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Abstract—In this, the first part of a three part study, we develop a model for
the theoretical analysis of 3-dimensional internal gravity waves in atmos-
pheres with arbitrary distributions of basic temperature, molecular weight,
viscosity and conductivity (both eddy and molecular), Newtonian cooling,
anisotropic hydromagnetic (ion) drag, and thermal excitation. Attention is
given to the physical bases for our models, and a detailed outline is given of
the numerical method used to solve the resulting system of equations.

As an application of the above development, we study the ability of five
particular gravity waves (chosen for their observed importance in the neighbor-
hood of 90-100 km—four of the waves are simulated tidal modes) to propagate
from 90 km into the thermosphere. We choose to define the thermosphere as
that portion of the atmosphere above the turbopause (ca. 110 km). Among the
most significant results to emerge are the following: (i) the effects of molecular
viscosity and conductivity appear to be more significant than the effects of
hydromagnetic drag, and (ii) while most waves considered are significantly
attenuated somewhere between 90 km and the thermosphere, the main semi-
diurnal tidal mode is not. In fact, semidiurnal temperature oscillations of
only a few degrees amplitude at 90 km can give rise to oscillations of over a
hundred degrees amplitude in the exosphere.

1. Introduction

Given that atmospheric tides and thermal tides are simply special

cases of internal gravity waves, then it becomes fair to say that the

largest part of the dynamics of the atmosphere above 90 km is

described by internal gravity waves.®:10:32) Their importance in the

mesosphere, ) stratosphere®) and troposphere®”) is also likely to
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be considerable. The theory of such waves in inviscid, non-conduct-
ing atmospheres without ion drag is straightforward®-2) an,d
reasonably successful in describing observations outside the earth’s
surface boundary layer and below about 95 km. Unfortunately,
within the surface boundary layer, and, more important, ab?ve
95 km the effects of viscosity and conductivity assume great im-
portance. Moreover, in the upper atmosphere hydromagnetic
drag is, a priori, likely to be of considerable importance. However,
its role is complicated by the fact that it is anisotropic; i.e., the drag
on westerly winds can be different from the drag on southerly
winds. 2:11.17.23)  The effects of Newtonian cooling and variable basic
temperature have been evaluated for inviscid atmospheres.®” We
shall show that the effects of the latter can be more profound in a
viscous atmosphere.

There are now in the literature several attempts to study gravity
waves in a viscous, thermally conducting atmosphere where both
these processes are permitted to increase in importance inversely
with density : most notably Pitteway and Hines, ®®) and Midgely and
Liemohn.®" In these studies the atmosphere was approximated
by a finite number of homogeneous layers in each of which analytic
solutions are possible. Continuity, boundedness, and/or radiation-
type conditions are used to match solutions across layer interfaces.
These studies give valuable results on the dissipative effects of
viscosity and conductivity, and their relative simplicity have
permitted the presentation of results for general choices of frequency
and horizontal wavenumber. However, they are not sufficiently
accurate to permit a quantitatively accurate determination of the
reflectivity resulting from the variation with height of viscosity and
thermal conductivity. Relatedly, they donot readily lend themselves
to the accurate calculation of the continuation of waves in the lower
atmosphere into the upper thermosphere. Mcreover, the conver-
gence properties of layer methods were not clear at the time of these
studies. For inviscid adiabatic atmospheres Pierce (1966) proved
convergence in the limit of infinitesimal layers; Vincent®® showed
that more than 10 layers per vertical wavelength are needed. For
this resolution finite-difference methods are simpler. It should be
added that Pitteway and Hines®® considered only isothermal
atmospheres, and Midgely and Liemohn®® omitted ion drag. In
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addition to these studies, Volland (1969) has used layer methods to
examine waves in an atmosphere with thermal conductivity but
without viscosity. He maintained (incorrectly as we shall see) that
ion drag would dominate the momentum balance. Finally, mention
must be made of Yanowitch’s®) analytic investigation of the
behavior of internal gravity waves in an isothermal atmosphere with
viscosity but no conductivity. Although his model was physically
incomplete, it. clearly and accurately demonstrated the ability of
variable viscosity to reflect waves.

In the present study we develop the equations for linearized three
dimensional internal gravity waves in an atmosphere with arbitrary
distributions of basic temperature, molecular weight, conductivity,
viscosity, Newtonian cooling, anisotropic ion drag and thermal
excitation. Due to the anisotropic ion drag the resulting set of
equations forms on eighth order system (as opposed to the sixth
order system considered by Midgely and Liemohn.® In principle
we may rewrite these equations in finite difference form; the finite
difference system can be solved; and the solution to the finite
difference system can be brought arbitrarily close to the exact
solution by reducing the mesh interval. In fact many common
finite difference methods like the Runge-Kutta method require
inordinate computational accuracy because of the exponential nature
of some of the solutions when viscosity and conductivity are
present,®*V) and thus become unusable. However, a technique
described by Lindzen and Kuo®? avoids such problems and makes
the finite difference solution of the equations easy and computation-
ally rapid in practice as well as principle. Grid intervals smaller
than 20 m are easily handled.

We have used the above mentioned method to solve our equations
for a large number of physical configurations. We find, not surpris-
ingly, that the effect of any given process depends not only on the
frequency and horizontal wavenumbers of the wave under con-
sideration, but on the distribution of the process and on the magnitude
and distribution of other processes. Moreover, the effects often
consist in several changes in the vertical structure which are not
readily describable in terms of a few parameters. Thus, the compact
presentation of our results becomes virtually impossible. Philo-

sophically, we are almost forced to conclude that our solution is
B
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defined not by an equation or a graph but by a computer program
(which is not really impractical since a given case can be run in well
under a minute on a fast computer). Our situation is, in practice,
not quite so extreme since of all the gravity waves that must be
present in the atmosphere only a small number of modes appear to
account for most of the wind amplitude in the upper atmosphere, at
least between 80 and 110 km®32): namely, the first two propagating,
symmetric, migrating solar semidiurnal tidal modes, the first pro-
pagating and the first trapped symmetric, migrating solar diurnal
tidal modes and a mode of unknown origin with a period of about
3 hours and a vertical wavelength on the order of 20 km. (For a
detailed description of tidal modes see Lindzen and Chapman.®®
Thus, we may at least hope to learn a great deal about upper atmo-
sphere dynamics by studying a relatively small number of modes
rather than a continuous distribution of frequencies and horizontal
wave numbers. Moreover, in studying tidal modes we may reason-
ably expect to learn more about tides at all levels. As is well known,
the structure of tidal modes is significantly influenced by the rotation
and curvature of the earth. However, it is also true that in the
absence of viscosity and any form of Rayleigh friction (like ion drag),
the vertical structure of a tidal mode is identical to that of an internal
gravity wave in a plane, non-rotating atmosphere, whose period is
equal to that of the tidal mode, and whose wavelength in one of the
horizontal directions is equal to the zonal wavelength (i.e., wave-
length in the east-west direction) of the tidal mode at the equator—
provided that the wavenumber of the gravity wave in the remaining
horizontal direction is properly chosen according to a simple pro-
cedure to be described in Sec. 21. Moreover, at the equator where
the vertical component of the earth’s rotation vector is zero, the
physics of the two waves is identical, and indeed the two waves are
close approximations to each other. In the absence of viscosity and
Rayleigh friction (Newtonian cooling and conductivity may remain ;
see Dickinson and Geller®) a study of the ‘‘ equivalent ” gravity
wave tells us exactly what happens to the tidal mode. In more
complicated cases we expect that study of the *“ equivalent ™’ gravity
wave will be indicative of the vertical variations of the tidal mode—
especially in the neighborhood of the equator. The problem of
correspondence results from the fact that in the presence of rotation
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the tidal equations, including friction, are no longer separable in
their height and latitude dependence. Crudely stated, the latitude
structure of a tidal mode will change with height in the presence of
friction. For semi-diurnal modes, where the effect of rotation is not
overwhelming, this effect seems unlikely to be of great importance.
For diurnal modes whose latitude structure is importantly influenced
by rotation, the effect is likely to be of greater importance—at least
away from the equator at heights where friction is very important.
Nevertheless, in the present investigation, we restrict our considera-
tion of tides to the study of *“ equivalent " internal gravity waves.

For convenience we have divided the presentation of our results
into three parts. In this, the first part, we introduce our equations,
describe our models for various processes and for the basic state, and
describe our numerical method and its convergence properties. Our
actual computations will be for the five modes mentioned earlier:
a 2-dimensional mode with a period of 3 hr and a typical adiabatic
vertical wavelength of 20 km, and four 3-dimensional ** equivalent ”’
gravity waves for the first two symmetric vertically propagating
migrating semidiurnal, the first symmetric vertically propagating
migrating diurnal and the first symmetric vertically trapped migrat-
ing diurnal tidal modes. In Part I we study the ability of these
modes to penetrate into the thermosphere from below 90 km. Solu-
tions with and without variable temperature, viscosity and conduc-
tivity, and ion drag are compared. Most important, we show how the
transition from essentially inviscid solutions below 100 km to rigid
body motion (where both horizontal velocity and temperature
oscillations are independent of altitude) occurs for each mode. This
transition occurs because molecular diffusivities increase inversely
with the mean density. Indeed, it will be shown that molecular
viscosity and conductivity dominate all other processes, including
ion drag, above about 200 km.

In Part IT we quantitatively consider the solar tides as excited by
insolation absorption by ozone in the mesosphere and water vapor
in the troposphere. "We also reexamine the effect of surface tempera-
ture oscillations in exciting tides. Quantitative results are made
possible by establishing, in detail, the correspondences between the
tidal modes and the ¢ equivalent ”’ gravity waves. We consider the
effects of viscosity (including different eddy viscosities and surface
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drag coefficients), Newtonian cooling and variable temperature on
the amplitudes and phases of thermal tides between the ground and
the ionosphere. We are able to extend an earlier theory of the turbo-
pause® in order to explain the sharp cessation of turbulence at the
turbopause. We are also able to show that a proper inclusion of the
surface boundary layer does not correct the discrepancy between the
observed phase of the semidiurnal surface pressure oscillation and
that predicted for excitation by H,O and O; heating.

In Part III we study, in detail, the tides of the thermosphere—
both those propagated from below and those excited in situ through
absorption of ultraviolet radiation by O, and through EUV absorp-
tion. Since the problem of non-separability is likely to be important
here, we examine the effect of assuming different latitude structures.
Our results show that only a negligible portion of the diurnal oscilla-
tion is excited below—most is excited in situ. We show that the
efficiency of a given in situ excitation depends very much on the
mean temperature distribution of the thermosphere. More im-
portant, we find that the semi-diurnal tide excited in the mesophere
and troposphere is as important (or more important) in the thermo-
sphere as the diurnal oscillations excited tn situ.

2. Equations

Our equations are, for the most part, the Navier—Stokes equations
for a plane, nonrotating atmosphere, where the most important
approximations are the replacement of the vertical momentum
equation by the hydrostatic pressure relation, and the use of the
perfect gas law (the molecular weight, however, is not taken to be
constant). Both approximations are usual and adequate for the
cases under study. In addition, ion drag, radiative cooling and
heating are allowed for. The equations follow:

d
a—te +,DV'V=0 (l)
du_ ap 9
P = ~ o T PP =
dv 0
Py = _a—§+VV—prv - (3)
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ap
3, = P9 : (4)
a7 pdp
pcva—p;fﬁ'f'f';a?"(g (5)
P =pRT (6)

where 2 = distance in the horizontal direction to be associated with
west-to-east

y = distance in the horizontal direction to be associated with
south-to-north

z = distance upwards
t = time
P = pressure
p = density
T = temperature

u = velocity in the z-direction

v = velocity
g = acceleration by gravity = 9.8 m sec™2
¢, = heat capacity at constant volume
R = gas constant for air = B/ M
R = universal gas constant
M = mean molecular weight
¥"; = Force in the i-direction due to eddy and molecular viscosity
D; = coefficient for ion drag in the ¢-direction

A" = Heating per unit mass per unit time due to eddy and
molecular conductivity
% = Infrared cooling rate per unit mass
J = Radiative heating rate per unit mass
Also
d o 0

— == +U + ® 7
dt ot "o oy TV % @

where w =vertical velocity.
For future reference

¢, = heat capacity at constant pressure = R +c¢,



310 GEOPHYSICAL ¥FLUID DYNAMICS

and
Y= cl’/ Cy.

¥, D;, A, € and J will be defined in the course of describing our
model. M (and hence R) and y will be allowed to vary with z.
Gravitational acceleration, g, whose z-variation is less marked, will
be held constant.

In this study we will consider linearized perturbations on a steady,
stationary basic state, varying only with z.

2A. Basic STATE

The equations for the basic state are:

G}

Fe— —pog (8)
pJ+H —€ =0 (9)

Po = po BT, (10)

The solution of (8)—(10) is in general a very complicated problem ;
namely, the solution of the equations for radiative-diffusive equili-
brium. What is generally done in wave problems is to adopt a
distribution 7'y(z) and assume that it represents an equilibrium
solution, and then solve (8) and (10) for the appropriate distributions
of py(z) and py(z). In order to do this, we must also adopt a distribu-
tion for R(z).
Our solutions for p, and p, are

Po = Po(0) ™= T (11)
po = DolgH (12)
where '
zdz

= | == 13
. LH (13)

and .
H o &L (14)

g

t Unfortunately, « in this paper is used for both the height in scale heights
and the west—east coordinate. For the remainder of this paper x will refer to
the height in scale heights unless otherwise noted. z,, will be used for the
west—east coordinate.
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When R is a constant, H is proportional to 7', and their derivatives
are, within constant factors, interchangeable. Now it must be recalled
that

& "RG Ed i
z- and z-derivatives are simply related :

1d d
Haz ~ & (16)

In choosing T, we wanted a simple analytic expression which
would give a smooth representation of varying atmospheres like the
ARDC and EQUATORIAL STANDARD by simply changing a few
parameters. Our choice of expression was based on the fact that the
atmosphere consists in layers of relatively constant temperature
gradient separated by extrema. Thus we may write

‘—id% =+ Z < b1 )(1 +tanh< (; » (17)

where §; is the half—thickness of a region centered approximately at
z; in which d7'y/dz goes from ¢; to ¢,,;. (7) is easily integrated and
differentiated to yield

Ty = To(0) + 22+ za ( i1~ >1n {Cﬁ‘s}(lz(;;’a/‘;)} (18)

d*T', % (Ci1—Ci o (%%
dz* —i§1< 29, )sech < 0; ) (19)

The variation in M (and hence R) results from the dissociation of
O, and the diffusive separation of O, and N, from O in the region
roughly between 200km and 400 km; above 400km O pre-
dominates. Thus, for M we write

M = 28.9-6.45 (1 +tanh (::Mn)) (20)

100 km

This region also represents the transition from a diatomic gas where
y =14 to a monotomic gas where y =1.67. Thus, for future
reference we write :

z—300 km
=1. 135 ittt 21
y 14+0130<1+tanh< T )) (21)
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In Parts I and IT we study the behavior of internal gravity waves
in both an isothermal atmosphere and an atmosphere with a variable
temperature distribution similar to the standard atmospheres and
an exosphere temperature of 800 °K. For the latter
¢, = —6.5°km, ¢, =3.265°km, c¢;= —5.14°km, c¢,=6.81°km,

¢s = 0.0°/km,
z; =16.0 km, 2,=50.0km, 2z,=82.0km, z,=180.0km,
0, =40km, 6,=75km, 6,=9.0km, and J,=20.0km.
Both temperature distributions are shown in Fig. 1. Also shown are
the distributions of « with z.
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Figure 1. Various features of the basic state: 7T, for isothermal an.d variable
temperature basic states, and height in scale heights, , as a function of real
height, z. See Sec. 24 for details.
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28. PERTURBATION EQUATIONS

Obtaining the linearized equations for perturbations on the basic
state described above is, for the most part, a standard procedure.
Only the terms ¥7;, J, " and % require additional discussion. For
%, we will assume that for perturbations, 67 from the basic tem-
perature, 7',

8% = al(z) 6T (22)

ie., we adopt Newtonian cooling. This is generally an adequate
approximation whenever “ cooling to space ” dominates radiative
cooling—which, according to Rodgers and Walshaw (1966) is pretty
much the rule above 4 km altitude.t

For J, we must remember that the perturbations are actually
externally imposed excitations. We shall now proceed to the
linearization—leaving the specification of ¥”; and ¢ till later. For
the moment we will only note that the perturbation expressions for
¥ ; and ¢ (designated by primes) will involve no coefficient depen-
dent on horizontal coordinates or ¢—only on z.

Equations (1)—(6) become

%-%w’%%»pﬂ-v’zo, (23)

poaa—z;' = - % + ¥ 2 — Po Dz, W (24)

Po % = —% + ) —pe D, (25)

W g, (26)

£oCy <% +w' %’) =po +H + %;(%’ +w'%’> —a(z)T", (27)

t Cooling to space depends only on the local temperature and the amount of
radiative absorber above the point in question. (22) results from linearizing
the dependence on temperature.
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where for Cartesian coordinates

_ow & ov’ % o'
o, oy @ 0z
For correspondence with tidal theory we will seek solutions to (23)-
(28) of the following form

V-v

(29)

p'} — e%/2 pilot+kagy) {ﬁ(z)}
,r=e"2¢ ew) cos my < 30
{10 ") is.
' 4(z)
w' b = el eittkzaw) cos my < 1b(z) (31)
T T(2)
and
v = /2 gilttkeew) sin my  §(z) (32)

For convenience, moreover, we let

{i} - piﬁl)) {g} 5%

and in the equations we obtain from (23)—(28), after substituting

(30)—(33), we shall drop the caps (7). We shall also replace z by z as
the vertical variable.

10p + (iku +mu + I%(% - (é— +% %)w)) =0, (34)
iou = - ikﬁ+piH % Y e = Do (35)
iaz.) = mi)’+%5 ex/2 V,,.’ -D,v, (36)
ool -5
= temen 121 if{)) oxlt o
+9(”R“ b (io—Hﬁ+(l +}1 %{)@ —aT, (38)

t In the remainder of this study we will use unprimed, uncapped symbols to

represent transformed variables, and primed symbols to represent untrans-
formed perturbations.
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p=gHp+RT. (39)

We shall solve (34)—(39) using the numerical scheme described
by Lindzen and Kuo.??) This scheme is designed for systems of
coupled second order differential equations. Noting that ¥, ,
¥",/ and X" will be second order operators onu,» and 7 respectively,
we find that (34)-(39) are readily reduced to four coupled second
order equations in u, v, T', and w. (35), (36) and (38) are already of
almost the correct form. We need only express j and j in terms of
u, v, T and w. (34) gives the necessary expression for j, and (39)
with (34) yields the expression for 5. Substituting these expressions
into (35), (36) and (38) yields our first three final equations:

- ik( - gH(iku +mo J%(fi—: - (; +% %g)w» +ioRT>
+% e ¥ ) o =10 D 4, | (40)
-0 = m( —gH(iku+mv +%<% = (:i +% %)w)) +iaRT>
+';°jg =2 ¥ —igDw (41)
and
16T = r=d e"”’zJ-l—y—I_B—1 pgo{f)) exl2
+Y_Iji—1 gH< - (iku+mv+%<%—z+<%+% Iizl ((11—1;[
- ;_i—i 1—; i—f)w))) —aT. (42)

The fourth equation is readily obtained from Eqs. (34), (37) and (39):
d* 2 dH d 1 d*H _2_<d_H>2+1> w
{E&:—?——H—E HE_(H dz? T H\dz/) "4

+ H(—‘i +3) (i +m)

de 2
iRfd (1 1 dH 1dR>
e e LRy 6 43
g(dx <2+H dz Rdx)T (43)
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Let % = (u, v, T, w) be a vector function of . Then (40)-(43) can
be written in the form
dz ~

d—-> — —
ASU+B U+ =2 (44)

where A, B, C are 4 x4 matrices and 2 is a 4-vector—all are

dependent on z.

2c. ¥ AND X'

¥ and X" represent divergence of momentum and heat flux due
to both molecular and eddy diffusion. The representation of eddy
diffusion is an uncertain matter—given our ignorance of turbulence.
We have made the simplest and most conventional choice :

. dz (u'
"//eddy = Veddy Po(?) d?{?}: (45)
R dz

féddy = Keddy Po(2) (46)

SoidEl
where u’, v" and 7" refer to the quantities defined in Eqs. (31) and
(32). Veaay and Keyqy can be functions of 2.}

For the molecular contributions, we will, in the present study,
ignore the existence of 2nd viscosities, and use the simplest ele-
mentary kinetic theory expressions appropriate to spherical
molecules. From Hirschfelder, ef al. (1954) we have

- d d [«
Y mol = &(#az{v,}>, (47)
y df d .,
fm()l:a—;(KET), \(48)
‘where
4 x

t It has been properly pointed out by a reviewer that expressions (45) and
(46) are physically inconsistent insofar as they are not divergences. The use
of (45) and (46) amounts to neglecting a term of order 1/H as compared to

d/dz which is approximately correct for all cases where eddy transports prove
at all significant.
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1 [T
KaFN/I}f’ (50)

o = collision cross-section for gas molecules.

and

In general ot will vary when N does. According to Nicolet 28)

Kk~ const ~/T'| M (51)
in the atmosphere.

Since R is also inversely proportional to M, (51) and (49) suggest
that p is independent of M in the atmosphere. Both v and x are
proportional to JT. 1In view of this, expressions (47) and (48) are
not yet linearized. The linearization of (48) yields

; 427 147, 1da\d7T’

{ar+( )

X = %o Tyd: M &)&

11d7, 11 dTozliygid_Tg) ) 5
+<§T_o_—dz2 '177(71?) sy &T, ) 2

where xq av'To/ M.

Similarly
; dz 11d4d7,4d\ (v
¥ mol= Ho (a; + ETO—EZ—O &){v’}' (53)
Finally,
‘ V= ""‘;ddy"" Vr,nol ’ (54)
and
A = f:‘ddy +%;xol' (55)

The transformation of (45), (46), (52) and (53) to z-dependence and
the substitution of expressions (31) and (32) is perfectly straight-
forward and will not be dwelled on here. All that remains to be
described is our choice of distributions for vegay and Keqqy. We
have chosen

2 cm?
— 105 U ) () s 10 km
Veday = 10 <1+3<1 10 km))sec e s

(56)
2
105——CHL for 2 > 10km
se

+ The use of ¢ as a collision cross-section occurs only in this section. Else-
where o refers to frequency.
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and
Keddy = 1.36 Veddy (57)

The value of Keqqy near the ground was chosen to be close to values
cited by Kuo.®® The value above 10 km was chosen to be charac-
teristic of the values commonly used for the stratosphere. However,
the choice is relatively unimportant ; our results for veqqy = 10° cm?/
sec above 10 km were insignificantly different from results for
Veady = 108 cm?/sec or even veqqy = 0.0 above 10 km.

We took k mol = 9.3 x 1073 gm km/deg sec at the ground. A more
accurate choice would not significantly alter our results.

The insensitivity to our choice of K.q1y Will be briefly demonstrated
in Section 3 and in greater detail in Part II. Horizontal diffusion
proved negligibly small, and was neglected.

2p. RADpIATIVE COOLING

Radiative cooling, as represented by Newtonian cooling in our
model, is due to infrared emission by water vapor in the troposphere
and by carbon dioxide above the tropopause (with a smaller contri-
bution from ozone in the stratosphere).®5:28) There is also a small
contribution from atomic oxygen in the lower thermosphere.® The
temperature dependence of radiative cooling above about 70 km
diminishes markedly due to the breakdown of local thermodynamic
equilibrium for CO, .3 Lindzen and Goody ®') suggested that ozone
photochemistry (which for oxygen allotrope reactions is very
temperature dependent) could lead to a great increase in Newtonian
cooling near 40 km. However, recent studies®) suggest that
hydrogen—oxygen reactions (which are not temperature dependent)
are dominant. In general, there is considerable uncertainty as to
the best choice for a(z). However, as we shall show in Part II,
the effect of Newtonian cooling is not profound, and, hence, the

choice of @(z) is not critical. We have chosen \
z 2
a(z) = {0.586 x 1078 exp ( - (m> )
— 2
+2.9% 1078 exp ( - (’%) )} (58)

The units of a(z) are 1/time. Newtonian cooling is locally important
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when a(z) & o; it is also important for wave transmission over paths
whose length L is greater than ¢1/a where 1 is a characteristic wave-
length.® Only the latter possibility is of importance in the present
study. '

2g. JIoxn Drac

Within the F-region of the ionosphere ions are relatively numerous
—and more important, their gyromagnetic frequency is large com-
pared to their collision frequency with neutral molecules. Thus the
jons are constrained to move mainly along magnetic field lines, and
neutral molecules moving across field lines must, in effect, move
through a stationary mesh of ions, which must, in turn, exert a drag
on the neutral molecules. The simplest expression for the drag (and
the most commonly used expression(®1517) is that used in Eqgs. (2)
and (3) where

D,,, = const x sin ¢, x N; (59)
D, = const x sin¢$, x N; (60)

and where const = 5 x 107° cm?/sec,
N; = number density of ions,
¢z, = angle between x-axis and magnetic field li.ne,
¢, = angle between y-axis and magnetic field line.

In general NV, is a function of time, varying greatly in the course of a
day. In the presentstudy, however, we shall take NV ; to be statxona;y
in time corresponding to an average over the whole day. Our dlg-
tribution of N; will be of the following form

N; = Nipax Xp [" <z EZC)J‘] (61).

where ¥ imax = 108 cm™3
L =150km,
2, = height at which N; = Ny

Our choice for N,y corresponds to a very high average ion density
and the thickness we have chosen for the heavily ionized region is
greater than is normally encountered. z, is left open. As for
¢z, 20d ¢, WE shall in this study take
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by = and ¢, =0.}

[T ]

As with a(z), the dimensions of D,,,and D, are 1/Time. However,
this time D,,, > o. Nevertheless, the anisotropy of the ion drag
makes the simple use of this dimensional consideration misleading.
We shall show this later; we shall find that when molecular viscosity
is included, 2, is the most important parameter in determining the
importance of ion drag. For most reasonable choices of z,, it turns
out that the effects of ion drag are relatively small—primarily
because viscosity dominates both inertia and ion drag within the
F-region. Thus, the precise specification of ion drag may not prove
to be very important. This conclusion must remain tentative since
simple drag is only one manifestation of hydromagnetic effects, and
a full consideration of the problem has not yet been attempted.

2F. THERMAL EXCITATION

In Part I, we consider waves arbitrarily excited below 90 km.
Hence, we will defer our discussion of J to Parts IT and III.

2G¢. LowErR BoUNDARY CONDITIONS

We are taking our lower boundary to be a flat, rigid, perfectly
conducting surface upon which we may specify a temperature
oscillation 67,,, with frequency o. For an adiabatic, inviscid fluid
the natural boundary condition is

w=0 at z=0. (62)

When viscosity, conductivity (and anisotropy in ion drag) are
allowed, we need 3 additional lower boundary conditions. It might
be supposed that no slip (i.e. %(0) = »(0) = 0) and 7(0) = 67T',,, would
be appropriate—but this is not the case. .

The values of eddy-conductivity and viscosity we haveat the
ground are really applicable above some height of order 10 m. From
the ground to this height the effective viscosity and conductivity

T This choice would be appropriate to the equator if the geomagnetic
equator coincided with the geographical equator. While our choice is not
realistic in the details of the anisotropy, it is hoped that by adopting a larger
than average value for the magnitude of the ion drag we can meaningfully
determine how important ion drag might be.
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rise from their molecular values to values like those we have adopted
atz = 0. Ratherthan attempt to resolve adequately the atmosphere’s
lower 10 m, we adopt slip boundary conditions for velocity and
temperature at z = 0. The simplest form for these is:

afv w
= < v’> =c, x| v) at z=0. (63)
TI 1’[/

We use (63) for most of our calculations. We chose ¢, in order to
simulate some of Kuo’s®® results for the transmission of surface
temperature oscillations to the atmospheric boundary layer:

¢; = 1.7 cm sec™/vpqay (0)

In the course of our calculations we found that the choice of lower
boundary conditions for ', v" and 7" has little effect on our results
for thermal excitation above the ground. This will be simply
demonstrated in Section 3. In Part IT we will discuss the physical
basis for a lower boundary condition and the effect of the lower
boundary conditions on the atmospheric oscillations induced l?y
surface temperature oscillations. For the results discussed in
Part I the lower boundary conditions are of no importance.

25. UPPER BOUNDARY CONDITIONS

For inviscid, adiabatic fluids the upper boundary condition is
either the requirement that solutions be bounded—or if this does not
uniquely determine a solution then a radiation condition is 'impc->sed
(i.e., it is assumed that no energy is coming down from mﬁmt.y).
Behind the latter choice is the assumption that the increasing
importance of molecular viscosity and conductivity in the upper
atmosphere will serve to absorb upward travelling waves. As we
shall see, this is approximately the case in most realistic cases;
however, as Yanowitch®® has shown, there are conditions under
which increasing viscosity as an inhomogeneity in the mediuxp can
cause significant wave reflection. A discussion of the radiation
condition and its numerical treatment may be found in Lindzen and
Chapman. 20 o

In the present study we find that as z (or z) approach infinity,
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equations (40), (41) and (42) asymptotically become

Yty =0 (64)
- Py =0 (65)
A =0. (66)

Using (45) (46), (52) and (53) and recognizing that both d7',/dz and
dM[dz approach zero as z — « in our model, (64)—(66) become

dzu’

o =0 (67)

dzy’

& 0 (68)
and

dz27

The solutions to (67)-(69) are all of the form az + b, where @ and b are
constajnts. If there is to be no flux of horizontal momentum or heat
from infinity, then the solutions must, in fact, approach a simple
constant. In our numerical treatment we require that ’

dz  dz dz (70)
at some finite I'leight. This procedure is adequate provided that the
resulting solutions approach a constant well below the top level.

IFor a top at x = 35, this was, indeed, the case for all waves studied.
n terms of our transformed variables (70) becomes

(d% +;)<TZ> -0 (71)

at x = 35.

Equati(?n (71) provides only three upper boundary conditions; a
fourth is needed. This is obtained from (43) with (71), and taking

dH/dx = dR/dx = 0:
d 1 ioR
@t =27 (72)

at z = 35.
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Tt is easily shown that (72) implies that w’ (the physical, untrans-
formed variable) increases linearly with height at great heights
instead of approaching a constant. This may seem surprising, but it
is merely an expression of the fact that in an exponentially stratified,
hydrostatic atmosphere whose temperature and composition do not
vary with height above some level but whose temperature oscillates
with time, the vertical displacement of material surfaces increases
linearly with height. It can be shown that the same must be true for
oscillations in pressure and density at a given point, and this is
confirmed by analysis of the data in Harris and Priester (1965) for

the quantity, (1/p,)(3p/ B )s o

1. TrpAL MODES AND “ EQUIVALENT ” GRAVITY WAVES

If weset V= Vv =Dy =D, =H"=a= 0, then Egs. (23),
(26), (27) and (28) are exactly the equations used in classical tidal
theory.®” Equations (24), (25) and the expression for the divergence
of the velocity must be replaced by expressions appropriate to a
spherical rotating atmosphere :

ou’ s 1 9y
—a{"Qwv sin 6 = = os 05715(,00)’ -(73)
o’ ; 10 (P
OY Qpnst o e e 15 74
= +20u’ sin 0 730 <p0> , (74)
and
19 1 ow ow (75)

Vv =m—a—é(v cos())+m%+ = "

where u' = westerly velocity

v’ = southerly velocity

® = the rotation rate of the earth

¢ = longitude

6 = latitude

r = radius of the solid earth.
t and ¢ dependence of the form eilot+) ig assumed ; s =0, =1, 2, ....
Equations (73) and (74) are used to solve for »’ and v’ in terms of p".
The velocity divergence can then be rewritten
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., de TP w
Vv = 4r2w2F[p— F, (76)

where F' is a complicated operator in 6 with parametric dependence
on ¢ and s. Equation (76) is used to eliminate %’ and v’ from the

remaining equations. 6 dependence is separated out by means of
Laplace’s Tidal Equation

P 4rfe?p’

F[ﬁo:l gk py e
WherT we require that p’ be bounded at the poles, (77) forms an eigen-
function-eigenvalue problem whose eigenvalues for a given choice
of ¢ and s are {h3*},;; ., the set of equivalent depths. Each n
corresponds to a different latitude mode. For ¢’s and s’s relevant to
atmospheric tides extensive tabulations of the solutions to (77) have
been made—most notably by Flattery®>—some of which are repro-

duced by Lindzen and Chapman. (20
In order to find the internal gravity wave  equivalent ”’ to a tidal
mode of frequency o, zonal wavenumbers s, and equivalent depth 4,

we take the same value of ¢; for k we choose the zonal wavenumber
of the tidal mode at the equator—namely

k=

I ®

(78)

VVe. then use Egs. (24) and (25) where ¥ =D = 0 to express the
horizontal divergence in terms of p’/p,. This yields

ou' o' 3 '
_— —_— = - — 2 _—
020y oy c (& +m?) Po (79)
A compariso.n of (79) with (77) permits us to determine the equivalent
depth of an internal gravity wave in a plane rotating atmosphere :

_ ooy

Our .ﬁnal step is to choose m so that the equivalent depth for the
gravity wave is equal to that of the tidal mode we wish to simulate.

For the diurnal tide there are important modes with negative equiva-
lent depths. These are simulated by taking m to be imaginary. In
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such cases cos my in Eqgs. (30) and (31) is replaced by cosh |m |y
and sin my in (32) is replaced by sinh | m | .

The reader will notice from Eq. (80) that a given h may result
from an infinite number of different choices for o, k and m. We have
chosen ¢ to be equal to that of the tidal mode because when dissipa-
tive processes are included, the frequency determines the height at
which various processes become important—if they become im-
portant at all. We choose k according to (78) in order that the
“ equivalent ”’ gravity waves will be approximations to the tidal
modes at the equator. Therefore, m, is our only adjustable para-
meter.

In Table 1 we list the equivalent depths for the tidal modes we will
simulate, together with the values of ¢, & and m for the © equivalent ”’
gravity waves. Also shown are the values of ¢ and k for the 3-hour
oscillation—m = 0 for this case. A more detailed discussion of the
correspondence between tidal modes and * equivalent ”’ gravity
waves will be given in Part II.

TaBre 1 Parameters for Tidal Modes (frequency o, zonal wavenumber, s,
and equivalent depth, &) and ‘‘ Equivalent ” Gravity Wave (zonal and meri-
dional wavenumbers, k and m). Also shown is the vertical wavelength, L, of
each mode in an isothermal, inviscid, adiabatic atmosphere. -

Mode 4 s h (km) ke(km~1) m (km-1) L*! (km)
1st symmetric
semidiurnal /6 hr 2 7.85 3.14.x10-* 42x10-* 293.0
2nd symmetric
semidiurnal n/6hr 2 2.11 3.14x10-* 0.96 x10-* 53.4

1st symmetric
propagating diurnal z/12hr 1 0.699 1.57 x10-* 8.64 x10-* 28.3
1st symmetric
trapped diurnal n/l12hr 1 -12.25 1.57x10-* 2.62x10~* ——-°
3-hour wave n/1.5 hr 0.64 7.35x10-3 0.0 26.8

1 Vertical wavelength for isothermal 7', (and no dissipation); needed for
Sec. 5.
2 This mode is evanescent in the vertical.

The above essentially completes the discussion of our model. We
now turn to a brief description of our numerical method of solution.
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3. Numerical Method of Solution

Our numerical method is designed specifically for equations of the
form of Eq. (44).1

The first step is to divide our  domain into discrete intervals of
length oz, labelling the gridpoints between intervals by integers = :
ie.,, n =7 corresponds to x =7 dz. The subscript n will denote a

function evaluated at gridpoint n. Next we replace derivatives by
their finite difference approximations:

d > . 02?7&1_0;1;—.1 y
(d_x%>,,_ T 25z ’ (84)
and
ar >2x 0;,,+1—2027,,+@,,_1
(=7), - GoF (85)
Substitution of (84) and (85) into (44) gives us a set of difference
equations :
A, +B2,+Cu .=D,, (86)
n=0,1,2...N

t In practice, we did not use z as our dependent variable. Instead we used

b
y =a<1— ﬁ) +2, (81)
which, for suitable choices of a and b allows extra resolution near the surface
while taking uniform grid intervals in y. This permits adequate resolution in
the surface boundary layer. Our particular choice was a = 7, and b = 0.25.
Thus a top at 2 = 35 corresponds to y ~ 42. If we take n grid intervals per

unit y variation, then we will have 3.75n intervals in the first quarter of a scale
height. When using (80)

% = dyf (82)

o = -Fegl el (83)
where Fl = (xaTbb)z
and F2 — (x%)s_.

Substitution of (82) and (83) into (44) leaves us with an equation of exactly the
same form as (44).
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~ ox
where A, = An+—2— B,

l.'311 = —-2A,+ Cn(ax)2

~ ox

C,=A,- 5 B,

D, = D, (52

d N = index of top grid point.

aJnAssumlng sz is sufficiently small for (84) and (85) to be a,dequat(;‘
approximations, then our problem is reduced to the solutu}\r; o1
N +1 linear algebralc vector equations (i.e., (86)) in the N +

mknown vectors 02/,,, n=0,1,2,...N. The procedure for doing
;his is given in Lindzen and Kuo.m) Brleﬁy, we introduce a set of

new matrices a,(n =0, ..., N) and vectors B (n=0,...,N) defined
by the following equation_, - .
%n = an%m-l +Bn e (87)
Also, ~ L
%n—l = an—l%n +Ign—1 . (88)
Substitution of (88) into (86) and comparison with (87) gives us
ay = (A +8,)7 0 (89)
Bn A an 1+Bn) (D AnB'n 1 (90)

Thus, if we know o, and Bo we may find all the remaining a,’s and

,3 s by repeatedly inverting 4 x 4 matrices (a partlcularl)r sjlmple task
—n—espemally since the matrices prove to be well conditioned). o,

and 130 are directly determined by comparing our lower boundara);
conditions (62) and (63) with (87) after replacing first derivatives

follows af §_f f1 fo -
a_ dz T Tor
Havmg found «, and ,3,, (n=0,1,2, ..., N-1), we may find all

the Z,’s from (88)—provided we know @ v Uy i determ)ined frotx)n
our u;per boundary conditions. Equations (71) and .(7 2) may be
written, more generally, in the form

92)
— =./It”2/, (
dx%
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or in finite difference form

(I_J”N 55&5)%1\( = 0]/‘\,_1. (93)
Substituting (93) into (90) we get
(L -lyox-ay_ ) Uy = By
or

Uy = (I - pyydx—ay_ 1) By, (94)
Thus, our problem is solved.

Our numerical procedure has been specifically designed for prob-
lems where viscosity and conductivity are non-zero. When viscosity
and conductivity are set equal to zero some slight modifications are
necessary in the boundary conditions. For our lower boundary
conditions (62) remains valid, but (63) must be replaced. Equations
(40)—(42) (with ¥ o, = ¥° = A" = 0) are solved for u, v and 7'
in terms of w and dw/dx, and these relations are used instead of lower
boundary conditions. Our upper boundary conditions are replaced
by radiation or boundedness conditions (according to whether we
are dealing with propagating or trapped modes) applied individually
to u, T and w. These conditions are also of the form of (92) (see
Lindzen and Chapman®). Not surprisingly, inviscid, non-conduct-
ing calculations required smaller mesh sizes than viscous calcula-
tions. Also, modes associated with small values of h (equivalent
depth) required smaller mesh sizes than modes with larger values of
h (i.e., the shorter the inviscid vertical wavelength, the greater the
resolution needed). Thus, of the five modes we are studying, the
propagating diurnal and the 3-hour modes require the smallest mesh
sizes. In Fig. 2 we show some of the effects of resolution on calcula-
tions for the diurnal propagating mode excited by water vapor
insolation absorption (for the moment we need only note Ja e~%/3)
in an inviscid, adiabatic atmosphere with a variable basic tempera-
ture as shown in Fig. 1. Shown are solutions for §y = 0.0042, 0.01
and 0.0167. All the solutions grew approximately as e®/? and
displayed approximately the correct phase variation with height.

However, we needed dy < 0.008 in order to eliminate spurious
numerical wiggles.}

T Further increases in resolution beyond dy ~ 0.008 produced only slight
changes in the results. It appears to be characteristic of this method that the
transition from totally inadequate to adequate resolution occurs suddenly.
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Figure 2. Amplitude of »” as a function of height (for the regions 015 km and
350-450 km) for the diurnal propagating mode. Shown are results for model

(iii) obtained using various resolutions: Jy = 0.0167——, oy = (’),0%---.--_-
oy = 0.0042 Also shown are results for an * glmost inviseid
atmosphere with dy = 0.0042—-————- . See Sec. 3 for details.

For &y > 0.02 the numerical solutions actually decreased with
height—the numerical solutions becoming nonsense. Also shown in
Fig. 2 are the results of calculations for an atmosphere with no
molecular viscosity and conductivity, but with eddy viscosity given

by
Veddv =(103+ 3.99 x 105<1 - i% km)) em?sec for z < 10km

=103 cm?/sec for z > 10km (95)

instead of (56). K.y is given by (57). (95) represents normal eddy
diffusion in the lower troposphere but negligible eddy dlffusm‘n above
10 km. ' (In the figure legend we refer to this case as ‘‘ almost
inviscid ’.) We see that the " almost inviscid >’ and the inviscid
solutions are identical above 10 km. Between 1 km and 10 km the
amplitude of the solution in an * almost inviscid ”’ atmosphere is
slightly less than in an inviscid atmosphere. Only in the lowest
kilometer of the atmosphere is there a somewhat significant difference
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in the solutions. These results show that the lower boundary condi-
tion cannot be overwhelmingly important for oscillations excited
within the atmosphere.t They also show that slight viscosity has
negligible effect. Significantly the presence of slight viscosity
reduces the resolution needed for an accurate solution.

4. Overall Results

We have calculated vertical distributions of the amplitude and
phase of w', v', w’, T", dp’/p, and 6p’/p, for the five gravity waves
described in Table 1. For each mode we have investigated the
following models.

(i) An isothermal atmosphere where 7', = 260°K. M = 28.9 =
constant, and viscosity, conductivity and ion drag are omitted.

(ii) An isothermal atmosphere where 7'y = 260 °K. M = 28.9 =
constant; viscosity and conductivity as described in Section 2c
are included. However, ion drag is omitted.

(iii) An atmosphere with variable 7', as shown in Fig. 1 and vari-
able M and y as given by Egs. (20) and (21). Viscosity, conductivity
and ion drag are omitted.

(iv) Same as (iii) but ion drag is included with ion drag with
z, = 350 km (see Eq. (61)).

(v) Same as (iii) but with viscosity and conductivity as described
in Section 2c and no ion drag.

(vi) Same as (v) but with ion drag with z, = 350 km.

(vii) Same as (v) but with ion drag with z, = 320 km.

Figure 3 shows the distribution of the amplitude of %" with height
for each of the seven models described above for a gravity wave
corresponding to the first symmetric propagating diurnal tidal mode.
Figure 4 shows the distributions of the phase of u’ for the same mode
and each of the models. Figures 5 and 6 show the distributions of
the amplitudes of v" and 7" respectively for the diurnal propagating
(positive equivalent depth) mode. Figures (7)—(10) show the same
quantities for the trapped (negative #) diurnal mode; Figs. (11)—(14)
for the first semidiurnal mode; Figs. (15)—(18) for the second semi-
diurnal mode ; and Figs. (19)—(21) for the 3-hr wave. 2" = 0 for the

t This conclusion is inferred from the fact that outside of the boundary
layer it does not matter whether we have a viscous boundary layer or not
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Figure 3. Amplitude of u’ for the propagating diurnal mode as a function of
height using models (1)—(vii).
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Figure 4. Phase of w’ for the propagating diurnal mode as a function o
height using models (1)—(vii).
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Figure 11. Same as Fig. 3—but for the first semidiurnal mode.
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Figure 12. Same as Fig. 4—but for the first semidiurnal mode.
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Figure 17. Same as Fig. 5—but for the second semidiurnal mode.
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Figure 18. Same as Fig. 6—but for the second semidiurnal mode.
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Figure 19. Same as Fig. 3—but for the 3-hour mode.
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However, the

various fields do have characteristic phase differences which vary
from altitude region to altitude region. Also, the phases of different

3-hr wave. We show only the phase of u’ because the phases of
fields respond to ion drag in different ways.

other fields behave in a qualitatively similar manner.

We, therefore, show in

Table 2 the phases of u’, v, 7’, w’ and Jp’, for models (v) and (vi),

for each of the waves studied, at selected altitudes.t Also shown in
Table 2 are the amplitudes of w’ and Jp’/p, at the same selected

They may also be given in

1 The phases in Table 2 are given in degrees.
terms of the time of maximum. For diurnal oscillations

12 hr
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where ¢ = phase in degrees and 7', T,, 7T'; are constant determined by the

known phase of the excitation.
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altitudes. Recall from Section 2u that w’ and Jp’/p, behave as
a-+bz

in the thermosphere where @ and b are complex constants. In the
lower thermosphere a and b tend to be of comparable magnitude.
Since @ and b are complex such a linear function can (and usually
does) have a non-zero minimum in amplitude at some level accom-
panied by phase variation with height in the neighborhood of this
level. Also, if 6p’/p, increases linearly with height, there will be
some level above which §p’/p, > 1. It might appear that our solution
will break down above this level. But, ignoring the fact that the
physics we have adopted may be inappropriate above this level,
there are important conditions under which this catastrophe is
averted. Namely, if »’, v' and 7" approach constants, independent
of height, at levels below the level where p’/p, ~ 1, then our solu-
tions for 4/, v" and 7" will remain valid at all heights (representing,
in essence, diffusive equilibrium for horizontal momentum and
temperature). However, the hydrostatic equation (Eq. (4)) and the
gas law (Eq. (6)) which relate pressure and density to temperature
must (in the upper thermosphere) be solved in their non-linearized
form. Since we know 7'(= T, +7"), the problem of solving for p and
p is still linear although the time variation of p and p will no longer
be sinusoidal. These corrected calculations for p and p have not
been performed in this part but an example will be presented in
Part III. Figures (3)-(21) together with Table 2 are, for the most
part, self explanatory. However, we shall discuss in detail the roles
of conductivity and viscosity, and of ion drag.

5. Role of Viscosity and Conductivity

The first feature to be noted in Figs. (3)—(21) is that for a distance
of 10 km or more above 90 km the distributions of amplitude and
phase for viscous, conducting and for the inviscid, adiabatic models—
given the same choice for 7'y(z)—are almost identical.f This shows
that eddy diffusion—as included here—is of almost no importance.

+ The phase of the first semidiurnal mode in an isothermal atmosphere is an
exception. The anomalous behavior results from reflection caused by mole-

cular viscosity and conductivity which will be discussed later in this section—
and in Part IL.
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Molecular viscosity and conductivity, both of which increase with
height as 1/p,, are, however, of dominant importance at high
altitudes. The present study to a large extent confirms the results
of the more limited analytical investigations of Yanowitch®® who
only included molecular viscosity, and Lindzen®® who studied the
effect of Newtonian cooling where the rate coefficient increased as
1/p,. We therefore review the main conclusions of those studies
both of which dealt only with isothermal basic states. In thesé
analytical studies there were two essential parameters:

472 1
T =73 %’ - (for Yanowitch@®) (97a)
or
a .
& = (for Lindzen 1) (97b)
(where a « const/p,),
and
B =2nH|L (98)

where L = vertical wavelength for the wave in an inviscid, adiabatic
atmosphere (in terms of equivalent depth

L = 2n{<£_1) 1 1,
y Hh 4H? ’

see Sec. 21). y relates the period of the wave to the time scale for
dissipation (which decreases as 1/p,), while B relates the scale height
for increase in dissipation to the vertical wavelength of the wave in
the absence of dissipation. The main conclusions are :

(i) The increasing dissipation serves as an inhomogeneity in the
medium which can cause downward reflection. The magnitude
of the reflection is given by

| Z | = e (99)

Only for the first semidiurnal mode, where for an isothermal atmos-
sphere L = 293 km (viz Table 1), is reflectivity important. For the
second semi-diurnal mode | Z | is already 0(e3).

_ (ii) For B 2 2, wave amplitudes increase roughly as e=/2 up to the
vicinity of y~1, asymptotically approaching a constant above this
level—with little or no decrease of amplitude.

(iii) For g > 2, wave amplitudes increase roughly as e=/2 up to the
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vicinity of y ~ 1—but then decrease considerably before asymptoting
to a constant.

(iv) The effects of dissipation become important when x 3 1.
Hence, for a given B, the greater ¢ is, the greater the height at which
dissipative effects set on.

(v) The dominance of dissipation is associated with the constancy
of both amplitude and phase with height.

(vi) Most of the above results apply to waves which in the absence
of dissipation propagate vertically. For evanescent waves, increasing
dissipation causes wave amplitudes to cease decaying with height,
approaching a constant instead. This is accompanied by a change of
phase.

All the above are confirmed by our results for an isothermal basic
state—except for one modest complication: namely, wave ampli-
tudes, decreasing due to dissipation, reach a minimum above which
they increase somewhat before asymptoting to a constant. This
behavior is also found in the solution of Yanowitch®®) (Hines
(personal communication) also reports finding this). This behavior
appears to be due to the fact that increasing dissipation initially
causes the effective value of L to increase thus causing a local decrease
in the effective value of y.

The main features for a basic state with variable 7'y (Model (v))
are summarized in Table 3, the details being found in Figs. (3)-(21)
and in Table 2. The results are consistent with the isothermal
results provided we take account of one very essential complica-
tion. The scale height now varies with height; hence, the effect
of viscosity and conductivity depends on the effective value of B
in the neighborhood of the height at which y~1. For the diurnal
propagating mode in an isothermal atmosphere S~ 2 and the
““ exospheric ’ amplitude is only a little less than the maximum
value. For the same mode in the variable temperature atmosphere,
y~1 at a level where H (and hence ) are considerably larger than
they are in the isothermal atmosphere,t and the amplitude of the
oscillation undergoes considerable attenuation. For the 3-hour mode
(which has approximately the same vertical wavelength as the diurnal

+ y~1 at a lower altitude than in the isothermal atmosphere because (as
shown in Fig. 1) below about 150 km, z, at a given height, is less for the variable
T, atmosphere than for the isothermal atmosphere.
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Tapre 3 Selected Features of Solutions for Models (v) and (vi), ¢ Max “refers to the
amplitude of a field at its lowest maximum. ( )ex refers to the amplitude of a field at
the top of our domain.

Ht. of Max |’ |+~ |wex|+ Ht.of Max | TV |+~ |T'ex |+
Max |’ | |w (90 km)| Max |u'| Max | T| |77 (90 km)| Max|T"|
(km) (km)
Diur Model (v) 107 2.45 0.154 109.5 3.12 0.17
PTOP  yodel (vi) 107 2.45 0.112 109.5 3.12 0.17
Model (v) 242 0.017 1.66 209 0.188 1.02
Diur. tr.?
Model (vi) 219 0.015 1.83 212 0.184 1.02
Model (v) 154 1.23 x 10 1.76 236 4.02 x 10 0.991
1st S.D.2
Model (vi) 145 1.1 x10 1.21 200 3.62 x 10 0.97
Model (v) 129 6.9 0.675 135 1.15 x 10 0.556
2nd S.D.
Model (vi) 128 6.91 0.516 135 1.16 x 10 0.548
Model (v) 126 6.3 0.081 128 9.5 0.067
3-hr
Model (vi) 126 6.2 0.072 128 9.44 0.058

1 For diur. tr. replace maximum with minimum.

2 The amplitude of u’ for the 1st S.D. mode reaches a maximum at the height indicated.
Above this height the amplitude goes to minimum and then rises again asymptotically ap-
proaching a constant value which is greater than the value at the first maximum.

propagating mode) the height at which y~ 1'is greater than for the
diurnal mode because ¢ is much larger. At this height H (and B)
are still larger and the 3-hour mode undergoes even more attenuation
than the diurnal mode. In passing, it should be noted that our
calculated behavior for the diurnal propagating mode is strikingly
similar to the observed behavior described by Hines (1966).

The behavior of both semidiurnal modes is also consistent with the
above discussion. The vertical wavelength of the first semidiurnal
modes is so large that the effective f in the neighborhood of y~1
is still less than 2—despite the increased value for H. Hence there
is no amplitude attenuation for this mode even in the variable 7'
atmosphere; however, the increase in B is sufficient to almost
eliminate the reflectivity due to increasing viscosity and conductivity
(see Fig. 12). The second semidiurnal mode is now subject to an
amplitude attenuation of about }.
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The most significant effect of variable 7', on the diurnal trapped
mode is to increase the phase variation (for u’ and »—but not for
7") associated with the transition from an evanescent mode to a

constant amplitude mode dominated by viscosity and conductivity
(see Fig. 8).

6. Role of Ion Drag

From Sec. 2E we see that the time scale for ion drag is approxi-
mately § hr and the ion drag is distributed over a region 200 km
thick. Thus, a priori, we might expect ion drag to be important for
all the modes under consideration here. However, two important
features prevent ion drag from necessarily being very important :

(i) Ion drag, in the present model, acts only in the west—east
direction. Thus, it directly inhibits only %’ within the region of ion
drag. However, the degree of wave attenuation and the extent to
which v', 7", etc. are affected depends on whether du’/dx,,, or 3v'/ay
is the dominant contributor to the horizontal velocity divergence.
In the latter case the effect of ion drag is relatively small.

(ii) If the horizontal momentum balance is dominated by vertical
viscous diffusion, then it is invalid to estimate the importance of ion
drag by comparing its time scale with the wave period. Collisions
between neutral molecules may transport momentum (and heat)
across the region of ion drag in a time period short compared to the
drag time scale.

By comparing results for models (iii) and (iv) (without viscosity or
conductivity) we may investigate the first feature. From Figs. (3)-
(21) and Table 2 we see that the 3-hr mode (without viscosity and
conductivity) is drastically attenuated by ion drag. The effect of
ion drag becomes progressively less as we go from the 3-hr mode to
the 1st semidiurnal mode to the diurnal trapped mode, to the 2nd
semidiurnal mode to, finally, the diurnal propagating mode. Refer-
ence to Table 1 shows that as the ratio | m/k | increases, the effect
of ion drag decreases. The physical reason for this is straightforward.

When | m/k | < 1, then 0u’/dz,, dominates the horizontal velocity
divergence and hence the generation of w’ and in turn the generation
of 7". Thus, when one attenuates u’, one also attenuates 7" and
consequently the pressure gradients which force both %' and v'.
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Therefore, v" is attenuated as well. Above the region of ion drag
there is no longer a significant 7" to regenerate the wave. When
| m/k | > 1, 9u’[dx,, contributes negligibly to the horizontal velocity
divergence and the attenuation of ' leaves v and 7" relatively
unaffected. Thus, there remains a temperature oscillation propagat-
ing upwards virtually unattenuated which sustains velocity oscilla-
tions. Above the region of ion drag 7" regenerates u’ to almost its
unattenuated value.

The above discussion which is useful in illustrating the importance
of anisotropy is nevertheless unrealistic since the second feature,
molecular transport, is indeed of dominant importance. From
Table 3 we see that the exospheric values of | %' | are reduced by at
most 339, by ion drag as described in Sec. 2¢ with z, = 350 km. In
the absence of viscosity and conductivity reductions of from 80—
99.99 ... % occur, depending on the mode (see Figs. 3, 7, 11, 15 and
19). The exospheric value of 7" is virtually unaffected by ion drag
for the diurnal propagating, the diurnal trapped and the first and
second semidiurnal modes. For the 3-hr mode ion drag produces a
129, reduction in both |u’ (exosphere)| and | 7" (exosphere) |;
this appears to be due to both the fact that m/k = 0 for this mode,
and to the fact that ion drag becomes important at a level (200 km)
below the level where viscosity and conductivity dominate this
mode.t Associated with this last fact is the fact that reducing z,
to 320 km (or less for that matter) generally enhances the effects
of ion drag (viz. the curves for model (vii) in Figs. 3-21). Conversely
(though not shown here) increasing z, generally diminishes the effects
of ion drag. Such calculations demonstrate that the detailed
specification of ion drag above about 350 km is unnecessary.

7. General Conclusions

Before ending this paper we wish to isolate a few major results.
(i) The two major dissipative mechanisms in the upper atmosphere
are ion drag, and molecular viscosity and conductivity. For the

+ The viscous and conductive attenuation of amplitude (as seen, for example,
in the results for models (v), (vi) and (vii) in Fig. 19) occurs in a region where
viscous and conductive terms are comparable with other terms in our equa-
tions. Dominance of viscosity and conductivity is associated with constancy
of amplitudes and phases (see Sec. 5). -
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modes we have studied our results show that molecular viscosity and
conductivity are far more important than ion drag. What we mean
by this is the following. Let us call our solution including both ion
drag and molecular viscosity and conductivity the ‘‘ correct ”
solution. If we now omit ion drag our solution will vary from the
““ correct ™’ solution by no more than about 45%, in wave amplitudes
—and usually much less. If, however, we retain ion drag but omit
molecular viscosity and conductivity our solution will vary (in the
upper atmosphere) from the “ correct * solution by orders of magni-
tude. A study of Figs. 3-21 shows, moreover, that molecular viscosity
and conductivity are of comparable importance contrary to the
claims of Volland (1969).

(ii) Of the propagating modes studied, all, except the first semi-
diurnal mode, cease growing approximately as e*? below 120 km
and undergo significant amplitude attenuation before asymptoting
to constant amplitudes. The first semidiurnal mode, on the other
hand, continues growing as about e/? until about 150 km and
undergoes no amplitude attenuation. Thus, anticipating results to
be discussed in Parts IT and III, we find that of all the tidal modes
excited in the lower atmosphere it is only the first (and main) semi-
diurnal mode which is efficiently transmitted to the thermosphere.
From observations (see Lindzen and Chapman (@), || for this
mode is about 10 m/s at 90 km. From Figs. 11 and 14 we may
then infer exospheric values of | %’ | ~ 134 m/s, and | 7" | ~187°—
which clearly imply that this mode is of great importance in the
thermosphere.

The above are the most obviously important conclusions to
emerge from Part I. There is another conclusion whose full import-
ance will become clear in Part ITI.

(iti) For the diurnal propagating mode the effect of viscosity and
conductivity is to end e*/2-growth and introduce substantial amplitude
attenuation between about 110 km and 210 km. This effect is
enhanced by ion drag (for |« | at least). For the diurnal trapped
mode the effect of viscosity and conductivity is vo end exponential
decay of amplitude with height. Ion drag has, on the whole, very
little effect on this mode. As a result of the above, the so called
trapped mode is just as effective as the so called propagating mode in
transmitting a disturbance from the lower to the upper thermosphere.
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Moreover, for excitation distributed throughout the lower thermo-
sphere, the trapped mode will be more efficient because it involves
less phase variation with height than the propagating mode and,
therefore, gives rise to less destructive interference.
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