

LOTUS fourth review meeting, 04 February 2016

WP 6, Task 6.4 Hydrological modelling and data assimilation

Raphael Schneider¹, Peter Nygaard Godiksen², Marc-Etienne Ridler², Henrik Madsen², and Peter Bauer-Gottwein¹ ¹⁾ Technical University of Denmark, Department of Environmental Engineering, Kgs. Lyngby, Denmark

²⁾ DHI, Hørsholm, Denmark

Task overview

Task objectives

The objective of this task was to develop and demonstrate a catchmentscale hydrological and hydrodynamic modelling and data assimilation approach using SAR altimetry data.

Activities

- Development of data assimilation capabilities in the MIKE 11 hydrological-hydrodynamic modelling system tailored for assimilation of drifting-orbit altimetry data (CryoSat-2).
- Demonstration of the hydrological-hydrodynamic modelling and data assimilation approach for the Brahmaputra River basin using CryoSat-2 altimeter data.
- Processed CryoSat-2 Level 2 data for the Brahmaputra River basin were provided by DTU Space.

DHI MIKE 1D Data Assimilation framework

- Assimilation of spatially and temporally distributed observations of discharge and water level
- Projection of observation data onto model river network
- Flexible model error description (perturbation of model forcing or model states, with spatial and temporal correlation of error)
- Different filters and localization

• ...

Brahmaptura case

CryoSat-2 data processing – river mask filtering

CryoSat-2 data processing - clustering

Observations of one transect are not assimilated individually

- → Aggregation into clusters based on their location. No. of cluster groups determined based on distance threshold (e.g. 5 km)
- \rightarrow Average (location and elevation) of each group used as measurement to be assimilated
- $\rightarrow\,$ Standard deviation of elevations within one group can be used as observation standard deviation for DA

Data assimilation setup

Model error description

Via temporally and spatially correlated perturbation of forcing (runoff from NAM subcatchments)

Observation error

Standard error taken from standard deviations of elevations within each cluster group

Localization

Localization needed as otherwise spurious correlations across the long river network give unreasonable updates

Virtual window

To spread out measurements over several simulation timesteps

9

Brahmaputra case – DA of synthetic data

Brahmaputra case – open loop run in comparison to in-situ discharge

Brahmaputra case – DA of CryoSat-2 data

Brahmaputra case – DA of CryoSat-2 data

Assimilation of real CryoSat-2 data

Challenges

- Only very limited in-situ data available (one location, high-flow season only)
 - \rightarrow impact of observations far away from in-situ station is small
- Performance of deterministic model without DA:

	NSE	bias
Calibration period (2002 – 2007)	0.921	1.0 %
Calibration period high-flow (2002 – 2007)	0.876	2.5 %
Validation period (DA) high-flow (2010 – 2013)	0.751	16.0 %

- Short memory of updates → updating not only of water levels, but also of rainfall-runoff models
- CryoSat-2 observation error assessment

Conclusions

Further tuning of and gaining insight into Brahmaputra DA

- optimize localization and virtual window
- different model error description (to allow global updating?)
- different filtering of CryoSat-2 data and measurement error description
- different retracking or off-nadir correction of CryoSat-2 data

DA framework is working in principle

 \rightarrow Very flexible framework that can be used for wide variety of observations and models

→ Comparison of value of (synthetic) data from different missions (CryoSat-2 vs AltiKa vs Sentinel-3 ...) possible

→ Comparison of value of CryoSat-2 data with different water masks, different retrackers, different off-nadir corrections...

Some thoughts on evaluation of operational hydrologic forecasting

We always have two forecasts "for free":

- · Climatology, i.e. (mean of) observations from past years
- Persistence, i.e. "tomorrow = today"
- → A meaningful hydrologic model should beat these forecasts!

Indicator?: **Continuous Rank Probability Score (CRPS)** $CRPS = \frac{1}{k} * \sum_{i=1}^{k} \int_{x=-\infty}^{x=\infty} \left(F_i^f(x) - F_i^0(x) \right)^2 dx$ where k forecast cases (timesteps) $F_i^f(x)$ forecast probability cdf of k $F_i^0(x)$ observation at timestep k

- combines reliability and sharpness
- For deterministic forecast: CRPS = MAE

CRPS for Bahadurabad on the Brahmaputra

Synthetic test case

Test case with

- 2 river branches
- 2 NAM catchments for runoff forcing
- Synthetic observations distributed in space and time
- Model error description by runoff forcing perturbation

...similar as in real study case

Results of DA using synthetic observations from non-perturbed deterministic model, evaluated for discharge at outlet

Synthetic test case – assimilation of perturbed data

Results of DA using synthetic observations taken every 5th day from perturbed model (i.e. deterministic run \neq truth)

How to use "new type" altimetry data in hydrological modelling?

Task:

Use CryoSat-2 altimetry data (or in general from multiple missions) to update water levels in a hydrodynamic river basin model

CryoSat-2 ground tracks for one 369-day cycle over the Assam Valley, India Envisat 35-day repeat tracks over the Assam Valley, India, with virtual stations along Brahmaputra