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The Ganges and Brahmaputra are the two largest rivers in Bangladesh. Dis- 
charge estimations of these rivers from a stage-discharge relationship or rating 
curve are crucial for flood warning/control/mitigation and water resources 
development. So far, logarithmic rating curves have been widely used in 
Bangladesh. The suitability of semi-logarithmic, polynomial and quadratic 
rating curves has not been investigated. In this study, all four recognised stage- 
discharge relationships were examined for the Ganges and Brahmaputra rivers. 
Unbiased least squares estimators were determined for the segmented loga- 
rithmic and semi-logarithmic rating curves. This enhanced their efficiency in 
inter-and extrapolating discharges from the given river stages. Based on detailed 
analysis and goodness-of-fit criteria, segmented logarithmic and third order 
polynomial rating curves were found to be the best for the Ganges and Brahma- 
putra rivers, respectively. 

Introduction 

In the discharge estimation of a river, the stage-discharge relationship or  rating curve 
is a fundamental technique ( I S 0  1982; Herschy 1985; Sefe 1996). The quality of the 
stage-discharge relationship or rating curve determines the accuracy of the com- 
puted discharge data (Mosley and McKerchar 1993). This is particularly important 
for the rivers which carry huge volumes of flood water and may experience morpho- 
logical changes (for example, the Ganges and Brahmaputra rivers in Bangladesh). 
The Ganges is a meandering river while the Brahmaputra is one of the largest 
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braided river systems in the world (Coleman 1969; RPT et al. 1989). 
The peak discharges of the Ganges and Brahmaputra rivers can cause severe 

floods in Bangladesh. Therefore, the stage-discharge relationship is particularly 
useful for flood forecasting and warning interalia, water resources assessment and 
environmental monitoring. Extrapolation of the stage-discharge relationship is also 
needed for the planning of flood control and other development projects. The actual 
practice of developing and applying rating curves varies between agencies (Mosley 
and McKerchar 1993). A logarithmic stage-discharge relationship is widely used 
(IS0 1982; Herschy 1985; McKerchar and Henderson 1987) for discharge estima- 
tion for a given water level. For the Ganges and Brahmaputra rivers, the Bangladesh 
Water Development Board (BWDB) uses a logarithmic stage-discharge relationship 
with a fixed offset value (gauge height at zero discharge). The China-Bangladesh 
Joint Expert Team (CBJET) (1991) has recommended a segmented logarithmic 
stage-discharge relationship with fixed offset value. The Flood Action Plan (FAP) 
24 (1993) suggested using a similar type of rating curve, but with variable offset 
values. During the feasibility study of the Jamuna Multipurpose Bridgel, Randel, 
Palmer and Tritton (RPT) et al. (1989) proposed a quadratic rating curve for the 
Brahmaputra River. 

Tests for goodness-of-fit of these relationships are not well documented. Further- 
more, suggestions for logarithmic and quadratic stage-discharge relationships were 
made without examining other recognised stage-discharge relationships (polynomial 
and semi-logarithmic) (Herschy 1985; IS0 1982). This article examines the suit- 
ability of logarithmic (segmented), semi-logarithmic, polynomial and quadratic 
stage-discharge relationships for the Ganges and Brahmaputra rivers, based on 
goodness-of-fit criteria. Finally, the best stage-discharge relationship is recom- 
mended for these two rivers for future use. 

Extrapolation of the rating curve in both directions is often necessary for design 
purposes (Herschy 1985). Caution should be taken into account when carrying out 
such extrapolations. Large errors can result if the stage-discharge function is extrap- 
olated beyond the range of gauged discharges without consideration of the cross- 
section geometry and controls (Mosley and McKercha 1993). Where cross-section 
is stable, a simple method is to extend the stage-area and stage-velocity curve for 
given stage values. Beyond the stage values that have been gauged, discharge is cal- 
culated by taking the product of velocity and cross-section area (IS0 1983). Extrap- 
olation of the stage-velocity curve requires an understanding of the high stage con- 
trol. Where there is a channel control, the Manning equation can be used to assist in 
the extrapolation. However, this is not reliable where Manning roughness varies 
with stage (Mosley and McKerchar 1993). 

1. The Brahmaputra River is known as Jamuna in Bangladesh. A 5.5-kilometer bridge was opened for 
traffic in June, 1998 which connected the eastern and western halves of the country, separated by the 
Jamuna River. 
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The Study Area 

The Ganges and Brahmaputra are the two largest rivers in the world. The Ganges 
rises south of the main Himalayan divide near Gangotri at a height of 4,500 metres 
in the Uttar Pradesh (UP) region of India. The 1.095 million km2 basin area of the 
Ganges River is distributed over China, India, Nepal and Bangladesh. Mean annual 
runoffs of the Ganges River at Farakka and Hardinge Bridge arc estimated to be 
415x103 million cubic metres (mcm) and 352x107 mcm, respectively. The highest 
water level and peak discharge was recorded to be 14.8 m and 76,000 m3/sec, 
respectively in 1987 (BWDB 1987; Mirza 1997). Apart from the water discharge, 
the Ganges also carries huge amounts of sediment. Coleman (1 969) estimated that 
the Ganges River carries 479 million tons of suspended sediment annually, while the 
Master Plan Organisation (MPO) (1986) is estimated at about 212 million tons. 

Statistical analyses indicate that there are no increasing or decreasing trends for 
low and medium water levels of the Ganges River. However, a slightly decreasing 
trend was reported for high water levels. This was perhaps caused by changes in 
local morphology at or downstream of the Hardinge Bridge (FAP 24 1993). Overall, 
the Ganges appears to be in dynamic equilibrium in terms of its cross-sectional and 
planform geometric. However, this does not preclude aggradationldegradation, or 
progressive channel shifting (FAP 4 1993). 

The Brahmaputra is one of the world's largest braided river systems in terms of 
discharge, sediment transport, and channel processes (Coleman 1969; RPT et al. 
1989). The river originates in a large glacier mass in the Kailash range of the 
Himalayas, south of Laka Kanggu Tso, very close to Lake Manassarovar, at an ele- 
vation of 5,150 m. The area of the Brahmaputra basin is 0.58 million km2, distrib- 
uted over Tibet (China), India, Bhutan and Bangladesh. The mean annual runoff of 
the Brahmaputra at Bahadurabad is estimated to be 643x103 mcm (Mirza 1997). The 
highest observed water level occurred in 1988. The highest peak discharge estimated 
from the rating curve during the 1998 monsoon was 102,534 m3lsec. Annually, the 
Brahmaputra also carries a huge sediment load. The available estimates vary 
between 499-608 million tons (Coleman 1969; CBJET 1991). According to one esti- 
mate, the amount of sediment transported annually by the Brahmaputra River is 
actually 721 million tons, one of the highest in the world (Islam et al. 1999). 

No long-term trends in water levels could be detected in the Brahmaputra River. 
However, some discharges showed increasing water levels; while some others 
demonstrated decreasing levels instead (FAP 24 1993). Based on cross-section 
analysis, RPT et al. (1989) concluded that over the last few decades, the Brahma- 
putra was stable in both horizontal and vertical directions. Recently Barua (1994) 
also reported that the Brahmaputra was in a state of dynamic equilibrium. 
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The Data 

Computerised measured discharge and water level data for the Ganges at Hardinge 
Bridge and Brahmaputra at Bahadurabad (Fig. 1) were collected from the BWDB 
(BWDB 1995). At Hardinge Bridge, discharge is currently measured daily. Prior to 
1992, measurements were taken once a week during May to November at 
Bahadurabad and once in every fortnight during rest of the water year. In 
Bangladesh, a water year is defined from 1 April to 31 March. At these stations, 
water levels are recorded five times a day on a three hourly basis from 6 AM to 6 
PM (CBJET 1991; FAP 24 1993). Public Work Department (PWD) datum is used 
for water levels. Standard equipment, acceptable methods and specifications are 
reported to be used in discharge and water level measurements. However, changing 
bed forms, velocity measurements taken from non-anchored boats and inaccurate 
measurement of depths for current meters may cause as much as 20 per cent uncer- 
tainty in discharge and water level measurements (Sir William Halcrow and Partners 
Ltd. 1991; FAP 24 1993). 

For this study, measured stage and discharge data for the Ganges and Brahma- 
putra rivers were used. Stage-discharge curves were fitted for four years; 1966, 
1974, 1988 and 1992. These years were chosen for three reasons. First, they are dis- 
tributed over various decades; second, any progressive change over the years can be 
compared; and third, 1974 and 1988 represent two major flood years. 

Fig.1. The gauging stations for the Ganges River (at Hardinge Bridge) and Brahmaputra 
River (at Bahadurabad). 
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The Method 

In order to select the best stage-discharge relationship for the Ganges and Brahma- 
putra Rivers, the following relationships were examined. 

(i) Logarithmic relationship - (Herschy 1985; IS0  1982; Mosley and McKerchar 
1993) 
The general stage-discharge relation is expressed by the following equation. The 

relationship is correct from a hydraulic point of view if the velocity height is disre- 
garded. 

where 

Q = discharge 
C and N = constants; C retlects the scales being used for stage and discharge and 
N denotes the degree of curvature or slope of the estimated relationship 
h = stage or gauge height 
a = stage at zero flow 

For the analytical fitting, logarithmic transformation of Eq. (1) may be made to 

log& = log C + Nlog ( h+a) ( 2  

Eq. (2) is now in the form of a straight line ( y  = Nx + C). 

Herschy (1985) proposed various numerical methods for determining the value of 
a if it is not accurately determined from the field. They are: the trial and error proce- 
dure, graphical method, and using computer programme and arithmetic procedures. 
However, a suggestion was made to compare the calculated value by field investiga- 
tion. The value of a is positive if the curve (logh vs 1ggQ) is "concave down" and 
takes a negative sign if the curve is "concave up". 

The method of least squares may be applied in order to calculate the values of C 
and N. It involves minimising the sum of the squared deviations between the loga- 
rithms of the measured discharge and the estimated discharge from the fitted curve. 
The values of C and N can be determined from the following two equations 

where 

C (Y) is the sum of all the values of loge  
C (X) is the sum of all the values of log(h+a) 
C (X2)  is the sum of all the values of (X) 
C (XY) is the sum of all the values of the product of (X) and (Y) and n is the 

number of observations. 
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For this study, the value of a was chosen via the trial and error method. In order to 
determine the break points, h and Q were plotted on the ordinate and abscissa, 
respectively on a logarithmic scale as suggested by (IS0 1982) and Herschy (1 985). 

(ii) Semi-logarithmic Relationship - (Herschy 1985) 
The relation between stage and discharge is determined by plotting h linearly on the 
ordinate and loge  on the abscissa. The equation for Q can be determined by taking 
three coordinates (h2, Q2; h, Q; and h2, Q2) on a straight line. However, unlike the 
relationship in (i), the equation for Q can be determined by the least squares method 
which takes the form 

Particularly, it has one specific advantage over the logarithmic relationship. It iden- 
tifies break points more efficiently. The semi-logarithmic stage-discharge relation- 
ship is rarely used, but may have some advantages in exceptional cases (Herschy 
1985). 

(iii) Polynomial Relationship - (IS0 1988; Herschy 1985) 
The general polynomial equation for stage (h) and discharge (Q) is 

Replacing Q and h by Y and X, the least-squares procedure may be applied to a set of 
m+l simultaneous equations, commonly known as the 'normal equations'. 

Eqs. (7)-(9) can then be solved for the m+l unknowns b,,b, ,,.,., b,,; . The polynomial 
procedure may have some advantages in fitting stage-discharge relationships having 
break points or inflexions which cannot be treated satisfactorily by other methods 
(Herschy 1985). 

(iv) Quadratic Relationship (RPT et al. 1989) 
For the Brahmaputra River, RPT et al. (1989) proposed the following quadratic 

stage-discharge relationship. 

C and b are the two coefficients, which can be determined by applying the method of 
least squares. 
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Goodness-of-Fit and Selection of the Best Stage-Discharge 
Relationship 

Previously, two types of stage-discharge relationships (logarithmic and quadratic) 
were applied for the Ganges and Brahmaputra rivers. However, an examination of 
goodness-of-fit of these relationships was not well documented. Only in the case of 
the quadratic relationship for the Brahmaputra River, the RPT et al. (1989) did con- 
sider the coefficient of determination (R2) as a criterion of goodness-of-fit. R2 
should not be the only goodness-of-fit criterion used for selecting a regression 
model (Bowerman and O'Connell 1990). In addition to R2, constant variance, inde- 
pendence, normality of residuals and mean squared error (RMSE) are also good- 
ness-of-fit requirements of a linear or non-linear regression model (Cook and Weis- 
berg 1982; Maidment 1993; Gawne and Simonovic 1994). 

The assumption of the constant variance is that the residual plot should not 'fan 
out' or 'funnel in' with increases in the horizontal plot criterion (Bowerman and 
O'Conne11 1990). 

The independence criterion is that any one value of the error term is statistically 
independent of any of its other values. In other words, if the successive signs of the 
residuals are independent of each other, the sequence of the differences may be con- 
sidered as distributed according to a binomial law @ + q)n, where n is the number of 
observations, and p and q, the probabilities of occurrence of positive and negative 
values, are each (IS0 1982). 

For any regression model, residuals are expected to be normally distributed 
(Bowerman and O'Connell 1990). Normality of residuals can be tested in a simple 
way: by determining its third and fourth moments (Gawne and Simonovic 1994; 
Sefe 1996). Other alternative methods of examining normality of residuals include a 
normal probability plot and application of statistical test. In the normal probability 
plot, if the data come from a normal distribution, the standardised values of the 
residuals and observed residuals should fall onto a straight line. If the residuals are 
not normally distributed, then they will deviate from the line (Vogel 1986). The 
Shapiro-Wilk's W test is the preferred test of normality because of its good power 
properties compared to a wide range of alternative tests (Shapiro et al. 1968; Cook 
and Weisberg 1982). 

W is calculated by ordering the observations in the sequence x, S x, S,...S x,, , 
Then S2 and b are determined from the following relationship: 

where k = d2 if n is even, k = (n-l)/2 if n is odd and a,.i+l are found from a table. 
Thus a test of normality for small samples (31 n 550) is defined as: 
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If the calculated value of W is found to be less than the critical value at a certain 
level of significance, then the hypothesis of normality is rejected. 

The RMSE is a statistic based on the sum of squares of the residuals (SSE) and is 
given as: 

M E  = J ( s s E / ~ - k )  (15) 

where k =2 for a simple linear regression. For the polynomial relationship, the 
denominator in Eq. (15) is replaced by (n-m-I). 

SSE = 1 (QL&,) 
i=1 

A minimum value of RMSE is expected, as it represents the magnitude of error 
inherent in a model. 

For intrinsically non-linear models (polynomials), in addition to the above 
described goodness-of-fit criteria, Student's t-test with (n - rn - 1) degrees of 
freedom is suggested in order to determine whether the coefficients (for example, in 
Eq.(7)) differ significantly from zero (IS0 1988). 

Results and Discussion 

The observed stage-discharge points for the Ganges and Brahmaputra rivers were 
selected randomly and are plotted in Figs. 2 and 3. For the Ganges River, the 
selected observation numbers were 30 each for 1966, 1974 and 1988 and 26 for 
1992. Note that 1974 and 1988 were two severe flood years. The pattern of Q-h 
points of 1966 and 1974 are not different, except in the discharge range of 10,000- 
20,000 m3Isec. In this range, the h points for the year 1966 show slightly higher 
water levels than those for 1974, indicating some aggradation. On the other hand, in 
1988, the h points at high discharges (>30,000 m3Isec) show comparatively lower 
water levels, indicating a slight degradation. The pattern of h points for 1992 is quite 
different from the remaining three years. Degradation at low discharge values is 
highly pronounced and so are the break points. 

For the Brahmaputra River at Bahadurabad, the selected Q-h observation num- 
bers are 34, 39, 37 and 29 for the years 1966, 1974, 1988 and 1992, respectively. At 
low to medium discharge, 6 30,500 m3/sec, the pattern of water levels is found to be 
similar for the years 1966, 1988 and 1992. However, water levels for this range of 
discharge for 1974 are slightly higher, which indicates an occurrence of aggradation. 
The break points are different for all years considered for development of rating 
curves. For stage-discharge relationships (i), offset value a was chosen by trial and 
error until log (h-a) and loge  was linear, a9 much as possible. The selected offset 
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Fig.2. Measured stage-discharge points for the Ganges River. 
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Fig.3. Measured stage-discharge points for the Brahmaputra River. 

values were also used for the semi-logarithmic rating curves. Offset values were 
negative for all eight curves as they are "concave upward" (Fig. 2 and Fig. 3). 

Bangladesh Water Development Board (BWDB) and some other consultants pro- 
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duced and recommended logarithmic stage-discharge curves for the non-tidal rivers 
in Bangladesh. The rating curves were developed either by applying the least 
squares method via a grapical method (mentioned in the relevant section). Develop- 
ment of such rating curves through logarithmic transformation produces biased least 
square model estimators (intercept and slope) (McCuen et al. 1990; Ferguson 1986 
and 1987; Cohn et al. 1989). Uses of ordinary least squares in Eqs.(2) and (6) pro- 
duce unbiased estimates of loge  that have the minimum expected variation in the 
loge-space: Thus, the correlation coefficient reflects the accuracy of the unbiased 
estimates of loge. However, when the least square estimators are determined from 
the logarithmic transformation in Eqs. (1) and (3, they are not unbiased and do not 
have constant error variance in the coordinate-space. In Bangladesh, so far, biased 
least square estimators were used for estimating discharges from the rating curves. 

Bias in the least square estimators should be corrected in order to increase the pre- 
diction power of a rating model derived through transformation. Unless corrected, 
the mean error and mean square error, the two important goodness-of-fit indicators, 
will be biased. The sum of the unbiased residuals should be zero. This is defined as 

In case of the logarithmic and semi-logarithmic rating curves for the Ganges and 
Brahmaputra rivers, the sum of the residuals was not found to be zero. Instead, they 
showed positive values, which indicated the possibility of over-estimation. Correc- 
tion of bias is particularly important for the high flows of these two rivers. The pre- 
diction power of logarithmic and semi-logarithmic rating curves are relatively less 
precise in cases of the high flows. In most of the years, the segmented rating models 
underestimated the high flow value. They produced positive residuals. This may be 
the result of two causes. One, the least square estimators are biased; and two, there 
are some measurement errors inherent in the high flow values. The possibility of 
measurement errors cannot be overruled, but they are largely unknown. 

In this research, two suitable methods of correction were applied to Eqs. (1) and 
(5) in order to determine unbiased least squares estimators. These methods are 
briefly discussed below. 

The normal theory estimate of the biasing factor is exp(0.5sb2) where Sb = the 
standard error of estimate computed for the logarithmic transformed model Eqs.(2) 
and (6). Thus the unbiased intercept coefficient C, is given by 

However, when residuals are not normally distributed, the bias-correction factor of 
Eq. (1 3) is inappropriate. Duan (1983) gave a non-parametric correction, which was 
termed the smearing estimator (do) 
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In Eq.(l) and Eq.(5), C can be replaced by do whenever necessary. The corrected 
intercept values for the logarithmic and semi-logarithmic rating curves are shown in 
Table 1 and Table 2. Values were rounded up to two decimal places. However, for 
discharge estimation purposes, eight or more decimal places are recommended, 
especially for the intercept. 

The unbiased intercepts of the logarithmic and semi-logarithmic rating models 
have improved their prediction power, particularly, for the high flows. Here, results 
from the logarithmic rating models are discussed. For example, for the year 1974, 
the highest recorded peak discharge was 50,700 m3Isec. The estimated peak dis- 
charge from the logarithmic model was 49,410 m3/sec, with a residual of 1,290 
m3Isec. However, with the corrected intercept, the estimated value increased to 
49,430 m31sec. Therefore, the residual value decreased by 20 m3Isec. Similarly, for 
the Brahmaputra River, the highest measured and estimated (from the rating curve) 
discharges were 90,800 m3Isec and 89,3 13 m3/sec, respectively. The corrected inter- 
cept has reduced the residual value by 25%. Cohn et al. (1989) argued that the bias 
correction might lead to overestimation in some cases. However, development of a 
rating model (by logarithmic transformation) will lead to violation of the principles 
of regression model building without bias correction. 

Third order polynomials appear to be better fitted for the Brahmaputra River than 
those for the Ganges River (Fig. 4 and Fig. 6). For the Ganges River, the fitted poly- 
nomials underestimated the observations, particularly in the range of 5,000-25,000 
mVsec for most of the years. One important aspect is that for all years, the polyno- 
mials have better estimated the high flows > 35,000 m3Isec with the exception of 
1988. For the Brahmaputra River, the polynomials show a very good fit over the 
whole range of observations for all years. 

Unlike third order polynomials, the quadratic models appear to not fit very well 
for the Ganges River (Fig. 5). The quadratic models underestimated the low flows as 
well as the high flows for all years. However, they overestimated the medium flows 
(in the range of 10,000-25,000 m3Isec). On the other hand, overall, for the Brahma- 
putra River, the quadratic models fit the observations much better than the Ganges 
River (Fig. 7). Unlike the Ganges River, quadratic models underestimated low flows 
for the Brahmaputra River. 

For the Ganges River, the distribution of residuals for both logarithmic and semi- 
logarithimic rating curves shows similar patterns (scattered around the zero axis) for 
the years 1974, 1988 and 1992. However, for the semi-logarithimic rating curves, 
the distribution is "concave downward" for the year 1966 (Fig. 8). The residuals for 
these two types of rating curves are found overall to be homoscedastic. In other 
words, their variances are constant. 

The polynomial residuals show similar patterns for the years 1966, 1974 and 1988 
for the Ganges River. Up to 10-metre and approximately 10-12 metre of stages, the 
polynomials have a tendency to over- and under-estimate discharges. Residuals for 
high flows are found to be well scattered. For the quadratic rating curves, residuals 
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Model: Q66=aO+sl.h6&a2*hMA2+a33h6663 
y=(-Y38M.655)+(32407.Y66)*a+(-3hY4.501h)x2l.l51Y)*xA3 

Fig.4. Third order polynomials for the Ganges River. 
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Fig.5. Quadratic rating curves for the Brahmaputra River. 

333 



Monirul Qader Mirza 

Model: Q)12=aO+al*HY2+a2*HY2A2+~3*HY2A3 Mnlel: Q88=a01al*H88+sZ*H88A2+a3a3H88A3 
r ~ - I Y 8 8 2 1 4 . 7 ) + ( 3 M 2 7 8 . 4 7 ) * ~ + ( - 2 5 h 5 3 . h 8 5 3  y = ( ~ l 1 1 6 2 Y 4 ) + ( 2 1 8 7 5 2 . 8 ) * ~ + ( - 1 M 3 6 ~ 8 1 ) * ~ ~ 2 + ( 3 2 4 ~ ~ 3  

O 14 15 I6 17 18 I9 20 P3.5 14.5 15.5 16.5 17.5 18.5 19.5 20.5 
HY2 m (PWD) H88 m (PWDI 

Mnlel: Q'IO=aO+al*H74+a2*H74"2+a3*H74"3 Mnlel: Q6ka~al*Hlfrca2.H66A2+a3*H6663 
p(-1Y3~14.3)+(3761Y6.54)*rc(-24355.h3)*xA2+(S28,6l5Y3~*xA3 y = ( - 3 ~ ~ ~ 7 ~ . ~ ) + ( f i ~ d  56)*x+(4YY7.Y72)*xA2+(12Y.741 14)*x63 

, . . . . .  , . , . . .  

, . . . , . , .  

'13 14 15 16 17 18 19 20 21 13.5 14.5 15.5 16.5 17.5 , 1 8 . 5  19.5 20.5 

H74 m (PWD) Hh6 m (FWD) 

Fig.6. Third order polynomials for the Brahmaputra River. 
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Fig.7. Quadratic rating curves for the Ganges River. 
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Fig. 8 cont. Residuals of the (d) quadratic curves for the Ganges River. 

show a cyclic pattern, "concave downward" up to approximately 12-metre stages 
and then "concave upward" (Fig. 8). The patterns indicate that quadratic models 
have a tendency to generate cyclic patterns of residuals for the low flow to the high 
flow. Residuals were not found to be scattered on both sides of the zero axis for any 
segment of the rating curves. The distribution of residuals for the polynomials and 
quadratic rating curves cannot be said to be "homoscedastic". 

Student's t-test was applied in order to examine the independence of the residuals. 
For the segmented logarithmic, polynomial and quadratic rating curves, residuals 
were found to be independent for the years 1966, 1974, 1988 and 1992. However, 
for the semi-logarithmic rating curve, residuals demonstrated independence for all 
years but 1974. 

In order to examine the normality of the residuals, the Shapiro-Wilk test was con- 
ducted on the detransformed residuals, as this is more realistic. The residuals of the 
segmented logarithmic and semi-logarithmic rating curves were found to be normal 
for the years 1966 and 1992 for the Ganges River, two non-flood years. This indi- 

Table 3 = Shapiro-Wilk W for testing normality of residuals for various stage-discharge 
models for the Ganges River. 

Year Segmented Semi- Cubic Quadratic 
Logarithmic logarithmic Polynomial 

1966 0.936 0.975 0.940 0.907 
1974 0.846 0.749 0.772 0.877 
1988 0.909 0.932 0.946 0.925 
1992 0.942 0.966 0.95 1 0.847 

Note: Shaded values have exceeded the W,,. Value of a = 0.05. 
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cates that the magnitude of residual for each of the Q points and the overall pattern 
of distribution of residuals are similar for these two types of rating curves. Residuals 
were found to be normally distributed for the years 1966, 1988 and 1992 for the 
polynomials. For all four quadratic rating curves, residuals were found to be non- 
normal, likely due to their pattern of distribution. 

Note that normality of residuals may be highly influenced by outliers. As seen 
from Fig. 8, one high outlier is seen in the segmented logarithmic and semi-loga- 
rithmic rating curves for the years 1974 and 1988. Similarly, polynomial residuals 
for the year 1974 show a high outlier and this might have influenced its normality. 
The Q-h points related to the outliers were not removed due to inadequate physical 
evidence. 

For the Brahmaputra River, the pattern of distribution of residuals for the two 
flood years 1974 and 1988 were found to be similar for the segmented logarithmic 
and semi-logarithmic rating curves. Overall, for both types of rating curves, the 
residuals show hornoscedastic pattern (Fig. 9). 

As indicated above, the polynomial family gives a better fit to the Q-h points of 
the Brahmaputra River than those for the Ganges River. The physical explanations 
for this difference are likely be many, but most probably it is because they are two 
different types of river in geographically and geologically, unique basins. Moreover, 
the process, pattern and magnitude of morphological changes of these two rivers 
also differ significantly. 

Unlike the Ganges River, residuals of the third order polynomials have not cre- 
ated any cyclic pattern for the Brahmaputra River (Fig. 9). While for the years 1966, 
1988 and 1992, residuals are uniformly scattered, for 1974 with up to 17-metre 
stages, residuals show an upward "concave" pattern. Overall, the pattern of distribu- 
tion of residuals is "homoscedastic". 

For the quadratic rating curves, residuals created a distinguishable cyclic pattern 
(Fig. 9). However, this is not as prominent as for the Ganges River. The cyclic pat- 
tern of distribution of residuals clearly indicates that a quadratic rating curve is not 
suitable for the Brahmaputra River. While recommending it for the Brahmaputra 
River, RPT et al. (1989) did not investigate this phenomenon. The cyclic pattern was 

Table 4 - Shapiro-Wilk W for testing normality of residuals for various stage-discharge 
models for the Brahmaputra River. 

Year Segmented Semi- Cubic Quadratic 
Logarithmic logarithmic Polynomial 

-- - - -  

Note: Shaded values have exceeded the W,,. Value of a = 0.05 
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Residuals of the (a) segmented logarithmic, (b) semi-logarithmic, and (c) pol) 
curves for the Brahmaputra River. 
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Fig. 9 cont. Residuals of the (d) quadratic curves for the Brahmaputra River. 

removed by fitting third order polynomials. 
Results of Student's t-test show that the residuals of the four types of rating curves 

are independent for the years 1966, 1974, 1988 and 1992. 
The residuals of the segmented logarithmic and quadratic rating curves were 

found to be normally distributed for the years 1966, 1988 and 1992. Semi-loga- 
rithmic and third order polynomial residuals were normally distributed for only 
1988. However, for the other three years, polynomial residuals were found to be 
very close to the critical values of the Shapiro-Wilk test. For all types of rating 
curves, residuals of 1974 were found non-normal. This was probably caused by the 
presence of two high outliers (1 8,000 m3Isec). 

As discussed in the section on methods, four goodness-of-fit criteria were chosen 
in order to select the best rating curve for the Ganges and Brahmaputra rivers. These 
criteria are: R2, constant variance, independence, normality of residuals and RMSE. 
The properties of the four methods were ranked using a set of arbitrary points (Table 
5). Constant variance, independence and normality of residuals have been discussed 

Table 5 - Ranking criteria for the rating curves. 

Independence Residuals Normality RMS 
Variance 

Highest (4) Indepen- Heterosceda- Absolutely Highest (1) 
dent (1) stic (0) normal (3) 

Second highest (3) Non-indepen- Homosceda) Near Second highest (2) 
dent (0) stic (1 Normal (2) 

Third highest (2) Non-normal ( I )  Third highest (3) 
Lowest (1)  Lowest (4) 
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Table 6 - The R2 and FWSE for various stage-discharge models for the Ganges River. 

Year Segmented Semi- Cubic Quadratic 
Logarithmic logarithmic Polynomial 

R2(%) RMSE R2(%) RMSE R2(%) RMSE R2(%) RMSE 

1966 99.90 410.0 99.10 455.0 99.90 603.8 99.26 537.0 
1974 99.86 697.0 99.91 553.0 99.94 596.4 99.80 1149.0 
1988 99.76 1353.0 99.82 1193.0 99.76 1872.0 99.15 3414.2 
1992 99.70 907.0 99.74 1041.0 99.67 1274.0 98.55 2643.0 

Table 7 - The R2 and FWSE for various stage-discharge models for the Brahmaputra River. 

Year Segmented Semi- Cubic Quadratic 
Logarithmic logarithmic Polynomial 

R2 (%) RMSE R2(%) RMSE R2(%) RMSE R2 (%) RMSE 

1966 99.80 1220.6 99.83 936.6 99.91 948.5 99.85 1160.0 
1974 99.50 2938.6 99.00 2757.0 99.30 2666.0 98.33 4970.0 
1988 93.60 2656.7 98.90 2645.0 99.50 2563.0 99.00 3336.1 
1992 96.60 1068.2 99.80 943.0 99.74 980.2 99.27 2442.0 

above. The R2 and RMSE values are given in Tables 6 and 7. 
The total score was calculated as the sum of points for each method and each year. 

For the Ganges River, segmented logarithmic and semi-logarithmic rating curves 
scored the highest, 39 points. The polynomial and Quadratic rating curves scored 32 
and 13 points, respectively. For the Brahmaputra River, the third order polynomials 
scored the highest, 41 points and the semi-logarithmic curve the second highest at 35 
points. Quadratic and segmented logarithmic rating curves scored 30 and 29 points, 
respectively. Based on rankings, segmented logarithmic and semi-logarithmic rating 
curves were found to be suitable for the Ganges River and third order polynomials 
for the Brahmaputra River. 

Conclusion 

This study has a limited scope due to resource constraints. Despite these limitations, 
based on four years of data, the suitability of logarithmic, semi-logarithmic, polyno- 
mial and quadratic stage discharge relationships or rating curves were investigated 
for the Ganges and Brahmaputra rivers in Bangladesh. So far, in Bangladesh, biased 
least squares estimators have been used in order to inter- and extrapolate river dis- 
charges from the logarithmic rating curves. In this study, unbiased least squares esti- 
mators were determined which would fill the gap in knowledge. If applied, this will 
also increase the efficiency of logarithmic and semi-logarithmic rating curves in 
inter- and extrapolation. 
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Based on detailed analysis and goodness-of-fit criteria, segmented logarithmic 
and third order polynomial stage-discharge relalionships were found to be the best 
for the Ganges and Brahmaputra rivers, respectively. The physical cause(s) for fit- 
ting two different types of rating curves for the Ganges and Brahmaputra rivers are 
unknown and need to bc investigated. Year to year variation in river stage for any 

common threshold discharge was found to be negligible. This supports the previous 
finding that the Ganges and Brahmaputra rivers "are in dynamic equilibrium". 
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