174900.2dd	T	17.816671	18.088543	

Table 7: Recorded Laser Scanner Files.

6.1 Processing of Laser Scanner Data

Geolocation of each point in the laser scanner data is performed with standard trigonometry in two steps. First all points are described as vectors $(dX_{NWU}, dY_{NWU}, dZ_{NWU})$ in a local cartesian North-East-Up system using the lever arm between the laser scanner and the gps (dX, dY, dZ), the range measured by the laser (r), the angle of the laser mirror (a) and the orientation of the laser in a earth fixed system $(\omega_r, \omega_p, \omega_h)$. Next these vectors are added with the position derived from GPS

 $(\varphi_{gps}, \lambda_{gps}, h_{gps})$ to get the position of the reflector in a earth fixed system (φ, λ, h) .

$$dX_{NWU} = \cos(\omega_h)\cos(\omega_p)dX + (\cos(\omega_h)\sin(\omega_p)\sin(\omega_r) - \sin(\omega_h)\cos(\omega_r))(-\sin(a)r + dY) + (\cos(\omega_h)\sin(\omega_p)\cos(\omega_r) + \sin(\omega_h)\sin(\omega_r))(\cos(a)r + dZ)$$

$$dY_{NWU} = -\sin(\omega_h)\cos(\omega_p)dX - (\sin(\omega_h)\sin(\omega_p)\sin(\omega_r) + \cos(\omega_h)\cos(\omega_r))(-\sin(a)r + dY) \quad (2) + (-\sin(\omega_h)\sin(\omega_p)\cos(\omega_r) + \cos(\omega_h)\sin(\omega_r))(\cos(a)r + dZ)$$

$$dZ_{NWU} = \sin(\omega_p)dX - \cos(\omega_p)\sin(\omega_r)(-\sin(a)r + dY) - \cos(\omega_p)\sin(\omega_r)(-\sin(a)r + dY) - \cos(\omega_p)\cos(\omega_r)(\cos(a)r + dZ)$$

$$\varphi = \varphi_{gps} + \frac{dX_{NWU}}{degm}$$

$$\lambda = \lambda_{gps} - \frac{dY_{NWU}}{degm\cos(\varphi)}$$

$$h = h_{gps} + dZ_{NWU}$$
(3)

6.2 Calibration of Laser Scanner Data

The gelocation process just described assumes perfect alignment between the laser scanner and the INS system, this is however not practical possible in this type of installation. To compensate for the imperfect installation several calibration maneuvers are performed during the campaign. The purpose of these maneuvers is to determine and monitor the offset angles between the laser scanner and the INS.

(a) Zoomed in view of two flights over a building in Kangerlussuaq used for calibration.

(b) Difference between two flight over the building in Kangerlussuaq.

JD – Date	Scanner file	Mean	Std. Dev.	Min.	Max.	Surface
111 – April 21 th	111530.2dd	0.00	0.43	-9.93	9.12	Building
113 – April 23 th	001130.2dd	0.00	0.08	-0.44	0.39	Land ice
113 – April 23 th	231800.2dd	0.00	0.08	-0.44	0.40	Land ice
114 – April 24 th	183030.2dd	0.00	0.26	-2.38	2.58	Sea ice
115 – April 25 th	131130.2dd	0.01	1.91	-152.68	185.54	Land ice
115 – April 25 th	135530.2dd	0.00	1.12	-149.99	222.53	Land ice
121 – May 1 st	111700.2dd	-0.01	0.09	-0.38	0.40	Land ice
121 – May 1 st	121500.2dd	-0.02	0.15	-0.49	0.49	Land ice
122 – May 2 nd	141200.2dd	0.01	0.39	-2.62	3.82	Sea ice
122 – May 2 nd	171030.2dd	0.00	0.19	-5.88	5.66	Building
125 – May 5 th	143900.2dd	-0.02	0.19	-0.70	0.66	Land ice
125 – May 5 th	143900.2dd	0.00	0.20	-0.89	0.81	Land ice
125 – May 5 th	143900.2dd	0.00	0.12	-0.67	0.73	Land ice
128 – May 8 th	182400.2dd	-0.01	0.38	-3.03	3.33	Sea ice
130 – May 10 th	175500.2dd	0.01	0.22	-2.41	2.70	Sea ice
130 – May 10 th	193200.2dd	0.00	0.10	-0.95	0.76	Land ice
131 – May 11 th	154300.2dd	0.00	0.20	-4.08	3.92	Sea ice
132 – May 12 th	165800.2dd	0.00	0.15	-3.83	2.61	Sea ice
137 – May 17 th	121400.2dd	-0.01	0.23	-4.94	5.21	Land ice
137 – May 17 th	153900.2dd	0.00	0.11	-0.41	0.41	Land ice
137 – May 17 th	153900.2dd	0.02	1.33	-13.00	183.25	Land ice

Table 8: Statics for crossing swaths.

The main calibration site for the laser is a building where the corners of the roof is known from a GPS survey. Using this building and two swaths of laser scanner data, one east-west and one north-south, one can estimate the offset angles through an iterative process. In Figure 7a points from the two swaths (in height coded colors) are plotted on top of the black outline of the building. The difference between first and second swath can be seen in Figure 7b. Statics show a mean difference of 0.00 meters and a 0.43 meters standard deviation of the mean. The relatively high standard deviation is caused by the non-continuous surface, where the interpolation between the two data sets fails to describe the edges of buildings correctly, this is clearly seen in Figure 7b.

Table 8 gives an overview of the the statics of all crossing swaths during the campaign. Each of these crossings is used to verify and, if necessary, correct the offset angles. Apart from crossing swaths where all three offset angles can be determined, it is also possible to determine one of the offset angles when flying over level sea ice and wather. The table in Appendix 24 gives the offset angles and other parameters used in the processing of each laser scanner file. One should use Table 8 carefully. For example one would expect that sea ice has moved in the period from the first to the second flight and this has a negative influence on the numbers.

6.3 Estimation of Ice Thickness from Freeboard Height

The sea ice freeboard (F) can be determined as a function of height above the ellipsoide from GPS (h), slant corrected laser range (r) and geoide height (N), see equation 4. The e term is a sum of local deviations of the sea surface and errors, that by means of a lowest level filter technique can be reduced or removed. This technique determines e by a selection of the lowest values in the dataset, assuming that these corresponds to the sea surface or thin ice. The lowest values are then interpolated to form the filter.

$$F = h - r - N + e \tag{4}$$

Figure 7: Sea ice thickness estimation.

From the freeboard data the total sea ice thickness (including snow cover), see *T* in equation 5 and Figure 7, can be estimated using the assumption of an isostatic balance between ice including snow and the seawater. This is commonly described by the single factor *K*. This factor is dependent of densities

$$T = KF$$

$$K = 1 + \frac{\rho_i h_i + \rho_s h_s}{h_i (\rho_w - \rho_i) + h_s (\rho_w - \rho_s)}$$
(5)
(6)

Figure 8: Example of sea ice freeboard.

7 ASIRAS Data Processing

The ASIRAS system was installed and run as tested during the test campaign in March 2006. The system was timed using a 1 PPS signal and an ASCII datetion string from the AIR4 GPS receiver.

Extensive tests of the ASIRAS instrument and backup system were performed on the first flights: The tests flight near Kangerlussuaq and the lines off the Greenland west coast. The logged data were stored on the dedicated hard disks in the ASIRAS PCs during flight and transferred to the PCs for backup after flights. The data were then stored on AIT-3 magnetic tapes and on hard disks. No data compression was done as this method was tested to be more time consuming than regular data backup. All together 1 hr of ASIRAS data acquisition demanded approximately 7 hours of backup time.

ASIRAS data were obtained primarily in the LAM mode at 20 MHz. Data were acquired continuously over the main sites and limited to parts of the other survey lines. Tests of the HAM mode over open ocean were carried out on April 30 between Greenland and Svalbard. Operator log files regarding the ASIRAS data can be found in Appendix E and Appendix F lists the recorded data files.

The data quality has been checked after each survey flight with the "Quicklook viewer" software from RST. Especially for the corner reflector sites the data were checked, see Table 12 for corner reflector positions from hand held GPS receivers. Examples from the "Quicklook-Viewer" can be found in Section 9.

Figure 9: Outline of the ASIRAS processor (from Cullen (2006)).

7.1 Processing of ASIRAS Data

The processing of the acquired ASIRAS data were done by AWI with input of GPS position and INS attitude data from DNSC. Figure 9 briefly outlines the processing of ASIRAS L1b data. Plots, showing ground track and height estimates from the OCOG retracker, of all processed ASIRAS profiles can be found in Appendix G.

7.1.1 Low Altitude Mode Pulse to Pulse Phase Correction for 2.5 kHz PRF

It was noticed during routine level 1b processing of LAM acquisitions from Bay of Bothnia (Test campaign March 2005) that waveforms were highly degraded. Subsequent analysis of range and phase histories retrieved from passes over corner reflectors showed a linear pulse to pulse phase term and it was further shown that this phase term was different for each FMCW frequency offset (20, 40, 60 and 80 MHz) which a re programmed as a function of aircraft altitude (shown in Figure 10)

Figure 10: Frequency offset and corresponding elevations for ASIRAS LAM mode

The effect results in azimuth formed beams pointing in the wrong along-track direction. Empirical phase corrections were determined which solved the problem. An analysis of instrument operation resulted in speculation of the cause and the empirical phase corrections as a function of frequency offset were verified. March 2005 data were acquired at a pulse repetition frequency (PRF) of \sim 3 kHz. CryoVEx 2006 acquisitions were recorded at a PRF of \sim 2.5 kHz. Since it was known the phase term (error) was also a function of PRF phase corrections were computed following a test campaign in Greenland (March 2006) when no corner reflector deployment was possible. Corrections for 2006 are provided in Table 9.

Frequency offset,	ASIRAS to surface elevation	Phase correction,			
F (MHz)	range (meters)	$\phi(F)$ (radians)			
20	40-440	3.35103216			
40	280-680	0.41887902			
60	520-920	3.76991118			
80	760-1160	0.83775804			

Table 9: LAM phase corrections.

7.1.2 Echo phase correction

A complex raw time domain echo recorded by the ASIRAS can be described as $\psi_n[0, l-1]$ where, *n*, is the echo number (in the range 0 to N - 1) and *l* is the number of samples (3072 sample for LAM). The phase corrected counterpart is given by

$$\forall k \in [0, l-1]$$
 $\psi_n^c[k] = \psi_n[k]e^{i\phi(F)n}$

(a) Range history computed by isolating corner reflector response from surface response and plotting the range bin at which the peak power is found. Waveforms have been interpolated by a factor 8. The jitter is due to the low interpolation factor and also SNR.

(b) Uncorrected phase history computed by computing the phase of the echo at the location determined by the plot (a)

(c) Phase history after correction. The curve appears smooth in comparison with (a) this shows the phase across the impulse response is stable. Phase noise is, however, evident if the smaller scale is examined.

Figure 11: An example of a corrected corner reflector phase history.

Note: Since the nature of the phase behavior is now understood efforts are being made to solve the pulse to pulse phase problem within the hardware. It is expected, though not confirmed until mid April 2007, future campaign ASIRAS data will be free from this phenomena.

7.2 CryoVEx 2006 ASIRAS processing results

The ASIRAS processing of the CryoVex2006 data is analogous to the concepts already presented in Helm et al. (2006). The full data set was processed with ESA's processor version ASIRAS_03_06. In agreement with ESA, AWI processed the full rate data instead of the de-sampled data set. A summary of the processing is given in Appendix F and G gives plots of every single profile.

A couple of tests were applied to address datation issues and show the quality of the level_1b product (see Section 7.2.1). In general the data shows good quality, however in some specific areas the re-tracked elevation shows a lack of quality (Section 7.2.3). We suggest to apply a different re-tracker algorithm here, since the implemented OCOG re-tracker fails.

7.2.1 Datation tests

Two different types of tests were applied to investigate the datation issue. The first test uses ground positions of the corner reflector and compares them to the position derived from the analysis of ASIRAS echoes. Here we found no time shift, see Section 9.6. The second test is a comparison of the ASIRAS surface elevation with the laser scanner elevation model in small sections of some profiles. Details of the procedure are described in Helm et al. (2006). In table 10 a summary of the results are listed. We clearly can identify that in some cases of the tested profiles (re-tracked by an threshold spline re-tracker) a time lag is present. An answer to that is not yet found, however the processing of the full data set was performed with a zero time shift due to the results determined at the corner reflector positions.

Profile	STDDEV without tshift correction [m]	STDDEV witht shift correction [m]	Tshift [s]	Median difference between ALS and ASIRAS [m]	Remarks
A060510_12	0.08	0.04	-0.13	5.34	runway
A060425_00	0.06	0.06	0.01	5.30	EGIG
A060425_01	0.27	0.27	0.00	5.34	EGIG
A060425_02	0.11	0.10	-0.01	5.31	EGIG
A060425_03	0.17	0.13	-0.20	5.30	EGIG
A060425_04	0.07	0.07	0.00	5.29	EGIG
A060425_05	0.06	0.06	0.01	5.32	EGIG
A060425_06	0.22	0.08	-0.25	5.30	EGIG
A060425_07	0.18	0.07	-0.24	5.30	EGIG
A060425_08	0.11	0.11	-0.03	5.34	EGIG
A060425_09	0.14	0.11	0.06	5.32	EGIG
A060425_10	0.06	0.05	-0.01	5.34	EGIG
A060425_11	0.06	0.04	0.02	5.32	EGIG
A060425_12	0.05	0.05	0.00	5.33	EGIG

Table 10: Datation tests

(a) Median difference is determined to 5.30 ± 0.18 m. The ASIRAS profile was shifted by 0.0 s.

(b) Median difference is determined to 5.30 ± 0.07 m. The ASIRAS profile was shifted by -0.24 s.

Figure 12: Comparison between ASIRAS elevation of profile A060425_07 and ALS elevation model.

7.2.2 Runway overflights and comparison with ALS-DEM

Runway overflights where performed in Alert at 11th may 2007. Figure 13 shows the laser scanner elevation model. ASIRAS profile A060510_12 was used to calibrate the system with the ALS-DEM. In figure 14b the comparison is shown. The black line in the upper panel shows the ALS elevation, whereas the dark gray line shows the ASIRAS elevation. The light gray line shows the roll, which is close to zero for this section. A difference of approx. 5.34 m between both elevations is determined. The lower left panel shows the variation of the difference around the median value. Statistics of this variation is shown in the histogram. To mention, the above calibration was done with a -0.14 s time shifted ASIRAS profile (figure 14b) and the original non time shifted ASIRAS profile (14a). Table 11 shows the result of the above calibration.

Figure 13: Laser scanner elevation model of runway in Alert

Danish National Space Center

(a) Median difference is determined to 5.33 ± 0.08 m. The ASIRAS profile was shifted by 0.0 s.

(b) Median difference is determined to 5.34 ± 0.04 m. The ASIRAS profile was shifted by -0.13 s.

Figure 14: Comparison between ASIRAS elevation and ALS elevation model of runway in Alert.

Profile	STDDEV without tshift correction [m]	STDDEV witht shift correction [m]	Tshift [s]	Median difference between ALS and ASIRAS [m]	Remarks
A060510_12	0.08	0.04	-0.14	5.34	runway

Table 11: Runway calibration

7.2.3 Retracker performance

ASIRAS elevations are re-tracked by a simple but very fast and robust OCOG re-tracker. This value is a rough approximation and should be taken with care. As it was shown in Helm et al. (2006) the OCOG re-tracker gives very good values for the dry snow zone, however for the percolation zone the retracker fails in tracking the surface response. We found that this is happen also for the 2006 LAM data. Figure 15 are showing two typical LAM-ASIRAS echoes in the percolation zone of Greenland. The vertical line shows the position of the re-tracked OCOG elevation. As it can be seen, the OCOG re-tracker jumps between the peaks and does not re-track the surface response in every case. Figure 17 shows the ASIRAS elevation for a 100 s long section in the percolation zone of Greenland. From this figure we can clearly identify the jumping of the OCOG re-tracker. We also determined such jumps over sea ice and in the dry snow zone (shown in figures 16 and 18). As consequence care must be taken when using the elevation data for further analysis.

Figure 15: Two typical LAM-ASIRAS echo in the percolation zone of Greenland re-tracked with the standard OCOG re-tracker.

Figure 16: LAM-ASIRAS elevation for a 100 s long section over the sea ice. The elevation was determined by using the standard OCOG re-tracker.

Figure 17: LAM-ASIRAS elevation for a 100 s long section in the percolation zone of Greenland. The elevation was determined by using the standard OCOG re-tracker.

Figure 18: LAM-ASIRAS elevation for a 100 s long section in the dry snow zone of Greenland. The elevation was determined by using the standard OCOG re-tracker.

7.2.4 Corner reflector overflights

Throughout the campaign there have been overflights of the corner reflectors put out at the test sites, the positions of all the corner reflectors can be found in Table 12. Figure 19 and 20 shows details of one pass over the YLT3 corner reflector. Figure 20 shows the stack before the averaging that leads to the profile shown in Figure 19.

Site	Latitude	Longitude	Latitude	Longitude
T05	69°51′ 1.71154"N	47°15′30.50837''W	69.8504754	-47.2584745
T12	70°10′31.13635"N	45°20′51.38740''W	70.1753157	-45.3476076
AUST1	79°47′56.52000"N	24°25′ 3.66000" E	79.7990333	24.4176833
AUST2	79°49′55.26000"N	24° 0′13.92000" E	79.8320167	24.0038667
AUST3	79°44′ 1.50000"N	22°24′59.70000" E	79.7337500	22.4165833
AUST4	79°56′34.20000''N	24°14′36.72000" E	79.9428333	24.2435333
KONG1	78°45′20.00000"N	13°20′ 7.00000" E	78.7555810	13.3355170
KONG2	78°48′ 9.00000"N	12°57′35.00000" E	78.8025970	12.9599470
DEVON	75°20′17.28000"N	82°40′38.58000''W	75.3381333	-82.6773833
YLT1	82°33′48.00000"N	62°15′40.00000''W	82.5635300	-62.2611600
YLT2	82°33′45.00000"N	62°16′ 4.00000''W	82.5627100	-62.2679300
YLT3	82°38′21.00000''N	62°17′30.00000''W	82.6394300	-62.2918000
YLT4	82°38′17.00000''N	62°17′31.00000''W	82.6382300	-62.2920100

Table 12: Corner reflector positions.

Figure 19: Echo (no. 10736) from a corner reflector overflight (profile A060510_00).

Danish National Space Center

Figure 20: Stack (no. 10736) from a corner reflector overflight (profile A060510_00).

8 Geolocating Downward Looking Camera

The images were timestamped by an internal clock (adjusted to GPS time) in the camera and can, after data processing, roughly be geolocated using the laser scanner data, for an example see Figure 22. Table 13 shows the offset caused by drift in the cameras clock. Flights with downward looking images are listed in Table 3. Since the pictures are geolocated using the laser scanner data there are some days where existing pictures are not gelocated due to the lack of laser scanner data. Pictures from the downward looking camera is primarily used as an aid when differentiating between ice types. However the pictures are also helpful when investigating strange or unexpected features on the ice.

Figure 21: Uncorrected photo from the downward looking camera, with timestamp in the top left corner.

Date - JD	Time Offset [sec]
115 – April 25 th	10
116 – April 26 th	0
119 – April 29 th	-10
120 – April 30 th	6
121 – May 1 st	8
122 – May 2 nd	1
123 – May 3 ^{ed}	2
125 – May 5 th	10
128 – May 8 th	10
129 – May 9 th	13
130 – May 10 th	14
131 – May 11 th	18
132 – May 12 th	20
136 – May 16 th	? (no proc. laser)
137 – May 17 th	28

Table 13: Time correction for the nadir looking camera.

Figure 22 shows photos from the downward looking camera together with a laser scanner profile of some sea ice north of Greenland. The photos in the figure have been more precisely geolocated, stitched and color corrected manually.

Figure 22: Laser scanner profile below geolocated photos from the downward looking camera.
9 Validation Sites

A main purpose of the CryoVEx 2006 campaign were to collect radar and laser data over several validation sites, see Figure 23. The sites represents the different snow and ice types one can expect to find in the Arctic. At least one radar corner reflector were installed at each sites, and in-situ measurements relevant for that particular site were performed.

In the following subsections are brief descriptions and some examples of ASIRAS and laser scanner data from each site. No corrections have been applied to the L1b ASIRAS data. These section are meant as a quick overview of the sites and will not go into the in-situ measurements or a deeper description of the site.

Figure 23: Validation sites overflown during CryoVEx 2006.

Since the Alert sea ice sites include several overflights of the same four corner reflectors, this site described in greather details than the other sites. With the many overflights of each corner reflector it is possible to make a independent test of the datation issue of ASIRAS, see section 7.2.1.

In some of the figures of the L1b data the OCOG retracker have been included as an

illustration of the product. It should be obvious, when seeing these figures, that the OCOG retracker is unsuitable as a description of the surface elavation. The following marks have been used in the figures:

Gray dot Position of processed L1b echoes.

- Red triangle Marks the position where the corner reflector is observed in the L1b product.
- **Black star** Marks the position of the corner reflector obtained by the ground teams using a hand held GPS.
- **Red star** Marks the estimated position of the corner reflector using multiple observations of the same corner reflector.

9.1 EGIG Line, T05

The T05 site is placed around 1940 meters ellipsoidal height on the EGIG line that crosses the icecap of Greenland from East to West. In Figure 25a is plotted several radar echos in columns next to each other, each row in the columns corresponds to a range bin that is color coded according to the normalized power of that particular echo. The Figure is overlayed with the OCOG retracker (white line). It is clearly that this retracker does not track the surface, but a strong reflector at some depth. In Figure 25b the first echoes without corner reflector traces before and after the corner reflector are showed together with the echo closest to the corner reflector.

Figure 24 shows a elevation model based on laser scanner data. The model has been overlayed with positions of radar echoes (gray dots), the corner reflector (black star) and the echo closest to th reflector (red triangle).

Figure 24: Laser scanner data from the 25th of April plotted with positions of ASIRAS echoes (gray dot and red triangle) and position of the corner reflector (black star).

Time [hr]

(a) Normalized return power plotted in color as function of time and ellipsoidal height.

(b) Normalized return power plotted as function of ellipsoidal height for waveforms before, over, and after the corner reflector pass.

Figure 25: ASIRAS data from the T05 site on the 26th of April.

9.2 EGIG Line, T12

Further up on the greenlandic icecap at approximate 2350 meters ellipsoidal height is the T12 site. When inspecting the radar echoes plotted in Figure 26a two features, near the center of the plot, show up as possible corner reflector responses. After inspection of the ASIRAS profile before focusing it is clear that the left floating area is the true corner reflector response. A correspondence with the ground team revealed that the reflecting object after the corner reflector were a aluminum Zarges box. At the T12 site it is possible to detect deepere layers compared to the T05 site and the layers are more easy to follow through the profile.

In Figure 27 two high objects (red/orange dots, one above the black star and one to the left partly covered by the red triangle) is seen near the assumed corner reflector position (black star). Since the point partly covered by the red triangle is very close to the corner reflector position found in Figure 26, it is possible that this point is the true corner reflector position that has been captured by the laser scanner. However since the laser captures two high objects near the observed corner reflector position (red triangle) it is not possible to make a final conclusion about the true corner reflector position. Another possibility is that the high objects seen by the laser scanner is part of the T12 sites equipment or camp items.

Time [hr]

(a) Normalized return power plotted in color as function of time and ellipsoidal height.

(b) Normalized return power plotted as function of ellipsoidal height for waveforms before, over, and after the corner reflector pass.

Figure 26: ASIRAS data from the T12 site on the 25th of April.

Figure 27: Laser scanner data plotted with positions of ASIRAS echoes (gray dot and red triangle) and position of the corner reflector (black star) from the 25th of April

9.3 Austfonna Icecap

During the CryoVEx 2006 campaign four corner reflectors were placed on the Austfonna icecap, see Figure 29. The flight lines covers a series of ground validation tracks along which various snow and ice properties has been measured over a longer period of time.

In the L1b dataset a clear surface return is seen, together with another clear reflector approximate three meters down (See Figure 30a). Between the two strongly reflecting layers it is possible to detect three layers with a weaker reflection.

Figure 28: The AUST1 corner reflector position (black star) and ellipsoidal heights as measured with the laser scanner.

Figure 29: The four corner reflectors (black stars) on Austfonna and ellipsoidal heights as measured with the laser scanner.

Time [hr]

(a) Normalized return power plotted in color as function of time and ellipsoidal height, at the AUST1 corner reflector.

(b) Normalized return power plotted as function of ellipsoidal height for waveforms before, over, and after the corner reflector pass.

Figure 30: ASIRAS data recorded at Austfonna on the 1st of May.

9.4 Kongsvegen

Unfortunately the weather conditions were very bad at the Kongsvegen site with strong winds and low scattered clouds. These conditions made it difficult to perform a steady and near passage of the corner reflector site and clouds did block the view of the laser scanner, see the white areas in Figure 31. Despite the turbulens it is possible to detect two clear reflecting layers (see Figure 32a) in the first profile from the upper part of Kongsvegen, but the profile from the lower part is very noisy. Note also the scale on the normalized return power which indicates that other returns is stronger than the surface return.

Figure 31: The corner reflector position (black star) on Kongsvegen and ellipsoidal heights as measured with the laser scanner.

Time [hr]

(a) Normalized return power plotted in color as function of time and ellipsoidal height, near the KONG1 corner reflector position.

(b) Normalized return power plotted as function of ellipsoidal height for three waveforms around the corner reflector position.

Figure 32: ASIRAS data collected at Kongsvegen on the 2^{nd} of May.

9.5 Devon Icecap

The Devon Icecap corner reflector site were overflown three times, unfortunately it was not possible to detect the reflector in any of the passes. The north-south line had to be terminated after a while due to heavy downdraft on glacier and the full validation line is therefore not in the airborne dataset.

Both the ASIRAS and the laser figures shows similar features as the T05 site, with a strong reflector roughly one meter below the surface and weaker reflector above and below (see Figure 33a and 33b).

(a) Normalized return power plotted in color as function of time and ellipsoidal height, on the northsouth flight near the DEVON corner reflector position.

Height [m]

(b) Normalized return power plotted as function of ellipsoidal height for three waveforms around the corner reflector position.

Figure 33: ASIRAS data collected at Devon Icecap on the 5th of May.

Figure 34: The corner reflector position (black star) on Devon and ellipsoidal heights as measured with the laser scanner.

9.6 Sea Ice North of Alert

The sea ice sites north of Alert consists of one validation line on first year ice and one on multi year ice, with two corner reflectors each. At both sites the corner reflectors are placed approximate 120 meters apart. Several measurements of snow depth, ice thickness and density have been performed along the two validation lines.

9.6.1 Multi year sea ice

For the multi year sea ice site the surface is clearly undulated as can be seen in Figure 36. When inspection laser scanner data beyond the corner reflectors the surface becomes even rougher, with great height differences and several ridges. In the ASIRAS L1b dataset these undulations becomes even clearer (see Figure 35a) as the radar penetrates the surface and reveals the chaotic internals of the sea ice. Several strong reflectors are found inside the ice and the return is spread over one or several meters.

(a) Normalized return power plotted in color as function of time and ellipsoidal height at the YLT1 and YLT2 positions.

(b) Normalized return power plotted as function of ellipsoidal height for waveforms before, over, and after the YLT1 corner reflector pass.

Figure 35: Multi year ice north of Alert.

Figure 36: The YLT1 and YLT2 corner reflector positions (black stars) and ellipsoidal heights as measured with the laser scanner.

Figure 37: YLT3 and YLT4. The red dot (left of the upper black star) is believed to be the corner reflector captured by the laser scanner.

9.6.2 first year sea ice

The first year sea ice is, as expected, very smooth (see Figure 37 and 38a). Inspection of the returned radar signal (see Figure 38b) shows narrow peaks consistent with the assumption of the first year sea ice as a patch of flat ice with a constant thickness. The left side of Figure 38a shows the beginning breakup of the ice caused by a ridge.

Time [hr]

(a) Normalized return power plotted in color as function of time and ellipsoidal height at the YLT3 and YLT4 positions.

(b) Normalized return power plotted as function of ellipsoidal height for waveforms before, over, and after the YLT3 corner reflector pass.

Figure 38: First year ice north of Alert.

9.6.3 Comparing multiple corner reflector overflights

Comparisons between laser scanner derived DEM and ASIRAS data indicates a datation error in the ASIRAS dataset (see Section 7.2.1). The source of this error is unknown and clear proof or rejection of it has not yet been possible.

On May 10 several flights from different directions were made over the same four corner reflectors. This dataset can be used to make a independent test of the datation. Each pass is given a color in the following four figures. The lines indicates the flight paths, the dots represents positions with ASIRAS data, the triangles marks the positions were the corner reflectors is observed in the radar data and the boxes marks the area that ASIRAS sees.

The true position of the corner reflector (marked with a red star) must then be where all the boxes overlap. In all four cases there exists a point where all boxes overlap and the distance between this point and the measured position is below seven meters. Since this distance is in agreement with the expected accuracy of a hand held GPS receiver, it is not possible to prove a datation error with this test. This does however not mean that the datation error can be rejected.

Figure 39: Corner reflector position from hand held GPS (black star) and estimated true position (red star) for YLT1.

Figure 40: Corner reflector position from hand held GPS (black star) and estimated true position (red star) for YLT2.

Figure 41: Corner reflector position from hand held GPS (black star) and estimated true position (red star) for YLT3.

Figure 42: Corner reflector position from hand held GPS (black star) and estimated true position (red star) for YLT4.

10 Conclusions

The airborne part of the CryoVEx 2006 campaign has successfully been carried out by DNSC and the gathered data sets are now stored and secured at DNSC. A total of 127 hr were flown with the Air Greenland Twin-Otter where laser scanner data were acquired most of the time. ASIRAS radar data were gathered on the main campaign sites and on parts of the survey lines. About 25 hr were spend on flights over the main sites, 20 hr on positioning of the British ground teams on the ice sheet, 25 hr on different other project, and the rest on transit flights and repeated coverage of sea ice and land ice lines previously flown by DNSC.

Preliminary analysis of the data sets showed good results, which were presented to the involved parties at the June 15th-16th, 2006 CryoSat CVRT meeting at ESA-ESTEC. Since then an intensive collaboration between ESA, AWI and DNSC have ensured a solid processing of data where many minor and major problems have been identified and solved.

References

Cullen, R. (2006). ASIRAS, Product Description, Issue: 2.4. European Space Agency.

Helm, V., Hendricks, S., Goebell, S., Rack, W., Haas, C., Nixdorf, U., and Boebel, T. (2006). Cryovex 2004 and 2005 (bob) data aquisition and final report. Technical Report 1.0, Alfred Wegener Institute.

A File Formats

The format description for the core products is taken from the "ASIRAS, Product Description, Issue: 2.4" by Cullen (2006) and the users should refer to this document for in depth information. The definition of the types used in the binary files can be found in Table 14.

Туре	Description	Size (bytes)
uc	Unsigned character	1
SC	Signed character	1
us	Unsigned short integer	2
SS	Signed short integer	2
ul	Unsigned long integer	4
sl	Signed long integer	4
ull	Unsigned long long integer	8
sll	Signed long long integer	8
d	Double precision floating	8
f	Single precision floating	4
[n]	Array length n	

Table 14: Definition of binary types used in the describtion of the file formats.

A.1 ASIRAS L1b

Processed L1b ASIRAS data is delivered in binary, big endian format as described by Cullen (2006) and Tables 15, 17, and 18.

The L1b product consists of two elements.

- 1. An ASCII header consisting of a main product header (MPH), a specific product header (SPH), and the data set descriptors (DSDs).
- 2. A binary, big endian measurement data set (MDS).

Field #	Description	Units	Bytes	Format			
	Product Identification Information						
	PRODUCT=	keyword	8	8*uc			
	quotation mark (")		1	uc			
#01	Product File Name		62	uc			
#01	Left justified with trailer blanks						
	quotation mark (")		1	uc			
	newline character	terminator	1	uc			
	PROC_STAGE=	keyword	11	11*uc			
	Processing stage code:		1	uc			
	N = Near-Real Time						
#02	T = Test						
	O = OFF Line (Systematic)						
		·					

Continued on next page

Airborne Lidar and Radar Measurements In and Around Greenland, CryoVEx 2006

52

Field #	Description	Units	Bytes	Format
	R = Reprocessing			
	L = Long Term Archive			
	newline character	terminator	1	uc
	REF DOC=	keyword	8	8*uc
	guotation mark (")	5	1	uc
	Reference DFCB Document		23	23*uc
#03	describing the product			
	guotation mark (")		1	uc
	newline character	terminator	1	uc
	Spare	(blank characters)	40	40*uc
#04	newline character	terminator	1	uc
	Data Process	ing Information		
	ACOLUSITION STATION-	keyword	20	20*110
	quotation mark (")	Reyword	1	20 40
	Acquisition Station ID		20	Kirupa
#05	Filled by blanks		20	ixii ulla
	quotation mark (")		1	110
	newline character	terminator	1	uc
	PROC CENTER-	keyword	12	12*110
	quotation mark (")	Reyword	12	12 uc
#06	Processing Center ID code		6	PDS
1100	quotation mark (")		1	103
	newline character	terminator	1	uc
	PROC TIME-	keyword	10	10*110
	quotation mark (")	Reyword	10	10 uc
	Processing Time	UTC	27	dd-MMM-vvvv
#07	(Product Generation Time)	010	2/	hh·mm·ss uuuuuu
	quotation mark (")		1	110
	newline character	terminator	1	uc
	SOFTWARE VER=	keyword	13	13*110
	quotation mark (")	Reynord	10	10 40
	Processor name up to 8 characters and	14	14*110	uc de
	software version number followed by	11	11 uc	ProcessorName/VVrr
#08	trailer blanks if any			
	If not used set to blanks			
	quotation mark (")		1	110
	newline character	terminator	1	
	Spare (blank characters)		40	40*uc
#09	newline character	terminator	1	uc
	Information	on Time of Data	_	
	SENSING START=	keyword	14	14*110
	quotation mark (")	Reynord	1	11 uc
	UTC start time of data sensing. This is	UTC	27	dd-MMM-vvvv
#10	the UTC start time of the Input Level 0		-	hh:mm:ss.uuuuuu
	Product.			
	If not used set to 27 blanks			
	guotation mark (")		1	uc
	newline character	terminator	1	uc
	SENSING STOP=	keyword	13	13*110
	guotation mark (")		1	110
	1 ()		-	uc uc

#11

Field #	Description	Units	Bytes	Format
	UTC stop time of data sensing. This is	UTC	27	dd-MMM-yyyy
	the UTC stop time of the Input Level 0			hh:mm:ss.uuuuuu
	Product.			
	If not used set to 27 blanks			
	quotation mark (")		1	uc
	newline character	terminator	1	uc
#10	Spare (blank characters)		40	40*uc
#12	newline character	terminator	1	uc
	Orbit Ir	formation	I	
	PHASE=	keyword	6	6*uc
	Phase Code:		1	
#13	phase letter (A, B,)			
	If not used set to X			
	newline character	terminator	1	uc
	CYCLE=	keyword	6	6*uc
	Cycle number.		4	%+04d
#14			_	, •
	If not used set to +000			
	newline character	terminator	1	uc
	REL ORBIT=	keyword	10	10*uc
	Relative Orbit Number at sensing start		6	%+06d
#15	time. If not used set to +00000			
	newline character	terminator	1	uc
	ABS_ORBIT=	keyword	10	10*uc
	Absolute Orbit Number at sensing start		6	%+06d
#16	time. If not used set to +00000			,
	newline character	terminator	1	uc
	STATE VECTOR TIME=	keyword	18	18*uc
	guotation mark (")		1	<u>uc</u>
	UTC state vector time	UTC	27	dd-MMM-vvvv
	It is filled properly in case of usage of			hh:mm:ss.uuuuuu
#17	FOS Predicted Orbit information			
	otherwise it shall be set to 27 blanks			
	guotation mark (")		1	uc
	newline character	terminator	1	uc
	DELTA UT1=	keyword	10	10*uc
	Universal Time Correction:	s	8	%+08.6f
	DUT1 = UT1 - UTC			
#18	Not used for ASIRAS. It shall be set to			
	+.000000			
	<s></s>	units	3	3*uc
	newline character	terminator	1	uc
	X_POSITION=	keyword	11	11*uc
#19	X position in Earth Fixed Reference.	m	12	%+012.3f
	If not used set to +0000000.000			
	<m></m>	units	3	3*uc
	newline character	terminator	1	uc
	Y_POSITION=	keyword	11	11*uc
	Y position in Earth Fixed Reference.	m	12	%+012.3f
#20	If not used set to +0000000.000			
	<m></m>	units	3	3*uc
		1	1	

Field #	Description	Units	Bytes	Format
	newline character	terminator	1	uc
	Z_POSITION=	keyword	11	11*uc
	Z position in Earth Fixed Reference.	m	12	%+012.3f
#21	If not used set to +0000000.000			
#21	<m></m>	units	3	3*uc
	newline character	terminator	1	uc
	X_VELOCITY=	keyword	11	11*uc
#22	X velocity in Earth Fixed Reference.	m/s	12	%+012.6f
	If not used set to +0000.000000			
	<m s=""></m>	units	5	5*uc
	newline character	terminator	1	uc
	Y_VELOCITY=	keyword	11	11*uc
	Y velocity in Earth Fixed Reference.	m/s	12	%+012.6f
#23	If not used set to +0000.000000			
	<m s=""></m>	units	5	5*uc
	newline character	terminator	1	uc
	Z_VELOCITY=	keyword	11	11*uc
	Z velocity in Earth Fixed Reference.	m/s	12	%+012.6f
#24	If not used set to +0000.000000			
	<m s=""></m>	units	5	5*uc
	newline character	terminator	1	uc
	VECTOR_SOURCE=	keyword	14	14*uc
	quotation mark (")		1	uc
	Source of Orbit State Vector Record		2	2*uc
	FP = FOS predicted			
#25	DN = DORIS Level 0 navigator			
#25	DP = DORIS precise orbit			
	FR = FOS Restituted			
	DI = DORIS Preliminary			
	quotation mark (")		1	uc
	newline character	terminator	1	uc
#26	Spare (blank characters)		40	40*uc
1120	newline character	terminator	1	uc
	SBT to UTC con	version Informati	on	
	UTC_SBT_TIME=	keyword	13	13*uc
	quotation mark (")		1	uc
#27	Not used and set to 27 blanks		27	
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	SAT_BINARY_TIME=	keyword	16	16*uc
	Satellite Binary Time		11	+000000000
#28	Not used for Cryosat and it shall be set			
	to zeros			
	newline character	terminator	1	uc
	CLOCK_STEP =	keyword	11	11*uc
	Clock Step		11	+000000000
#29	Not used for Cryosat and it shall be set			
129	to zeros			
	<ps></ps>	units	4	4*uc
	newline character	terminator	1	uc
#30	Spare (blank characters)		32	32*uc
#30				

Field #	Description	Units	Bytes	Format
	newline character	terminator	1	uc
	Leap Secon	d Information		
	LEAP UTC=	keyword	9	9*11C
	guotation mark (")	ney word	1	uc uc
	UTC Time of the occurrence of the leap	UTC	27	dd-MMM-vvvv
	second.			hh:mm:ss.uuuuuu
	If a leap second occurred in the product			
	window the field is set by a devoted			
	function in the CFI			
#31	EXPLORER_ORBIT library (see			
	[EXPL_ORB-SUM] for details),			
	otherwise it is set to 27 blanks. It			
	corresponds to the time after the Leap			
	Second occurrence (i.e. midnight of the			
	day after the leap second)			
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	LEAP_SIGN=	keyword	10	10*uc
	Leap second sign	S	4	%+04d
	If a leap second occurred in the product			
	window the field is set to the expected			
#32	value by a devoted function in the CFI			
	EXPLORER_ORBIT library (see			
	[EXPL_ORB-SUM] for details),			
	otherwise it is set to +000.	1	1	
	newline character	terminator	1	uc
	LEAP_EKK=	keyword	9	9 uc
	This field is always set to 0 considering		1	uc
#33	that CRVOSAT products have true LITC			
	times			
	newline character	terminator	1	110
	Spare (blank characters)		40	40*11C
#34	newline character	terminator	10	10 40
	Droduct Confiden	a Data Information		uc
		korrend	10	10*110
	Product Error Elag set to 1 if errors have	Reywolu	12	12 uc
#35	heen reported in the product		1	uc
	newline character	terminator	1	110
	Droduct Siz	a Information	1	uc
	TOT SIZE_		0	0****
	Total size of the product	bytes	21	9 uc %+021d
#36	<pre>chutes></pre>	units	7	78+0210
	newline character	terminator	1	7 uc
	SPH SIZE=	keyword	9	
	Length of the SPH	bytes	11	%+011d
#37	 	units	7	7*110
	newline character	terminator	1	110
	NUM DSD=	keyword	8	
	Number of Data Set Descriptors,		11	%+011d
#38	1 '	1	1	

Field #	Description	Units	Bytes	Format
	including spares and all other types of			
	DSDs			
	newline character	terminator	1	uc
	DSD_SIZE=	keyword	9	9*uc
#39	Length of each DSD	bytes	11	%+011d
π37	<bytes></bytes>	units	7	7*uc
	newline character	terminator	1	uc
	NUM_DATA_SETS=	keyword	14	14*uc
#40	Number of attached Data Sets (note that		11	%+011d
#1 0	not all the DSDs have a DS attached)			
	newline character	terminator	1	uc
	CRC=	keyword	4	4*uc
	Cyclic Redundancy Code computed as		6	%+06d
#41	overall value of all records of the			
π 1 1	Measurement Data Set. If not computed			
	it shall be set to -00001			
	newline character	terminator	1	uc
#42	Spare (blank characters)		29	29*uc
<i>π</i> -±∠	newline character	terminator	1	uc
TOTAL				1247

Table 15: ASIRAS main product header (MPH) format.

Field #	Description	Units	Bytes	Format
	Product description and	l identification	l	
	SPH_DESCRIPTOR=	keyword	15	15*uc
	quotation mark (")		1	uc
#1	ASCII string describing the product		28	28*uc
#1	Set to			
	ASI_SAR_1B SPECIFIC HEADER			
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	Product Time info	ormation		
	START_RECORD_TAI_TIME=	keyword	22	22*uc
	quotation mark (")		1	uc
#2	TAI of the first record in the Main	TAI	27	dd-MMM-yyyy
	MDS of this product			hh:mm:ss.uuuuuu
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	STOP_RECORD_TAI_TIME=	keyword	21	21*uc
	quotation mark (")		1	uc
#2	TAI of the last record in in the Main	TAI	27	dd-MMM-yyyy
#3	MDS of this product			hh:mm:ss.uuuuuu
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	Product Orbit Info	ormation		
	ABS_ORBIT_START=	keyword	16	16*uc
#1	Absolute Orbit Number at Product Start		6	%06d
#4	Time			

Continued on next page

Field #	Description	Units	Bytes	Format
	newline character	terminator	1	uc
	REL_TIME_ASC_NODE_START=	Keyword	24	24*uc
	Relative time since crossing ascending	s	11	%011.6f
#5	node time relative to start time of data			
#5	sensing			
	<s></s>	units	3	3*uc
	newline character	terminator	1	uc
	ABS_ORBIT_STOP=	keyword	15	15*uc
#6	Absolute Orbit Number		6	%06d
#0	at Product Stop Time			
	newline character	terminator	1	uc
	REL_TIME_ASC_NODE_STOP=	Keyword	23	23*uc
	Relative time since crossing ascending	s	11	%011.6f
	node time relative to stop time of data			
#/	sensing			
	<s></s>	units	3	3*uc
	newline character	terminator	1	uc
	EQUATOR_CROSS_TIME_UTC=	Keyword	23	23*uc
	quotation mark (")		1	uc
"0	Time of Equator crossing at the	UTC	27	dd-MMM-yyyy
#8	ascending node of the sensing start time			hh:mm:ss.uuuuuu
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	EQUATOR_CROSS_LONG=	Keyword	19	19*uc
	\sim	s	11	%+011d
	ascending node of the sensing start time			
#9	(positive East, 0 = Greenwich) referred			
	to WGS84			
	<10-6degE>	units	10	10*uc
	newline character	terminator	1	uc
	ASCENDING_FLAG=	keyword	15	15*uc
	Orbit Orientation at the sensing start time		1	uc
#10	A= Ascending			
	D= Descending			
	newline character	terminator	1	uc
	Product Location In	formation		1
	START_LAT=	keyword	10	10*uc
	WGS84 latitude of the first record in the	[10-6 deg]	11	%+011d
#11	Main MDS (positive north)			
	<10-6degN>	units	10	10*uc
	newline character	terminator	1	uc
	START_LONG=	keyword	11	11*uc
#12	WGS84 longitude of the first record in	[10-6 deg]	11	%+011d
	the Main MDS (positive East, 0 =			
	Greenwich)			
	<10-6degE>	units	10	10*uc
	newline character	terminator	1	uc
	STOP_LAT=	keyword	9	9*uc
	WGS84 latitude of the last record in	[10-6 deg]	11	%+011d
#13	the Main MDS (positive north)			
	<10-6degN>	units	10	10*uc

Field #	Description	Units	Bytes	Format
	newline character	terminator	1	uc
	STOP_LONG= keyword 10 10*uc			
	WGS84 longitude of the last record in	[10-6 deg]	11	%+011d
<i>щ</i> 1 <i>1</i>	the Main MDS (positive East,			
#14	$0 = \text{Greenwich})^{\circ}$			
	<10-6degE>	units	10	10*uc
	newline character	terminator	1	uc
<i>щ</i> 1 г	Spare (blank characters)		50	50*uc
#15	newline character	terminator	1	uc
	Level 0 Quality inf	formation		
	L0_PROC_FLAG=	keyword	13	13*uc
	Processing errors significance flag		1	uc
	(1 or 0).			
#16	1 if the percentage of SIRAL packets			
	free of processing errors is less than the			
	acceptable threshold			
	newline character	terminator	1	uc
	L0_PROCESSING_QUALITY=	keyword	22	22*uc
	Percentage of quality checks successfully	[10-2%]	6	%+06d
	passed during the SP processing (max			
#17	allowed +10000)			
	<10-2%>	units	7	7*uc
	newline character	terminator	1	uc
	L0 PROC THRESH=	kevword	15	15*uc
	Minimum acceptable percentage of	[10-2%]	6	%+06d
	quality threshold that must be passed			
#18	during SP processing (max allowed			
	+10000)			
	<10-2%>	units	7	7*uc
	newline character	terminator	1	uc
	L0 GAPS_FLAG=	keyword	13	13*uc
	Gaps significance flag (1 or 0).		1	uc
	1 if gaps (either caused by extraction or			
#19	alignment failures) were detected during			
	the SP processing			
	newline character	terminator	1	uc
	L0_GAPS_NUM=	keyword	12	12*uc
	Number of gaps detected during the SP		8	%+08d
#20	processing (no gaps indicated as			
	+0000000)			
	newline character	terminator	1	uc
	Spare (blank characters)	ascii	50	50*uc
#21	newline character	terminator	1	uc
	ASIRAS Instrument (onfiguration		
	ASL OP MODE=	keyword	12	12*110
	guotation mark (")		1	12 uc
	ASIRAS Operative Mode		10	10*11c
	HAM		10	10 uc
#22	LAM			
11 66	(strings shorter than 10 are filled in with			
-	Counted shorter than to are filled in white			

Field #	Description	Units	Bytes	Format
	blanks)			
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	ASI_CONFIGURATION=	keyword	18	17*uc
	quotation mark (")		1	uc
	SIRAL Configuration:		7	7*uc
	RX_1			
	RX_2			
#23	BOTH			
	UNKNOWN			
	(strings shorter than 7 are filled in with			
	blanks)			
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	Surface Statis	tics		
	OPEN_OCEAN_PERCENT=	keyword	19	19*uc
	Percentage of records detected on open	[10-2%]	6	%+06d
#24	ocean or semi-enclosed seas			
	<10-2%>	units	7	7*uc
	newline character	terminator	1	uc
	CLOSE_SEA_PERCENT=	keyword	18	18*uc
	Percentage of records detected on closed	[10-2%]	6	%+06d
#25	seas or inland lakes			
1120	<10-2%>	units	7	7*uc
	newline character	terminator	1	uc
	CONTINENT_ICE_PERCENT=	keyword	22	22*uc
	Percentage of records detected on	[10-2%]	6	%+06d
#26	continental ice			
	<10-2%>	units	7	7*uc
	newline character	terminator	1	uc
	LAND_PERCENT Keyword 13 13*uc			
#27	Percentage of records detected on land	[10-2%]	6	%+06d
#27	<10-2%>	units	7	7*uc
	newline character	terminator	1	uc
#79	Spare (blank characters)	ascii	50	50*uc
#20	newline character	terminator	1	uc
	Level 1 Processing ir	formation		
	L1B_PROD_STATUS=	keyword	16	16*uc
	Complete/Incomplete Product		1	uc
# 2 0	Completion Flag (0 or 1).			
#29	1 if the Product as a duration shorter than			
	the input Level 0			
	newline character	terminator	1	uc
	L1B_PROC_FLAG=	keyword	14	14*uc
	Processing errors significance flag (1 or 0).		1	uc
#20	1 if the percentage of DSR free of			
#30	processing errors is less than the			
	acceptable threshold			
	newline character	terminator	1	uc
	1	+		

#31

Field #	Description	Units	Bytes	Format	
	Percentage of quality checks successfully	[10-2%]	6	%+06d	
	passed during Level 1B processing (max				
	allowed +10000)				
	<10-2%>	units	7	7*uc	
	newline character	terminator	1	uc	
	L1B_PROC_THRESH=	keyword	16	16*uc	
	Minimum acceptable percentage of	[10-2%]	6	%+06d	
	quality threshold that must be passed				
#32	during Level 1B processing (max				
	allowed +10000)				
	<10-2%>	units	7	7*uc	
	newline character	terminator	1	uc	
#33	Spare (blank characters)	ascii	50	50*uc	
#33	newline character	terminator	1	uc	
TOTAL	TOTAL				
	DSD Section	n			

Table 16: ASIRAS specific product header (SPH) format.

Field #N	Description	Units	Bytes	Format
	DSD			
	DS_NAME=	keyword	8	8*uc
	quotation mark (")	-	1	uc
#N.1	Name describing the Data Set		28	28*uc
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	DS_TYPE=	keyword	8	8*uc
	Type of Data Set. It can be:		1	uc
#N.2	M = Measurement			
	R = Reference			
	newline character	terminator	1	uc
	External product reference			
	FILENAME=	keyword	9	9*uc
	quotation mark (")		1	uc
	Name of the Reference File.		62	62*uc
#NI 2	Used if DS_TYPE is set to R. It is left justified with			
#1 N .3	trailer blanks. The file name includes the extension.			
	If not used it is set to 62 blanks.			
	quotation mark (")		1	uc
	newline character	terminator	1	uc
	Position and size of DS			
	DS_OFFSET=	keyword	10	10*uc
	Length in bytes of MPH + SPH (including DSDs) +	bytes	21	%+021d
#N.4	DS size of previous Data Set (if any).	-		
	<bytes></bytes>	units	7	7*uc
	newline character	terminator	1	uc
	DS_SIZE=	keyword	8	8*uc
	Length in bytes of the attached Data Set	bytes	21	%+021d
#N 5	Used if DS_TYPE is set to M			

Continued on next page

Field #N	Description	Units	Bytes	Format
	If not used set to 0			
	<bytes></bytes>	units	7	7*uc
	newline character	terminator	1	uc
	Number and length of DSRs			
	NUM_DSR=	keyword	8	8*uc
	Number of Data Set Records		11	%+011d
#N 6	newline character	terminator	1	uc
#1 N.O	DSR_SIZE=	keyword	9	9*uc
	Length in bytes of the Data Set Record	bytes	11	%+011d
#NI 7	If not used set to +0			
<i>π</i> 1 N. 7	If variable set to -1			
	<bytes></bytes>	units	7	7*uc
	newline character	terminator	1	uc
#N.8	Spare	ascii	32	32*uc
	newline character	terminator	1	uc
Total				280

Table 17: ASIRAS data set descriptors (DSD) format.

The MDS can be further divided into five parts as described below.

- 1. Time and Orbit Group (20 blocks per record).
- 2. Measurements Group (20 blocks per record).
- 3. Corrections Group (one block per record) (Zeroed for ASIRAS).
- 4. Average Waveforms Group (one block per record) (Zeroed for ASIRAS).
- 5. Waveform Group (20 blocks per record).

Identifier	Description	Units	Туре	Size [Bytes]
Time & Or		Su	b Total=84*20	
1	Days	TAI	sl	4
2	Seconds		ul	4
3	Microseconds		ul	4
4	Spare		sl	4
5	Spare		us	2
6	Spare		us	2
7	Instrument Config		ul	4
8	Burst Counter		ul	4
9	Geodetic latitude of ASIRAS centre of baseline	10 ⁻⁷ Deg	sl	4
10	Longitude of ASIRAS centre of baseline	10 ⁻⁷ Deg	sl	4
11	WGS-84 ellipsoidal altitude of ASIRAS baseline centre	10^{-3} m	sl	4
12	Altitude rate determined from DGPS	10 ⁻⁶ m/s	sl	4
13	Velocity [x,y,z], described in ITRF	10 ⁻³ m/s	sl	3*4
14	Real antenna beam direction vector [x,y,z]	10 ⁻⁶ m	sl	3*4
15	Interferometer baseline [x,y,z]	10 ⁻⁶ m	sl	3*4
16	Measurement Confident data		ul	4

Continued on next page

Identifier	Description	Units	Туре	Size [Bytes]		
Measurem	Measurements Group Repeated 20 times Sub Total=94*2					
17	Window delay	$10^{-12} \mathrm{s}$	sll	8		
18	Spare		sl	4		
19	ÔCOG width	Range bins*100	sl	4		
20	OCOG or threshold retracker range	10 ⁻³ m	sl	4		
21	Surface elevation derived from field 20	10 ⁻³ m	sl	4		
22	AGC Channel 1	dB/100	sl	4		
23	AGC Channel 2	dB/100	sl	4		
24	Total fixed gain Ch1	dB/100	sl	4		
25	Total fixed gain Ch2	dB/100	sl	4		
26	Transmit Power	10^{-6} Watts	sl	4		
27	Doppler range correction	10 ⁻³ m	sl	4		
28	Instrument range correction Ch 1	10 ⁻³ m	sl	4		
29	Instrument range correction Ch 2	10 ⁻³ m	sl	4		
30	Spare		sl	4		
31	Spare		sl	4		
32	Internal phase correction	10 ⁻⁶ rad	sl	4		
33	External phase correction	10 ⁻⁶ rad	sl	4		
34	Noise power	dB/100	sl	4		
35	Roll	10^{-3} Deg	ss	2		
36	Pitch	10 ⁻³ Deg	ss	2		
37	Yaw	10 ⁻³ Deg	ss	2		
38	Spare	0	ss	2		
39	Heading	10^{-3} Deg	sl	4		
40	Standard deviation of roll during stack integration	10 ⁻⁴ Deg	us	2		
41	Standard deviation of pitch during stack integration	10 ⁻⁴ Deg	us	2		
42	Standard deviation of yaw during stack integration	10 ⁻⁴ Deg	us	2		
Correction	s Group Once per record			Sub Total=64		
Empty for	ASIRAS					
43	Spare		uc	64*1		
Average pu	alse-width limited Waveform group Once per record	1	Sı	ub Total=8236		
Empty for	ASIRAS					
44	Spare		uc	8236*1		
Multilooked Waveform Group Repeated 20 times Sub Tota						
45	Multi-looked Power Echo.	Counts (0-65535)	us	4096*2		
46	Linear scale factor, A		sl	4		
47	Power of 2 scale factor,B		sl	4		
48	Number of multilooked echoes		us	2		
49	Flags		us	2		
50	Beam behaviour parameters[50]		us	50*2		
Total	· · · · · · · · · · · · · · · · · · ·			177940		

Table 18: ASIRAS measurement data set (MDS) format.

A.2 GPS

Processed DGPS data is delivered in binary, big endian format with each record formated as described by Cullen (2006) and Table 19.

Identifier	Description	Unit	Туре	Size [Bytes]
1	Days (MJD)	UTC	sl	4
2	Seconds		ul	4
3	Microseconds		ul	4
4	Latitude (WGS-84)	$10^{-7} deg$	sl	4
5	Longitude	$10^{-7} deg$	sl	4
6	Geodetic ellipsoidal height	m	d	8
7	Spare_7	N/A	d	8
8	Spare_8	N/A	d	8
9	Spare_9	N/A	d	8
10	Spare_10	N/A	d	8
Total				72

Table 19: GPS file format.

A.3 INS

Processed INS data is delivered in binary, big endian format with each record formated as described by Cullen (2006) and Table 20.

A.4 Laser Scanner

Processed lidar data is delivered in binary, little endian format with each record formated as described in Table 21. Note that the time is decimal hours since the beginning of the day with respect to UTC time.

A.5 Vertical Camera

Approximate time and position of the vertical camera when a picture is taken is delivered in windows ASCII format as described in Table 22 and all individual pictures are in JPEG format. Each ASCII line gives the filename, time, and position for the named picture. If no DGPS data is available the time and position is replaced with the string "No position available".

Identifier	Description	Unit	Туре	Size [Bytes]
1	Days (MJD)	UTC	sl	4
2	Seconds		sl	4
3	Microseconds		sl	4
4	Latitude (WGS-84)	deg	d	8
5	Longitude	deg	d	8
6	Ground speed	kts	d	8
7	True Track	deg	d	8
8	True Heading	deg	d	8
9	Wind Speed	kts	d	8
10	Wind Direction	deg	d	8
11	Magnetic Heading	deg	d	8
12	Pitch	deg	d	8
13	Roll	deg	d	8
14	Pitch Rate	deg/s	d	8
15	Roll Rate	deg/s	d	8
16	Yaw Rate	deg/s	d	8
17	Body longitudinal Acceleration	g	d	8
18	Body lateral Acceleration	g	d	8
19	Body normal acceleration	g	d	8
20	Vertical Acceleration in G	g	d	8
21	Velocity Inertial Vertical	ft/min	d	8
22	Velocity North-South	kts	d	8
23	Velocity East-west	kts	d	8
Total				172

Table 20: INS file format.

Identifier	Description	Unit	Туре	Size [Bytes]
1	Decimal hours	10^{-7} hour	sl	4
2	Latitude (WGS-84)	$10^{-7} deg$	sl	4
3	Longitude	$10^{-7} deg$	sl	4
4	Geodetic ellipsoidal height	$10^{-3} { m m}$	sl	4
5	Relative return amplitude		uc	1
6	Point number in current scan		uc	1
Total				18

Table 21: Laser scanner file format.

Identifier	Description	Unit
1	JPEG filename	
2	Decimal hours	hour
3	Latitude (WGS-84)	deg
4	Longitude	deg
5	Geodetic ellipsoidal height	m
6	Newline characters " $r n$ "	

Table 22: Vertical camera file format.

B Airborne Log with GPS Track Plot

JD 110 – 2006 April 20th GPS week 1371 (day 4)

18:45:30	new scanner file	19:00	out through the fjord
18:48	engines on	19:15:30	over the runway
18:53	taxi	19:18	webcam PC rebooted
18:56	start Trimble logging	19:31	landing

JD 111 – 2006 April 21st GPS week 1371 (day 5)

11:06	engines on	12:14	broken floes in bands
11:15:30	new scanner file	13:01:30	new scanner file
	cross over building	13:34:00	new scanner file just after V3
	close scanner file, transit to V1		few min of video
11:43	webcam rebooted	13:57	few min of video
12:06:00	new scanner file	14:23	91 knots and fog
	over water near coast		67N 55 57W lead
12:07:20	V1	14:56	scanner file closed at V4
12:09	thin ice and water	15:49	landing

21:50	taxi	23:34	ASIRAS on 73° 25'N - 73° 40'N
21:54	take off	23:59	A3
22:35:00	new scanner file	23:59	tear drop turn at A4
22:31:30	A1	00:08:40	at A4, start line A4-A5
23:05 - 23:10	ASIRAS on	00:11:30	new scanner file
	where lines cross	00:53	A5
23:14	A2	01:10	scanner file closed at ice edge
23:18:00	new scanner file	01:54	landing

Airborne Lidar and Radar Measurements In and Around Greenland, CryoVEx 2006

JD 113 – 2006, April 23rd GPS week 1372 (day 0)
JD 114 – 2006, April 24th GPS week 1372 (day 1)

17:23	taxi	19:31	V7
17:26	take off	20:23	V8, climb towards Disko
17:47	V5	20:25:00	new scanner file
18:05	video on, right window	20:51	DI1
18:30:30	new scanner file	21:03	DI3
18:46	video off		scanner file closed
18:59	tear drop turn at V6	22:11	landing
19:26:30	new scanner file		-

JD 115 – 2006, April 25th GPS week 1372 (day 2)

11:57	taxi	14:43	T21
11:59	take off	14:46:00	new scanner file
12:10:00	new scanner file	14:54	T25
12:23	EGI logging started	15:08	T31
13:11:30	new scanner file	15:18	T35
13:19	X2, tear drop turn	15:36	T41
13:38	T1	15:43	T43
13:42	T3	15:45:30	new scanner file
13:46	T5, over corner reflector	16:54:30	new scanner file (1 sec late?)
13:54	Τ8	17:13	I5
13:55:30	new scanner file	17:28	I6
14:09	T12, over corner reflector,	17:34	17
	off by 20 m	17:40	18
	better 2 nd time	17:47	I9, end of line,
14:18:30	T17		scanner file closed
		18:49	landing
			-

JD 116 – 2006, April 26th GPS week 1372 (day 3)

12:55	taxi	17:03	V17, towards T3
12:58	take off	17:04:30	new scanner file - no data
14:29	Trimble logging stopped,	18:49:00	new scanner file - no data
	stopped to delete file	19:05 - 15	3 times over T5,
14:30	Trimble logging started		1 st and 3 rd best hit
14:41	deviate line to land in JQA,	19:15	direct to T12 to pick up UK1,
	helicopter not departed		one is ill
14:57	landing JQA, air2,	19:40	landing at T12 on ice sheet
	air3 logging stopped	19:49	take off T12 towards SFJ
16:02	EGI logging stopped	19:51:30	new scanner file
16:03	EGI, air2, air3 logging started	20:46:30	new scanner file, memory
16:04	taxi		out on PC-card at 2100
16:07	take off JQA	21:09:00	new scanner file
16:11:30	new scanner file	21:26	scanner file closed
16:26	V5	21:42	landing
16:57	over helicopter (on ice floe)	21:46	engines off

71

JD 119 – 2006, April 29th GPS week 1372 (day 6)

11:01	engines on	15:45	scanner file closed, ice margin
11:09	taxi	16:54	landing CNP
11:11	take off		logging stopped all instruments
12:18:00	new scanner file	17:43	on
12:19	EG1	17:44	taxi
13:01:00	new scanner file, 1 sec late?	17:48	take off
13:12	EG3	17:49	EGI logging, Trimble started
13:57	EG4	19:36:30	B1, new scanner file
14:01:00	new scanner file	19:47	break off line, scanner cannot
14:28	EG5		reach surface, strong winds,
14:38	slightly off line -		ice crystals in air?
	retype pos in GPS < 2 km off		EGI stopped some time before B1?
14:53:00	new scanner file	20:53	landing

JD 120 – 2006, April 30th GPS week 1373 (day 0)

08:27	take off
08:33:00	new scanner file
08:46	EMAP started, PC rebooted twice
09:32:30	new scanner file, follow ice edge
09:44:40	end of sea ice, scanner file closed

- 10:10 2 · 10 min HAM radar data at 2800 m some wind at surface, waves, see photo before climb
- 11:58 landing

JD 121 – 2006 May 1st GPS week 1373 (day 1)

10:18	take off	13:12:30	new scanner file (131235?)
11:17:00	new scanner file	13:35	NV11
	problems with EMAP on Trimble		deviate line to fly over sea ice,
	changed to Javad after several tries		SE of island
12:15:00	new scanner file (121504/05)		back to K5 afterwards
12:32	4-1	13:57:00	new scanner file
12:32:30	R4	14:00	K5
12:50	some fog is starting to reoccur	14:16	clouds on top of ice cap
13:04	R1	14:47	end of survey,
13:08:40	R4		too much wind over mountains
13:09:40	end of line	15:38	landing

JD 122 – 2006, May 2nd GPS week 1373 (day 2)

	engines on early, EGI restarted	13:11	taxi
08:35	taxi	13:14	take off
08:38	take off	13:13:00	new scanner file
08:40:30	new scanner file	13:29:30	lead, shear zone
09:04	end of glacier	14:12:00	new scanner file
10	clouds to altitude 80 m	14:13	F1
10:20	descend to observe cloud cover	14:14	tear drop turn
10:28	clouds too low, some	15:06:00	new scanner file
	ASIRAS data gathered	15:33	fog, scanner file closed,
10:39:30	new scanner file, only		ASIRAS still on
	few higher clouds now	16:11:00	new scanner file
10:43	large ice floe	17:10:30	new scanner file
11:25	EN8	18:12	cross over building,
11:27:00	new scanner file, (1 sec early?)		(Ebbe Kold hal)
11:50	landing	18:15	second pass
	-	18:18	landing

JD 123 – 2006, May 3rd GPS week 1373 (day 3)

10:44	taxi	12:5
10:47	take off	12:5
10:49:30	new scanner file	12:5
11:12	H1	13:5
11:22	H2	14:0
11:34	H3	14:5
11:45	H4	15:2
11:58	H5	
11:58:30	new scanner file	16:0
12:02	glacier start (margin in fjord)	
12:09	H6	
	AIR2 PC-card full,	
	stopped and files deleted	

12:55	AIR2 second file on
12:56	H7
12:58:30	new scanner file
13:55:00	new scanner file
14:06	H8
14:57:00	new scanner file
15:27	ice sheet margin
	scanner file closed
16:06	landing

JD 125 – 2006, May 5th GPS week 1373 (day 5)

12:50	EGI start	15:22	DE5
12:55	taxi	15:31	R1
13:01	take off	15:37	DE3
13:09:00	new scanner file	15:39:00	new scanner file
14:09:00	new scanner file	15:45	scanner file stopped
14:39:00	new scanner file	16:20:00	new scanner file
14:45	reflector R1	17:26	scanner file stopped
14:54	DE6	17:26	landing
14:08	R1		-

JD 128 – 2006, May 8th GPS week 1374 (day 1)

14:20	system start up	17:02	clouds
14:24	taxi	17:14:00	new scanner file
14:30	take off	17:18	C2
14:35:00	new scanner file	18:00	C3
14:54	Politikens isbræ (POL)	18:08	edge of Petermann, nearly
15:05	on ground NAQ		no snow on sea ice
15:34	engine on	18:24:00	new scanner file
15:37	taxi	18:32	end of line
15:38	take off	18:32	on ground
16:28:00	new scanner file		-

JD 129 – 2006, May 9th GPS week 1374 (day 2)

16:00	INS aligned,	18:17	wpt D3A, turn
	start taxi (1200 local)	19:08:00	new scanner file
16:03:00	new scanner file	19:15	wpt H3 turn
16:05	take off	19:58	turn wpt H2
16:33	video tape #2	20:09:00	new scanner file
17:05:30	new scanner file	20:48	rwy overflight
17:13	Trn, wpt D4	20:52	landing
18:08	new scanner file		-

JD 130 – 2006, May 10th GPS week 1374 (day 3)

17:52	take off	19:04:40	MY 1500 ft
17:55:00	new scanner file	19:08:00	FY cross
17:58:43	MY reflector, xte -31m	19:13:20	FY 1500 ft
18:06:30	FY reflector	19:15:40	MY cross
18:08:38	MY cross		climb to 2500 ft, scanner
18:16:09	MY refl #2 -2 m		stopped giving data at 500 m
18:24:00	MY refl #2 1.7 m	19:20:50	MÝ 2500 ft
18:26:10	MY cross	19:24:40	FY cross
18:31:25	MY #3 -2 m	19:30:30	FY 2500 ft
18:34:20	FY cross refl	19:32:00	new scanner file
18:40:10	FY #3	19:32:30	MY cross
18:42:25	MY cross		descend 1500 ft to rwy overflt
18:47:50	MY #4	19:37	rwy overflight 1500 ft
18:50:42	FY cross	19:40	rwy overflt 1000 ft
18:56:50	FY #4	19:45	landing
18:59:14	MY cross		-

JD 131 – 2006, May 11th GPS week 1374 (day 4)

15:20	Heli take off	16:55:00	new scanner file
15:30	start engines		(misnamed 165400.2dd)
	INS not aligned (after 45 min)	17:54	descend, fog 250 m
	set to NAV=NVRF	18:00:00	new scanner file
15:43:00	new scanner file	18:11	end of line, turn
15:45	take off	19:10	climb 1000 ft
16:15	G0	19:12:00	new scanner file
16:33	overhead helicopter	20:04	over Spinaker bldg,
	82 26.0 N 59 19 W		not aligned to rwy
16:51	fog patches	20:08	on ground

JD 132 – 2006, May 12th GPS week 1374 (day 5)

14:35:00	new scanner file	16:58	new scanner file
14:48	airborne, departure	18:02	overhead Ultima Thule island
	shortly after heli	18:13:30	new scanner file
	EM helicopter returns	18:57	INS close output file?
	40 miles out from Alert		warning – disc full
15:26	descend 700 ft.	18:58	PC on standby by accident
15:53	new scanner file	19:02	new scanner file on c:scanner
16:00	abort line, to wpt. E0, thick fog	19:29	on ground, Station Nord

Buoy waypoints

B3	82° 33.832′ N	62° 15.511′ W	B7	83° 17.142′ N	62° 16.725' W
B4	82° 38.402′ N	62° 17.509' W	B8	83° 35.500' N	62° 10.932' W
B5	82° 59.921' N	62° 12.142′ W	B9	83° 50.776' N	62° 7.745' W

JD 136 – 2006, May 16th GPS week 1375 (day 2)

09:53:00	new scanner file	12:36:00	new scanner file
09:55	take-off Nord	13:05	Nunatak zone
10:10	rwy overflight		few laser returns
10:30	over flade isblink	13:43:00	new scanner file
	drilling camp	14:00	wpt. J2
11:07:30	new scanner file		flight down
	stopped short due to high topo		Waltershausen Glacier
11:21:30	new scanner file	14:33	fjord sea ice
	inland ice edge		stop logging, climb
11:28	wpt. J1	15:42	on ground CNP

JD 137 – 2006, May 17th GPS week 1375 (day 3)

08:39	new scanner file	13:17	stop scanner after Helheim
08:44	take-off CNP	13:39	on ground KUS
08:52	stop scan	14:31	start scanner
09:14	new scanner file	14:35	airborne KUS
09:27	Geikie ice cap,	15:03	fog on ice edge
	clouds, ASIRAS only	15:39	new scanner file
09:36	stop scanner, too high	16:50	new scanner file
09:57	start logging	17:28	ice edge, stop scanner
11:10	Kangarlussuaq, wind	17:49	new scanner file
	crevasses		runway overflight
11:16	new scanner file		blue building
12:14	new scanner file	18:01	landing SFJ

С Processed GPS data

	ıt	rence	H	lame	ile	(GPSs)	(GPSs)	(dech)	(dech)	ratio	/ar.
JD – Date	Fligh	Refe	Rove	file n	ssk-f	start	end	start	end	var. 1	ref. v
110 – April 20 th		SFJ1	1	110a1s1.p	98	413775	416204	18.9336	19.6083	1.2	1.419
			2	110a2s1.p	99	412861	416195	18.6797	19.6058	1.2	1.279
			3	110a3s1.p ²	100	412783	416215	18.6581	19.6114	1.2	25.388
and the state		0.514	3	trip110a3.pos ³		412/83	416215	18.6581	19.6114	0.0	0.012
111 – April 21 th		SFJ1	1	111a1s1.p*	15	4/1930	489364	11.0878	15.9306	1.2	5.736
			2	111a2s1.p ⁵	16	471991	489385	11.1047	15.9364	1.4	4.288
				111a3s1.p*	1/	4/193/	489251	11.0897	15.8992	1.1	2.380
			3	trip111a3 pos	10	471937	489251	11.1303	15 8992	1.1	14.551
			3	111a3s1 p17	4	471937	489251	11.0897	15 8992	1.3	7 030
113 – April 23 th		IOA1	1	113a1ig1 p	119	78173	93409	21 7108	1 9431	16.2	1 188
		, 2	2	113a2jq1.p	120	78301	93305	21.7464	1.9142	10.7	0.971
			3	113a3jq1.p	121	78266	93582	21.7367	1.9911	3.1	1.180
			4	113a4jq1.p	122	78392	93306	21.7717	1.9144	8.3	1.117
114 – April 24 th		UMD1	1	114a1umd.p	19	148801	166327	17.3297	22.1981	1.3	4.016
			2	114a2umd.p	20	148861	166305	17.3464	22.1919	1.3	3.704
			3	114a3umd.p	21	148725	166320	17.3086	22.1961	1.2	4.832
t t = t t a=th		0.514	4	114a4umd.p	22	148865	166305	17.3475	22.1919	1.2	12.898
115 – April 25 th		SFJ1		115a1s1.p	23	213350	240628	11.2600	18.8372	1.1	8.171
			2	115a2s1.p	24	214831	238060	11.6/14	18,8333	1.1	9.754
				115a5s1.p	25	213241	240014	11.2297	18 7861	1.1	8 107
116 - April 26 th		KELV	1	116ba1ko.p ⁸	20	311/15	337400	14 5003	21 7183	1.2	10 777
110 - April 20		KELI	2	$116ba2ke p^9$	7	316921	337390	16.0297	21.7155	1.1	11 855
			3	trip116ba3.pos	,	316862	337384	16.0133	21.7139	0.0	0.014
119 – April 29 th	a	SCOB	1	119aa1sc.p	47	557062	579389	10.7356	16.9375	1.1	12.602
I I			2	119aa2sc.p	48	556861	581960	10.6797	17.6517	1.1	23.503
			3	119aa3sc.p	49	557065	579294	10.7364	16.9111	1.1	14.124
			4	119aa4sc.p	50	558098	579518	11.0233	16.9733	1.1	11.276
119 – April 29 th	b	SCOB	2	119ba1sc.p	51	582031	590579	17.6714	20.0458	1.4	6.854
			3	119ba2sc.p	52	582189	590579	17.7153	20.0458	1.4	6.135
120 – April 30 th		LYR	1	120a1ly.p	28	30397	43176	8.4397	11.9894	1.4	10.431
			2	120a2ly.p	29	30258	43210	8.4011	11.9989	1.4	4.443
101 Mary 18t		IVD	4	120a4iy.p	30	122650	43191	8.4155	11.9936	1.4	13.147
121 – May 1		LIK		121a11y.p	32	122630	121900	8 6714	9.8572	1.1	4.212
			2	121a2lyd.p	33	122313	142935	9.9719	15.7003	1.3	4.003
			3	121a3LY.p	34	122640	142926	10.0628	15.6978	1.4	4.704
			3	121a3ly.p	34	122640	142926	10.0628	15.6978	1.4	4.704
			3	trip121a3.pos		122640	142926	10.0628	15.6978	0.0	0.012
			4	121a4ly.p	35	122506	142897	10.0256	15.6897	1.1	4.107
122 – May 2 nd	а	NYA2	1	122aa1ny.p	53	203035	215633	8.3947	11.8942	15.5	1.174
			2	122aa2ny.p	54	201841	215625	8.0631	11.8919	1.2	2.651
			3	122aa3ny.p	55	203037	215603	8.3953	11.8858	15.2	1.103
122 Mar 2nd	h	NDD1	1 1	122aa4ny.p	50	203180	210020	0.4330	11.0919	12.2	5.012
$122 - Way 2^{-1}$	U	INKDI	2	1220a1111.p	58	219912	238790	13.0628	18 3267	1.1	7 100
			3	122ba3n1 p	59	219749	238790	13 0375	18.3267	1.2	8 034
			4	122ba4n1.p	60	219785	238790	13.0475	18.3267	1.2	13.054
122 - May 2nd	b	NRD2	1	122ba1n2.p	61	219912	238833	13.0828	18.3386	1.1	10.455
			2	122ba2n2.p	62	219781	238840	13.0464	18.3406	1.1	7.310
			3	122ba3n2.p	63	219749	238825	13.0375	18.3364	1.8	5.959
				Continu	ied on i	next page					

²JPL orbits, 10 degree cutoff angle
³Trip2 løsning (rms, weighted and unweighted)
⁴JPL orbits, 15 degrees, offset to air3/trip in start and end
⁵IGS orbits, 10 deg
⁶JPL orbits, 10 degree cutoff angle
⁷IGS orbits, 10 deg, correct via residuals
⁸IGS orbits, 15 deg
⁹IGS orbits, 15 deg, correct via residuals

	-	1	1		1	<u> </u>	1			1	1
		8		0		Ss	Ss)	(h)	ि (म	-	
		en		Ē	<u>e</u>	5	L L	de	lec	ti	<u>با</u>
	H H	er	Vei	na	9	Ť		u (1 (c	11	N N
ID - Date	iE	Ref	2	file	ssk	star	l j	star	l Dia	var	ref.
JD Duit				122h24n2 n	64	210785	238842	13.0475		12	
123 - Max 3rd		NRD1	1	1220a4112.p	36	219763	230042	10.6661	14 5636	1.2	3.877
125 - Wiay 5		INKDI	2	123a1111.p	37	297012	304055	10.3547	12 4558	2.3	0.990
			2	120a2m1h.m	20	205726	211642	12 0229	14 5626	2.5	4.012
				123a2n10.p	20	206768	211642	12.9220	14.5050	1.2	2.669
			3	125a5n1.p	39	290700	311043	10.4517	14.3030	1.5	3.000
			4	123a4n1a.p	40	297487	305632	10.6314	12.8939	1.0	1.106
			4	123a4n1b.p	41	305766	311643	12.9311	14.5636	2.4	22.042
125 – May 5 th		TABI	1	125a1TA.p	42	477935	495133	12.7558	17.5331	2.6	1.297
			2	125a2TAa.p	43	477841	487036	12.7297	15.2839	8.4	0.805
			2	125a2TAb.p	44	487045	495165	15.2864	17.5419	1.6	3.804
			3	125a3TA.p	45	477862	495120	12.7356	17.5294	5.4	0.846
			4	125a4TA.p	46	477932	495059	12.7550	17.5125	1.1	1.442
128 – May 8 th		TAB1	1	128a1t1.p	65	137403	154632	14.1636	18.9494	1.1	5.575
			2	128a2t1.p	66	137461	154675	14.1797	18.9614	1.1	6.797
			3	128a3t1.p	67	136927	154603	14.0314	18.9414	1.5	6.436
			4	128a4t1.p	68	137719	154516	14.2514	18.9172	1.2	5.291
129 - May 9th		YLT1	1	129a1v1	69	229145	243681	15 6475	19 6853	2.4	1 163
12) Widy)			2	129a2y1	70	229452	248465	15 7328	21 0142	11	6.084
			3	129a2y1	71	229402	240405	15.6186	21.0142	1.1	1.001
				129a5y1	71	229041	240435	15 7217	20.0600	1.1	6 207
100 M oth			1	129d4y1	72	229412	240270	15.7217	20.9000	1.2	0.297
129 – May 94		YL12		129a1y2	73	229145	243681	15.6475	19.6853	1.3	1.592
			2	129a2y2	74	229452	248465	15.7328	21.0142	1.3	1.699
			3	129a3y2	75	229041	248459	15.6186	21.0125	1.3	1.613
			4	129a4y2	76	229412	248270	15.7217	20.9600	1.3	6.430
130 – May 10 th		YLT1	1	130a1y1.p	77	323352	331016	17.8161	19.9450	2.0	0.952
			2	130a2y1.p	78	322291	331501	17.5214	20.0797	1.5	0.973
			3	130a3y1.p	79	322483	330936	17.5747	19.9228	9.4	1.019
			4	130a4y1.p	80	322353	330642	17.5386	19.8411	1.2	0.967
				trip130a3.pos		322484	330936	17.5750	19.9228		
130 – May 10 th		YLT2	1	130a1v2.p	81	323897	331016	17.9675	19,9450	2.1	1.441
			2	130a2v2.p	82	322291	331210	17.5214	19,9989	2.4	1.244
			3	130a3v2 p	83	322483	330936	17 5747	19 9228	1.8	1 484
			4	130a4v2 p	84	322353	330642	17 5386	19 8411	1.5	1 227
121 Max 11th		VI T1	1	121a1y1a p	85	307056	207670	14 2804	14.4600	14.7	1.016
151 – Widy 11				131a1y1a.p	85	207708	118611	14.2094	20 2861	20	1.910
			1	131a1y10.p	00	207127	410044	14.4700	20.2601	2.9	0.827
				131a2y1.p	0/	206920	410330	14.3092	20.2344	1.2	1.0057
			3	131a5y1.p	00	390009	410554	14.2451	20.2056	5.1	1.205
			4	131a4y1.p	89	39/1/1	418250	14.3214	20.1767	1.2	0.999
131 – May 11 th		YLT2	1	131a1y2a.p	90	397056	397670	14.2894	14.4600	12.4	1.529
			1	131a1y2b.p	91	397708	418644	14.4706	20.2861	2.5	1.708
			2	131a2y2.p	92	397127	418530	14.3092	20.2544	1.1	1.602
			3	131a3y2.p	93	396889	418354	14.2431	20.2056	2.8	1.824
			4	131a4y2.p	94	397171	418250	14.3214	20.1767	1.2	1.789
132 – May 12 th		NRD1	1	132a1n1.p	95	483468	502810	14.2928	19.6656	1.1	7.117
			3	132a3n1.p	96	483411	502709	14.2769	19.6375	1.3	10.908
			4	132a4n1.p	97	483983	502545	14.4358	19.5919	1.1	10.373
136 - May 16 th		SCOR	1	136a1sc p	200	206736	229662	9,4267	15,7950	12	5,678
			3	136a3sc p	201	206689	229736	9 4136	15 8156	12	8 215
			4	136a4sc p	202	206917	229651	9 4769	15 7919	11	8 045
137 _ May 17th	-	CNIP	1	137a1cp p	195	2800/1	32/514	8 5202	18 1422	1.1	2 /21
157 - Widy 17m			2	137a1cp.p	100	207741	224510	8 5202	10.1400	1.0	2.401
			3	137a3cp.p	100	209941	324303	0.0092	10.139/	1.0	2.000
			4	13/a4cp.p	187	290012	324339	8.5589	18.0942	1.1	1.888
1	1	1	3	CRR5a3.13710	1	289915	324504	8.5319	18.1400	1	1

Table 23: GPS data processing.

¹⁰Solution by CRRS

JD – Date	Filename	GPS/INS file	Time correction	GPS ant.	ω_p	ω_r	ω_h
111 – April 21 th	111530.2dd	111a2.pos	1	Front	0.30	0.13	0.70
1	120600.2dd	111a2.pos	0	Front	0.30	0.13	0.70
	130130.2dd	111a2.pos	1	Front	0.30	0.13	0.70
	133400.2dd	111a2.pos	0	Front	0.30	0.13	0.70
113 – April 23 th	001130.2dd	113a2.pos	0	Front	0.30	0.15	0.70
1	223500.2dd	113a2.pos	0	Front	0.30	0.15	0.70
	231800.2dd	113a2.pos	1	Front	0.30	0.15	0.70
114 – April 24 th	173030.2dd	114a4.pos	0	Front	0.30	0.15	0.70
-	183030.2dd	114a4.pos	0	Front	0.30	0.15	0.70
	192630.2dd	114a4.pos	0	Front	0.30	0.15	0.70
	202500.2dd	114a4.pos	0	Front	0.30	0.15	0.70
115 – April 25 th	121000.2dd	115a3.pos	0	Rear	0.30	0.18	0.70
_	131130.2dd	115a3.pos	0	Rear	0.30	0.18	0.70
	135530.2dd	115a3.pos	0	Rear	0.30	0.18	0.70
	144600.2dd	115a3.pos	0	Rear	0.30	0.18	0.70
	154530.2dd	115a3.pos	-1	Rear	0.30	0.18	0.70
	165430.2dd	115a3.pos	0	Rear	0.30	0.18	0.70
116 – April 26 th	161130.2dd	116ba1.pos	0	Rear	0.30	0.13	0.70
	195130.2dd	116ba1.pos	0	Rear	0.30	0.13	0.70
	204630.2dd	116ba1.pos	0	Rear	0.30	0.13	0.70
	210900.2dd	116ba1.pos	0	Rear	0.30	0.13	0.70
119 – April 29 th	121800.2dd	119aa4.pos	0	Front	0.39	0.05	0.70
	130100.2dd	119aa4.pos	-1	Front	0.39	0.05	0.70
	140100.2dd	119aa4.pos	0	Front	0.39	0.05	0.70
	145300.2dd	119aa4.pos	0	Front	0.39	0.05	0.70
	193630.2dd	119ba2.pos	0	Front	0.39	0.05	0.70
120 – April 30 th	083300.2dd	120a2.pos	0	Front	0.30	0.16	0.70
	093230.2dd	120a2.pos	0	Front	0.30	0.16	0.70
121 – May 1 st	111700.2dd	121a2.pos	0	Front	0.30	0.13	0.70
	121500.2dd	121a2.pos	4	Front	0.30	0.13	0.70
	131230.2dd	121a2.pos	5	Front	0.30	0.13	0.70
	135700.2dd	121a2.pos	0	Front	0.30	0.13	0.70
122 – May 2 nd	084030.2dd	122aa3.pos	4	Rear	0.39	0.05	0.70
	103930.2dd	122aa3.pos	0	Rear	0.39	0.05	0.70
	112700.2dd	122aa3.pos	-1	Rear	0.39	0.05	0.70
	131300.2dd	122ba2.pos	0	Front	0.39	0.05	0.70
	141200.2dd	122ba2.pos	0	Front	0.39	0.05	0.70
	150600.2dd	122ba2.pos	0	Front	0.39	0.05	0.70
	161100.2dd	122ba2.pos	0	Front	0.39	0.05	0.70
100 M oth	171030.2dd	122ba2.pos	0	Front	0.39	0.05	0.70
123 - May 3th	104930.2dd	123a3.pos	0	Rear	0.39	0.05	0.70
	115830.2dd	123a3.pos		Kear	0.39	0.05	0.70
	125830.2dd	123a3.pos		Rear	0.39	0.05	0.70
	155500.2dd	123a3.pos		Rear	0.39	0.05	0.70
105 M. rth	143700.200	125a3.pos	0	Rear	0.39	0.05	0.70
125 – Way 54	130900.2dd	125a3.pos		Rear	0.30	0.13	0.70
	140900.2ad	125a3.pos		Rear	0.30	0.13	0.70
	143900.2ad	125a3.pos		Kear	0.30	0.13	0.70

D Processed Laser Scanner Data

Continued on next page

87

JD – Date	Filename	GPS/INS file	Time correction	GPS ant.	ω_p	ω_r	ω_h
	162000.2dd	125a3.pos	0	Rear	0.30	0.13	0.70
128 – May 8 th	143500.2dd	128aa4.pos	0	Front	0.39	0.15	0.70
	162800.2dd	128ba4.pos	0	Front	0.39	0.05	0.70
	171400.2dd	128ba4.pos	0	Front	0.39	0.05	0.70
	182400.2dd	128ba4.pos	0	Front	0.39	0.05	0.70
129 – May 9 th	160300.2dd	129a3.pos	0	Rear	0.30	0.13	0.70
	170530.2dd	129a3.pos	0	Rear	0.30	0.13	0.70
	180800.2dd	129a3.pos	0	Rear	0.30	0.13	0.70
	190800.2dd	129a3.pos	0	Rear	0.30	0.13	0.70
	200900.2dd	129a3.pos	0	Rear	0.30	0.13	0.70
130 – May 10 th	175500.2dd	130a1.pos	0	Rear	0.30	0.13	0.70
	193200.2dd	130a1.pos	0	Rear	0.30	0.13	0.70
131 – May 11 th	154300.2dd	131a2.pos	0	Front	0.30	0.13	0.70
	165500.2dd	131a2.pos	0	Front	0.30	0.13	0.70
	180000.2dd	131a2.pos	0	Front	0.30	0.13	0.70
132 – May 12 th	143500.2dd	132a1.pos	0	Rear	0.30	0.13	0.70
	155300.2dd	132a1.pos	0	Rear	0.30	0.13	0.70
137 – May 17 th	083900.2dd	137a3.pos	0	Rear	0.30	0.13	0.70
	091400.2dd	137a3.pos	0	Rear	0.30	0.13	0.70
	095700.2dd	137a3.pos	0	Rear	0.30	0.13	0.70
	111600.2dd	137a3.pos	0	Rear	0.30	0.13	0.70
	121400.2dd	137a3.pos	0	Rear	0.30	0.13	0.70
	143100.2dd	137a3.pos	0	Rear	0.30	0.13	0.70
	153900.2dd	137a3.pos	0	Rear	0.30	0.13	0.70
	165000.2dd	137a3.pos	0	Rear	0.30	0.13	0.70
	174900.2dd	137a3.pos	0	Rear	0.30	0.13	0.70

Table 24: Processed Laser Scanner Files.

E Airborne Log of the ASIRAS Operations

JD 111 – 2006 April 21st

GPS week 1371 (day 5)

PC1+PC2 on, ASIRAS on, CPC on

- 12:08 record on (0), open water
- 12:09 thin ice
- 12:10 open water
- 12:13 thin ice, floes
- 12:16 record off, descend due to snow
- 12:17 record on (1)
- 12:21 open water
- 12:23 record off Sine gets ill Harald takes over ASIRAS Lars takes over DNSC system
- 13:40 Sine is better. Lars returns to ASIRAS
- 13:43 record on, sea ice with snow and some leads
- 13:51 record off
- 14:00 record on, some large leads
- 14:07 record off
- 14:15 record on, thick sea ice with snow
- 14:17 ice thickness decreases, bigger leads
- 14:22 record off
- 14:34 record on, open water scattered sea ice
- 12:40 record off
- 12:40 PC1+PC2 off, ASIRAS off, CPC off

JD 113 – 2006, April 23rd GPS week 1372 (day 0)

21:54 take off

22:00	PC1+PC2 on, ASIRAS on, CPC on
22:37	record on (00)
22:43	record off
23:04	record on (01), 1. crossline
23:10	record off
23:26	record on (02), 73 25'
23:34	record off, 73 40'
23:50	record on (03), rugged ice
23:53	event (snow filled cracks)
23:54	event (bare ice)
23:55	record off
00:00	record on (04), up the ice
00:04	record off
00:18	record on (05), record off, operator error
00:34	record on (06), 73 40'
00:42	record off, 73 25'
00:53	record on (07), 2. crossline
01:04	record Off
01:10	PC1+PC2 off, ASIRAS off, CPC off
01:54	on ground
	-

JD 114 – 2006, April 24th GPS week 1372 (day 1)

17:26	take off
17:27	PC1+PC2 on, ASIRAS on, CPC on
17:56	record on (00), start of seaice line
17:58	event (lead)
18:06	record off
18:06	record on (01)
18:16	record off
18:16	record on (02)
18:36	record off
18:36	record on (03)
18:59	record off, end of seaice line
20:51	record on (04), Disko Island
20:55	record off
20:58	record on (05)
21:02	record off
21:10	PC1+PC2 off, ASIRAS off, CPC off
22:11	on ground

JD 115 – 2006, April 25th GPS week 1372 (day 2)

11:59	take off
12:07	PC1+PC2 on, ASIRAS on, CPC on
13:04	record on (00), X-line Illulisat
13:11	record off
13:23	record on (01), EGIG X2 \rightarrow T01
13:37	record off
13:38	record on (02), EGIG T01 \rightarrow T03
13:41	record off
13:41	record on (03), EGIG T03 \rightarrow T05
13:46	event, T05 camp
13:49	record off
13:49	record on (04), EGIG T05 \rightarrow T08
13:54	record off
13:54	record on (05), EGIG T08 \rightarrow T12
14:07	event, T12 camp
14:08	record off
14:12	record on (06), EGIG T12
14:14	event, T12 camp
14:15	record off
14:17	record on (07), EGIG T12
14:18	event, T12 camp
14:20	record off
14:20	record on (08), EGIG T12 \rightarrow T17
14:33	record off
14:33	record on (09), EGIG T17 \rightarrow T21
14:42	record off
14:44	switch to PC2
14:44	record on (10), EGIG T21 \rightarrow T25
14:54	record off
14:54	record on (11), EGIG T25 \rightarrow T31
15:07	record off
15:07	record on (12), EGIG T31 \rightarrow T35

15:35	$T41 \rightarrow T43$
15:42	record off
16:10	IRF calibration
17:14	record on (13), Illulisat
17:43	record off, PC2 disk full
17:43	switch to PC1
17:43	record on (14)
17:46	record off
17:55	PC1+PC2 off,
	ASIRAS off, CPC off
18:49	on ground

JD 116 – 2006, April 26th GPS week 1372 (day 3)

12:58	take off
13:01	PC1+PC2 on, ASIRAS on, CPC on
14:48	PC1+PC2 off, ASIRAS off, CPC off
14:57	on ground
16:07	take off
16:10	PC1+PC2 on, ASIRAS on, CPC on
16:37	record on (00)
16:56	event, nothing
16:57	event, helicopter
17:03	record off, transit to T03
18:58	record on (01), T03->T05
19:02	event, nothing
19:03	event, T05 camp
19:04	record off
19:04	record on (02)
19:08	event, T05 camp
19:10	record off
19:10	record on (03)
19:17	event, T05 camp
19:22	record off
19:23	PC1+PC2 off, ASIRAS off, CPC off
19:25	on ground at T12 to pick up UK team
19:45	take off
19:50	PC1+PC2 on, ASIRAS on, CPC on
20:04	IRF calibration
20:16	record on (04), X-line Illulisat
20:29	record off
20:36	PC1+PC2 off, ASIRAS off, CPC off
21:42	on ground

JD 119 – 2006, April 29th GPS week 1372 (day 6)

11:12	take off
11:16	PC1+PC2 on, ASIRAS on, CPC on
12:19	record on (00)
12:32	record off
12:32	record on (01)
12:45	record off
12:45	record on (02)
13:04	passed UK team
13:11	record off
13:11	record on (03)
13:25	record off
13:26	PC1+PC2 off, ASIRAS off, CPC off
	changed to pressure disks
13:30	PC1+PC2 on, ASIRAS on, CPC on
13:31	record on (04)
13:52	record off
13:52	record on (05)
14:14	record off
14:14	record on (06)
14:36	record off
14:36	record on (07)
14:53	record off
14:53	switch to PC2
14:54	record on (08)
14:59	record off, PC state bad
14:59	record on (09)
15:05	record off, PC state bad
15:13	record on (10)
15:45	record off
15:47	IRF calibration
15:50	PC1+PC2 off, ASIRAS off, CPC off
16:54	on ground, Constable Pynt
17:48	take off
18:40	PC1+PC2 on, ASIRAS on, CPC on
19:45	record on (11), 60MHz
19:46	record off, line aborted due to bad weather
19:48	PC1+PC2 off, ASIRAS off, CPC off
20:53	on ground

JD 120 – 2006, April 30th GPS week 1373 (day 0)

08:27 take off
08:32 PC1+PC2 on, ASIRAS on, CPC on
08:47 record on (00)
09:11 record off
09:11 PC1+PC2 off, ASIRAS off, CPC off change disks on PC1
09:14 PC1+PC2 on, ASIRAS on, CPC on
09:15 record on (01)

- 09:38 record off
- 09:38 record on (02)
- 09:46 record off
- 10:08 record on (03), InSAR mode
- 10:24 record off
- 10:24 record on (04), EInSAR mode
- 10:35 record off
- 10:35 IRF calibration
- 11:17 PC1+PC2 off, ASIRAS off, CPC off
- 11:58 on ground

JD 121 – 2006 May 1st GPS week 1373 (day 1)

10:18	take off
10:22	PC1+PC2 on, ASIRAS on, CPC on
11:18	record on (00)
11:28	event, camp
	record off
	record on (01)
12:11	record off
12:11	record on (02)
12:15	event, black thing on ice
12:16	event, camp
12:21	record off
12:30	record on (03)
12:33	event, reflector position
12:48	record off
12:54	record on (04)
13:04	event, reflector position
13:08	event, reflector position
13:09	record off
13:17	record on (05)
13:24	event, camp
13:26	event, reflector position
13:35	record off
13:35	record on (06)
13:51	record off
13:51	record on (07)
13:55	record off
14:01	record on (08)
14:35	record off
14:35	record on (09)
14:44	record off
14:44	record on (10), 40 MHz
14:45	record off
14:47	IRF calibration
14:51	PC1+PC2 off, ASIRAS off, CPC off
15:38	on ground

JD 122 – 2006, May 2nd GPS week 1373 (day 2)

08:38	Take off (LYR)
08:48	ASIRAS turn on - OK
08:59	Record on
09:05	Record off
10:16	Record on 720 m 60 MHz
10:25	Record off
10:26	Record on 240 m 20 MHz
10:31	Record off
10:34	Record on 720 m 60 MHz
10:39	Record off
10:40	Record on 240 m 20 MHz
11:01	Record off
11:02	Record on
11:26	Record off
11:27	ASIRAS off
11:50	On ground (St. Nord)
13:14	Take off (St. Nord)
13:21	System on
14:19	Record on 240 m 20 MHz
14:40	Record off
14:41	Record on
15:03	Record off
15:04	Record on
15:24	Record off
15:25	Record on
15:40	Record off
15:41	Record on 480 m 40 MHz
15:46	Record off PC1 full
15:48	Record on PC2 480 m 40 MHz
15:57	Record off
15:58	Record on 720 m 60 MHz
16:08	Record off
16:10	Record on 240 m 20 MHz
16:14	Record off End of Line
17:46	ASIRAS shut down
18:18	On ground (St. Nord)

JD 123 – 2006, May 3rd GPS week 1373 (day 3)

- 10:47 Take off (NRD) Minus altimeter PC1
- 12:01 Record on 240 m 20 MHz
- 12:06 Record off due to error on "DATA PC REC" Record on
- 12:07 Record off due to error on "DATA PC REC" Record on
- 12:08 Record off due to error on "DATA PC REC" Switch to PC2
- 12:09 Record on
- 12:30 Record off (25%) Record on
- 12:55 Record off End of Line (55%)
- 16:06 On ground (TAB)

JD 125 – 2006, May 5th GPS week 1373 (day 5)

13:00	take off
13:10	PC1+PC2 on, ASIRAS on, CPC on
13:26	record on (00)
13:44	record off
13:44	record on (01)
14:10	record off
14:40	record on (02)
14:45	event, reflector position
14:54	record off
14:57	record on (03)
15:08	event, reflector position
15:11	record off
15:22	record on (04)
15:30	event, reflector position
4 - 0 4	-

- 15:36 record off
- 15:46 IRF calibration
- 15:55 PC1+PC2 off, ASIRAS off, CPC off
- 17:28 on ground

JD 128 – 2006, May 8th GPS week 1374 (day 1)

14:24 14:30	Taxi Take off System start up
17:09 17:12	Record off
17:14	Record on 240m 20MHz
17:25	Record off
17:45	Record on 240m 20MHz
17:57	C3
18:12	C4
18:14	Record off
18:30	System shut down
18:50	On ground YLT

JD 129 – 2006, May 9th GPS week 1374 (day 2)

16:00	Taxi
16:04	Take off YLT
16:07	System on
16:12	Record on _00 (240m, 20MHz)
16:35	Record off (25%)
	Record on _01
16:58	Record off (52%)
17:13	WP D4
17:15	Record on _02
17:34	Record off (75%)
	Record on _03
17:55	Record off, PC1 full
18:16	WP D3
18:18	Record on _04, PC2
18:40	Record off (25%)
	Record on _05
19:03	Record off (52%)
19:15	WP H3
19:18	Record on _06
19:48	Record off (86%)
19:57	WP H2
19:58	Record on _07
20:09	Record off, PC2 full
20:10	IRF Calibration
20:12	System shut down
20:48	Överflight runway (1,000ft)

20:48 Overflight r 20:51 On Ground

JD 130 – 2006, May 10th GPS week 1374 (day 3)

17:51	Taxi
17:52	Take off YLT
17:55	System on
17:57	Record on 00,
	1st loop (240m, 20MHz)
	RMY
18:06	RFY
18:10	Record off
	Record on _01, 2nd loop
	Record off _01, no reflector
18:15	Record on _02, Line MY
18:16	RMY
18:19	Record off
18:23	Record on _03, Line FY
18:24	RFY
18:27	Record off
18:29	Record on _04, 3rd loop
18:31	RMY, event 1
18:34	RFY (E/W), event 2
	Record off
18:55	Record on _05
18:40	RFY (N/S) , event 1
18:42	RMY
18:43	Record off
18:45	Record on _06, 4th loop
	RMY (W/E)
18:50:39	RFY (E/W), event 1
18:51	Record off
18:54	Record on _07
18:57	RFY (N/S)
18:59	RMY (N/S)
19:00	Record off
	Climb to 15,000 ft
19:02	Record on _08 (480m, 40MHz)
	RMY

19:08	RFY (E/W), event 1
19:13	RFY (N/S)
19:15	RMY (N/S)
19:16	Record off
	Climb to 25,000 ft
19:20	Record on _09 (720m, 60MHz)
	RMY (W/E)
19:24:48	RFY (E/W)
19:25	Record off
19:28	Record on _10
19:30	RFY (N/S), event 1
19:32	Record off, decending 15,000 ft
19:35	Record on _11 (420m, 40MHz)
19:36	Overflight runway
19:37	Record off, decending 10,000 ft
19:39	Record on _12 (240m, 20MHz)
19:40	Overflight runway
	Record off
19:44	On ground

JD 131 – 2006, May 11th GPS week 1374 (day 4)

Engine on
Taxi
Take off YLT
System on
GO
Record on _00 (240m, 20MHz)
Record off (22%)
Record on _01
Helicopter EM-bird
Record off (50%)
Record on _02
Record off (77%)
Record on _03
Record off PC1 full (100%)
Record on PC2 _04
Descending to 270m due to low clouds
Record off (30%)
Record on _05
G3
Record off (50%)
Record on _06
Record off (75%)
Record on _07
Record off PC2 (100%)
System shutdown
climb to 320m (1,000 ft)
change HDD PC1
Record on _08 PC1
Record on _08 PC1 Record off (25%)
Record on _08 PC1 Record off (25%) Record on _09
Record on _08 PC1 Record off (25%) Record on _09 Record off
Record on _08 PC1 Record off (25%) Record off IRF calibration
Record on _08 PC1 Record off (25%) Record off IRF calibration System shut down

JD 132 – 2006, May 12th GPS week 1374 (day 5)

14:29	Engine on
14:45	Taxi on
14:48	Take off YLT on
14:49	System on on
14:52	Record on _00 on
	(240m, 20MHz) on
14:57	Record off (6%) on
15:03	Record on _01 on
	B1 on
15:20	Record off (25%) on
	Record on _02 on
15:26	Decend to 200m, low clouds on
15:42	Record off (51%) on
	Record on _03 on
16:03	Record off (75%) on
	Record on _04 on
16:24	Record off (PC1 100%) on
	Change to PC2 on
16:26	Record on _05 on
16:49	Record off (27%) on
	Record on _06 on
17:09	Record off (50%) on
17:31	E1a on
17:34	Record on _07 on
17:54	E2 on
	Record off (73%) on
17:59	Record on _08 on

"Odaq" ø ?? on

- 18:09 E2 18:20 Record on _09 18:28
- Record off (PC2 100%)

Record off (80%)

- 18:29 IRF calibration
- 18:32 System shut down Change HDD PC1
- 18:47 Record on _10
- Record off (25%) 19:09 Record on _11
- 19:11 E3

18:05

- 19:18
- Record off (36%) 19:21 IRF calibration
- 19:27 System shut down
- 19:29 On ground
JD 136 – 2006, May 16th GPS week 1375 (day 2)

09:39	Engine on
09:51	Taxi
09:55	Take off NRD
09:59	System on
10:02	Record on _00 (240m, 20MHz)
	Measure line North of NRD
10:07	Overflight runway NRD
10:09	Record off (8%)
10:13	Fl. Isblink
	Record on _01 (480m, 40MHz)
10:14	Record off (9%)
10:15	Record on _02 (240m, 20MHz)
10:30:45	Icecamp
10:34	Record off (31%)
11:23	Record on _03
11:28	J1
11:39	Record off (50%)
	Record on _04
12:01	Record off (75%)
	Record on _05
12:24	Record off (PC1 100%)
13:49	Record on _06
13:59	WH1
14:14	WH2
	Record off (29%)
	Record on _07
14:15	Low clouds
14:26	Record off
14:28	IRF calibration
14:29	System shut down
15:42	On ground CNP

JD 137 – 2006, May 17th GPS week 1375 (day 3)

Engine on
Taxi
Take off NRD
System on
Record on _00 (1200m, 80MHz)
Geikie, high altitude due to clouds
Record off (7%)
Record on _01
L4
Record off (22%)
Record on _02 (240m, 20MHz)
L7, Kangerdlussuaq
Record off (34%), survey stopped
due to strong winds
Record on _03 (720m, 60MHz)
Record off
Record on _04 (480m, 40MHz)
Record off
Record on _05 (240m, 20MHz)
MG1
Record off (77%)
Record on _06
Record off (93%)
Record on PC2 _07
Record off (15%)

13:17 Record on _08, Fjord (720m, 60MHz) Record off

13:19	Record on _09
13:20	Record off (16%)
	IRF Calibration
13:21	System shut down
13:38	On ground KUS
14:29	Engine on
14:30	Taxi
14:34	Take off KUS
	System on
	log files 10-12, test
15:26	Record on _13
	(240m, 20MHz)
15:35	Record off (10%)
	Record on _14
15:45	Record off (20%)
15:58	Record on _15
16:06	SN4
16:24	Record off (50%)
16:49	Record on _16
17:09	Record off (72%)
17:54	Record on _17
17:55	Overflight runway
17:58	Overflight building

17:59 IRF calibration18:01 On ground SFJ

F Processed ASIRAS files

Profile	Proc. ver. 03_06	L1	L1B	GPS	INS	Quality	Remarks
A060420_00				Х			no INS data, see Chapter 4
A060420_01				Х			no INS data, see Chapter 4
A060421_00	X	X	X	X	X		
A060421_01	Х	X	X	Х	X		
A060421_02	Х	X	X	Х	X		
A060421_03	Х	X	X	Х	X		
A060421_04	Х	X	X	Х	X		
A060421_05	Х	X	X	Х	X		
A060421_06	Х	X	X	Х	X		
A060421_07	Х	X	X	Х	X		
A060423_00	Х	X	X	Х	X		
A060423_01	Х	X	X	Х	X		
A060423_02	Х	X	X	Х	X		
A060423_03	Х	X	X	Х	X		
A060423_04				Х	X		ASIRAS processor error
A060423_05				Х	X		ASIRAS processor error
A060423_06				Х	X		ASIRAS processor error
A060423_07				Х	X		ASIRAS processor error
A060424_00	Х	X	X	Х	X		
A060424_01	Х	X	X	Х	X		
A060424_02	Х	X	X	Х	X		
A060424_03	Х	X	X	Х	X		
A060424_04	Х	X	X	Х	X		
A060424_05	Х	X	X	Х	X		
A060425 00	Х	X	X	Х	X		
 A060425_01	Х	X	X	Х	X		
A060425_02	Х	X	X	Х	X		
A060425_03	Х	X	X	Х	X		
A060425_04	Х	X	X	Х	X		
A060425_05	Х	X	X	Х	X		
A060425_06	Х	X	X	Х	X		
A060425_07	Х	X	X	Х	X		
A060425_08	Х	X	X	Х	X		
A060425_09	Х	Х	X	Х	X		
A060425_10	Х	X	X	Х	X		
A060425_11	X	X	X	Х	X		
A060425_12	X	X	X	Х	X		
A060425_13	Х	X	X	X	X		
A060425_14	X	X	X	X	X		
A060426_00	Х	X	X	X	X		
A060426_01	Х	X	Х	Х	X		
A060426_02	Х	X	X	X	X		

Continued on next page

Profile	Proc. ver. 03_06	L1	L1B	GPS	INS	Quality	Remarks
A060426_03	Х	X	X	Х	X		
A060426_04	Х	Х	X	Х	X		
A060429 00	X	X	X	X	X		
A060429 01	X	X	X	X	X		
A060429 02	X	X	X	X	X		
A060429 03	Х	X	X	Х	X		
 A060429_04	Х	X	X	X	X		
A060429_05	Х	X	X	Х	X		
A060429_06	Х	Х	X	Х	X		
A060429_07	Х	Х	X	Х	X		
A060429_08	Х	Х	X	Х	X		
A060429_09	Х	Х	X	Х	X		
A060429_10	Х	X	X	Х	X		
A060429_11	Х	Х	X	Х	X		
A060429_12	Х	X	X	Х	X		
A060430_00	Х	X	X	Х	X		
A060430_01	Х	Х	X	Х	X		
A060430_02	Х	Х	X	Х	X		
A060430_03	Х	Х	X	Х	X		HAM (inSAR)
A060430_04		Х	X	Х	X		HAM (enhanced inSAR ¹¹)
A060501 00	X	X	X	X	X		· · · ·
 A060501_01	Х	X	X	Х	X		
 A060501_02	Х	X	X	Х	X		
A060501_03	Х	Х	X	Х	X		
A060501_04	Х	Х	X	Х	X		
A060501_05	Х	Х	X	Х	X		
A060501_06	Х	Х	X	Х	X		
A060501_07	Х	X	X	Х	X		
A060501_08	Х	Х	X	Х	X		
A060501_09	Х	X	X	Х	X		
A060501_10	Х	X	X	X	X		
A060502_00	Х	Х	X	Х	X		
A060502_01	Х	Х	X	Х	X		
A060502_02	Х	X	X	Х	X		
A060502_03	Х	Х	X	Х	X		
A060502_04	Х	Х	X	Х	X		
A060502_05	Х	X	X	Х	X		
A060502_06	Х	X	X	Х	X		
A060502_07	Х	X	Х	X	X		
A060502_08	Х	Х	X	Х	X		
A060502_09	X	Х	X	X	X		
A060502_10	X	X	X	X	X		
A060502_11	X	X	X	X	X		
A060502_12	X	X	X	X	X		

Continued on next page

¹¹No processor available

Profile	Proc. ver. 03_06	L1	L1B	GPS	INS	Quality	Remarks
A060502_13	Х	X	Х	X	Х		
A060503_00	Х	Х	Х	X	Х		
A060503_01	Х	Х	X	Х	Х		
A060503_02	Х	Х	Х	Х	Х		
A060503_03	Х	X	Х	Х	Х		
A060503_04	X	X	X	X	X		
A060503_05	Х	X	X	X	X		
A060505_00	Х	X	Х	Х	X		
A060505_01	Х	X	X	X	X		
A060505_02	Х	X	X	X	X		
A060505_03	X	X	X	X	X		
A060505_04	X	X	X	X	X		
A060508_00	Х	Х	X	Х	X		
A060508_01	Х	X	X	X	X		
A060508_02	X	X	X	X	X		GPS gap, see Chapter 4
A060509_00	Х	X	Х	X	Х		
A060509_01	Х	Х	Х	Х	Х		
A060509_02	Х	X	X	X	Х		
A060509_03	Х	X	X	X	Х		GPS gap, see Chapter 4
A060509_04	X	X	X	X	X		
A060509_05	Х	X	X	X	X		
A060509_06	Х	X	X	X	X		
A060509_07	X	X	X	X	X		
A060510_00	Х	X	X	Х	Х		
A060510_01	Х	Х	Х	Х	Х		
A060510_02	Х	Х	Х	Х	Х		
A060510_03	Х	Х	Х	Х	Х		
A060510_04	Х	X	X	X	Х		
A060510_05	Х	X	X	Х	X		
A060510_06	Х	X	X	X	X		
A060510_07	Х	X	X	X	X		
A060510_08	Х	X	X	X	X		
A060510_09	X	X	X	X	X		
A060510_10	Х	X	X	X	X		
A060510_11	X	X	X	X	X		
A060510_12	X	X	X	X	X		
A060511_00	Х	X	X	X	X		
A060511_01	X	X	X	X	X		
A060511_02	X	X	X	X	X		
A060511_03	X	X	X	X	X		
A060511_04	X		X	X	X		
A060511_05	X		X	X	X		
A060511_06	X	X	X	X	X		
A060511_07	X	X	X	X	X		
A060511_08	X	X	X	X	X		

Continued on next page

Profile	Proc. ver. 03_06	L1	L1B	GPS	INS	Quality	Remarks
A060511_09	Х	X	X	Х	X		
A060512_00	Х	X	X	Х	X		
A060512_01	Х	Х	X	Х	X		
A060512_02	Х	Х	X	Х	X		
A060512_03	Х	Х	X	Х	X		
A060512_04	Х	X	X	Х	X		
A060512_05					X		GPS gap, see Chapter 4
A060512_06	X	X	X	X	X		
A060512_07					X		GPS gap, see Chapter 4
A060512_08	Х	X	X	X	X		
A060512_09	Х	X	X	X	X		
A060512_10				X			INS incomplete, see Chapter 4
A060512_11				X			INS incomplete, see Chapter 4
A060516_00				Х			no INS data, see Chapter 4
A060516_01				Х			no INS data, see Chapter 4
A060516_02				X			no INS data, see Chapter 4
A060516_03				X			no INS data, see Chapter 4
A060516_04				X			no INS data, see Chapter 4
A060516_05				X			no INS data, see Chapter 4
A060516_06				X			no INS data, see Chapter 4
A060516_07				X			no INS data, see Chapter 4
A060517_00	Х	Х	X	X	X		
A060517_01	Х	X	X	X	X		
A060517_02	Х	X	X	X	X		
A060517_03	X	X	X	X	X		
A060517_04		X	X	X	X		invalid ASIRAS data
A060517_05	Х	X	X	X	X		
A060517_06	X	X	X	X	X		
A060517_07	X	X	X	X	X		
A060517_08	X	X	X	X	X		
A060517_09	X	X	X	X	X		
A060517_10				X	X		no ASIRAS data
A060517_11				X	X		no ASIRAS data
A060517_12	X	X	X	X			
A060517_13	X	X	X	X			
A060517_14	X	X	X	X			
AU60517_15	X	X	X	X			
A060517_16	X	X		X			
A060517_17	X	X	X	X	X		

Table 25: ASIRAS processing.

G Processed ASIRAS Profiles

Following is plots showing all processed ASIRAS profiles. Each profile plot consists of four parts.

- 1. Header composed of daily profile number and the date and subheader with the filename.
- 2. Geographical plot showing the profile (diamond indicates start of profile).
- 3. Rough indication of height as determined by the OCOG retracker plotted versus time of day in seconds.
- 4. Info box with date, start and stop times in hour, minute, second and second of day in brackets, acquisition mode, etc.

It should be emphasized that the surface height determined by the OCOG retracker is a rough estimation and not the true height.

Dute	2000-04-24	instrument wode	LOW MILLODE
Start Time	20:58:11 (75491)	Aircraft	DNSC Twin Otter
Stop Time	21:02:41 (75761)	Retracker	OCOG
Distance	17,441 km	GPS Resolution	1 Hz
Duration	00 h 04 m 30 s	Processor Version	3.06

GPS Resolution

Processor Version

1 Hz

3.06

Distance

Duration

9.549 km

00 h 02 m 25 s

GPS Reso

Process

1 Hz

3.06

44400

۸.

44200 Time [UTC] 44300

Date	2006-05-01	Instrument Mode	Low Altitude
Start Time	12:11:12 (43872)	Aircraft	DNSC Twin Otter
Stop Time	12:21:34 (44494)	Retracker	OCOG
Distonce	40.361 km	GPS Resolution	1 Hz
Duration	00 h 10 m 22 s	Processor Version	3.06

Duration

00 h 34 m 06 s

Process

3.06

Date	2006-05-01	Instrument Mode	Low Altitude
Start Time	14:44:38 (53078)	Aircraft	DNSC Twin Otter
Stop Time	14:45:22 (53122)	Retracker	OCOG
Distance	3.051 km	GPS Resolution	1 Hz
Duration	00 h 00 m 44 s	Processor Version	3.06

Danish National Space Center

Ξ CS84 1.1

57400

Date	2006-05-05	Instrument Mode	Low Altitude
Start Time	14:57:54 (53874)	Aircraft	DNSC Twin Otter
Stop Time	15:10:44 (54644)	Retracker	0000
Distance	47.735 km	GPS Resolution	1 Hz
Duration	00 h 12 m 51 s	Processor Version	3.06

64800	65000 Time	[UTC]	65400
Date	2006-05-10	Instrument Mode	Low Altitude
Start Time	17:57:51 (64671)	Aircraft	DNSC Twin Otter
Stop Time	18:10:53 (65453)	Retrocker	OCOG
Distance	49.282 km	GPS Resolution	1 Hz
Duration	00 h 13 m 03 s	Processor Version	3.06

Date	2006-05-10	Instrument Mode	Low Altitude
Start Time	18:11:00 (65460)	Aircraft	DNSC Twin Otter
Stop Time	18:13:37 (65617)	Retrocker	0000
Distance	10.053 km	GPS Resolution	1 Hz
Duration	00 h 02 m 38 s	Processor Version	3.06

A03_20060510

Date	2006-05-11	Instrument Mode	Low Altitude
Start Time	16:12:54 (58374)	Aircraft	DNSC Twin Otter
Stop Time	16:32:37 (59557)	Retracker	OCOG
Distance	84.764 km	GPS Resolution	1 Hz
Duration	00 h 19 m 44 s	Processor Version	3.06

Duration

00 h 01 m 30 s

3.06

Processor Version

62200

DNSC Twin Otte

ocog

65000

62400

Duration

00 h 21 m 45 s

3.06

Processor Version

53850

Low Altitude

ocog

1 Hz

3.06

DNSC Twin Otte

56400

Low Altitude

ocog

1 Hz

3.06

DNSC Twin Otter

56200

Airborne Lidar and Radar Measurements In and Around Greenland, CryoVEx 2006

Airborne Lidar and Radar Measurements In and Around Greenland, CryoVEx 2006

Airborne Lidar and Radar Measurements In and Around Greenland, CryoVEx 2006

APPENDIX G. PROCESSED ASIRAS PROFILES

Techinical Report Series

Danish National Space Center, Technical University of Denmark, Technical report series is an informal report series, published at irregular intervals. This publication is copyrighted and may therefore only be reproduced electronically or in other media if this corresponds to direct citation and includes a full reference to the publication, i.e. individual pictures or brief quotations from the text.

- Nynne S. Dalå, R. Forsberg, K. Keller, H. Skourup, L. Stenseng and S. M. Hvidegaard: Airborne Lidar Measurements of Sea Ice North of Greenland and Ellesmere Island 2004. GreenICE/SITHOS/CryoGreen/A76 projects, Final report, 69 pp., 2005
- Christian J. Andersen, Nynne S. Dalå, Rene Forsberg, Sine M. Hvidegaard, Kristian Keller: *Airborne Laser Scanning iSurvey of the Wadden Sea Region, Denmark*, 30 pp., 2005
- 3. Sine M. Hvidegaard, A. V. Olesen, Rene Forsberg and Nynne S. Dalå,: *Airborne Lidar Measurements of Sea Ice Thickness North of Greenland 2005*, 50 pp., 2006
- 4. Xiaohong Zhang: *Precise Point Positioning Evaluation and Airborne Lidar Calibration*, 44 pp., 2006
- Per Knudsen, O. B. Andersen, R. Forsberg, A. V. Olesen, A. L. Vest, H. P. Föh, D. Solheim, O. Omang, R. Hipkin, A. Hunegnaw, K. Haines, R. Bingham, J.-P. Drecourt, J. Johannesen, H. Drange, F. Siegismund, F. Hernandez, G. Larnicol, M.-H. Rio, P. Schaeffer: *GOCINA, Geoid and Ocean Circulation in the North Atlantic. Final Report*, 70 pp., 2006
- 6. Gabriel Strykowski, L. Timmen, O. Gitlein, R. Forsberg, B. Madsen, C. J. Andersen: *Gravity Measurements in Denmark 2005*, 18 pp., 2006
- R. Forsberg, H. Skourup, O. B. Andersen, P. Knudsen, S. W. Laxon, A. Ridout, J. Johannesen, F. Siegismund, H. Drange, C. C. Tscherning, D. Arabelos, A. Braun, and V. Renganathan: *Combination of Spaceborne, Airborne and In-Situ Gravity Measurements in Support of Artic Sea Ice Thickness Mapping*, 136 pp., 2007