The DTU18 MSS Mean Sea Surface improvement from SAR altimetry

Ole B. Andersen, Stine K. Rose
P. Knudsen and L. Stenseng
Altimetric Mean sea surface.

Reference for deriving sea level anomalies (SLA).

DTU MSS are purely altimetric (no remove/restore vrt geoid (like CLS))

20 years mean profile of TOPEX/J1/J2 is fundament.

20 years mean profiles of E1/E2/N1/SA is fitted on this (remove d/o 10 diff)

Short frequencies from geodetic mission altimetry C2+J1+SA.

Baseline for MDT (ocean current) estimation

\[\text{MDT} = \text{MSS} - \text{Geoid} \]
DTU Space National Space Institute

CLS 15 vs DTU15 at different wavelengths

Short wavelengths $\lambda < 150$ km

Long wavelengths $\lambda > 150$ km

Average difference is less than 2 cm

- No significant difference at short wavelengths
- Some differences seen at wavelength > 150 km.

Zoom on the Hawaiian-Emperor seamount chain

Courtesy of Shaeffer et al., 2017
DTU15MSS-UCL13MSS (Regional)

- Confirms that DTU15 is
- Potential too high by
- 10 cm in the Arctic
- (ice covered regions
- So also around
- Antarctica....
Problem:

- Cryosat 8 year Mean
- Relative to DTU15MSS.
- INDICATE THAT MSS
- SHOULD BE HIGHER
- What's wrong?
RADS prefers “ocean like” waveforms in the Arctic this is sea-ice height.
Four steps to update DTU15MSS to DTU18MSS.

- New Arctic and Antarctic dataset -> Reprocessing/retracking of Cryosat-2 within leads
- Long wavelength Correction TP/J1/J2 mean profiles
- Coastal zone update using S3A and TP/J1/J2 + TDM profiles
- Removing Geodetic Mission ocean variability in interpolation.
C2 Lead (SAR+SARin) data

- 8 year mean estimated from > 4 million 20 Hz observations
- Retracker bias for Gauss Threshold retracker found and corrected.
Long wavelength

- An-isotropic Gauss Markov covariance function
- Correlation length: 50 km NS & 150 km East west
- Stronger fit to mean tracks.
Coastal Zone (TP+TDM+ 2 years of S-3A)

- Within 70 km of coast (zeroed elsewhere).
- Long wavelength removed.
Dynamic Sea level Variability

Interannual & seasonal oceanic variability corrected using 3D Optimal interpolation

From Daily AVISO SLA maps (Le Traon et al, 1998) >>>

$$\text{SSH}_{\text{cor}}(t,\lambda,\phi) = \text{SSH}(t,\lambda,\phi) - [\text{SLA}^i(t,\lambda,\phi)]$$

AVISO Daily SLA grids estimated from All Altimeter missions

Variance of Cryosat-2 SLA before and after dynamical SLA variability

Before SLA variability correction

After SLA variability correction

• Correction performed for Cryosat-2 (7y); SARAL GM (1y), Jason-1 GM (1y)
DTU18-DTU15

- Within +/- 66 bounds corrections up to 8 cm (std < 2 cm)
- Outside 66 bounds lowering with an average of 12-13 cm from C2 lead.
<table>
<thead>
<tr>
<th></th>
<th>DTU15</th>
<th>DTU18</th>
<th>CLS15</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP/J1/J2 mean</td>
<td>1.3 cm</td>
<td>0.8 cm</td>
<td>0.8 cm</td>
</tr>
<tr>
<td>TDM</td>
<td>2.81 cm</td>
<td>2.1 cm</td>
<td>2.2 cm</td>
</tr>
<tr>
<td>S3</td>
<td>4.1 cm</td>
<td>4.1 cm</td>
<td>4.1 cm</td>
</tr>
</tbody>
</table>
Summary.

- DTU18MSS is ready to be released.

- Several smaller issues with DTU15MSS has been corrected.

- DTU15/18 are still only true global MSS available.

- 220 km Cross Pole-hole extrapolation performed wrt geoid

- Final Testing around Arctic and Antarctic coasts are ongoing.

- Testing if appropriate to “Direct Sea-ice Freeboard estimation”