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ABSTRACT 

Detection of forest degradation with remote sensing 
remains a challenge. Features of interest are of small 
spatial size and their spectral reflectance is quickly 
affected by vegetation regrowth. Tested initially using 
very high resolution data (QuickBird and WorldView) 
for two study sites in the Congo Basin, this paper 
presents the results of a semi-automated object-based 
method applied using 5-meter resolution RapidEye 
data for a third study site. In a next step, we applied the 
same method and compared the classification results 
based on degraded RapidEye imagery (to 10 and 20m) 
to evaluate the potential of lower resolution data (such 
as from the upcoming Sentinel-2) to detect forest 
degradation in the Congo Basin. 

1. INTRODUCTION 

Deforestation and forest degradation constitute the 
second largest anthropogenic source of carbon 
emission in the atmosphere [1]. To mitigate climate 
change, the United Nations Framework Convention on 
Climate Change (UNFCCC) has adopted a programme 
to Reduce Emissions from Deforestation and forest 
Degradation (REDD+) in developing countries. 
Implementation of the REDD+ programme should lead 
to compensations to participant countries if they can 
prove that adopted policies significantly reduce their 
carbon emissions as compared to reference levels. 
Therefore, the development of a robust, reliable and 
transparent forest monitoring system that allows for 
credible Measurement, Reporting and Verification 
(MRV) of REDD+ activities is a crucial element for 
countries to receive benefits from REDD+. A key 
component of an MRV system is the monitoring of 
changes in forest area. Remote sensing is an important 
component for the development of forest monitoring 
systems [2]. Through systematic acquisition of satellite 
imagery, remote sensing provides synoptic overviews 
that can identify changes in forest cover for larger 
areas, as compared to ground-based surveys.  

While deforestation can be assessed accurately with 
remote sensing data, detection and mapping of forest 

degradation is more challenging [3]. In this case, forest 
is not replaced by a different land cover, but a change 
occurs in forest land remaining forest land. Degraded 
forests are a complex mix of different land cover 
(vegetation, dead trees, soil, shade) where features of 
interest are of small spatial size, and vegetation 
regrowth quickly affects (within a year) their spectral 
reflectance [2].  

To date, there are no widely accepted and operational 
approaches for direct mapping of forest degradation 
with remote sensing data. In most studies, medium 
resolution sensors such as Landsat (30m spatial 
resolution) have been used for this purpose but many 
small-size degradation features (such as small-scale 
non-mechanized logging) cannot be detected at that 
spatial resolution. Higher-resolution imagery, such as 
acquired by RapidEye, QuickBird or WorldView, is 
required to directly map forest canopy damage of these 
types [2].  

Deforestation or forest degradation maps can be 
derived in two ways from optical high resolution data: 
through visual interpretation or by computer-based 
automated procedures. The former has the advantage of 
using human pattern recognition, which is often 
superior to automated methods in terms of accuracy 
[4]. Unfortunately, it is also tediously slow as 
compared to the processing speed of automated 
procedures that in addition provide more quantitative 
and repeatable information [5]. Semi-automated image 
classification methods are proposed to combine the 
advantages of both techniques. The most common 
automated techniques to derive thematic maps from 
remotely sensed imagery are either pixel-based or 
object-based. Based on a comparison of both using 
very high resolution (VHR) imagery, van de Voorde et 
al. [6] concluded that object-oriented methods are best 
suited to deal with the complex content of these 
images. The main drawback of pixel-based methods is 
the resulting “salt and pepper” effect whereas the 
object-based method combines the contextual 
information (i.e., information on surrounding pixels 
like texture) with spectral information to group similar 
contiguous pixels into objects [5]. 
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This research aims at developing a methodology to 
detect, map and quantify deforestation and forest 
degradation (e.g. forest canopy gaps, small clearings, 
logging roads) from optical high spatial resolution 
satellite imagery (<10m). The methodology was first 
developed for two study sites in the Congo Basin as 
part of the European Union-funded REDDiness project. 
We used multispectral VHR data of QuickBird and 
WorldView-2 (respectively 2.4m and 2m spatial 
resolution) for a 200-km2 site in the south of the 
Republic of Congo, and for a same-sized site in central 
Gabon, to detect forest degradation. In this paper we 
report on the application of the method to a third study 
site in the Democratic Republic of Congo in the 
framework of the EO4REDD project, financed by the 
Belgian Walloon region. Within EO4REDD, the same 
method was tested using RapidEye data (5m spatial 
resolution). In a next step, we degraded the spatial 
resolution of the RapidEye imagery (to 10 and 20m) to 
evaluate if options exist to monitor forest degradation 
in the Congo Basin with lower-resolution data (for 
example by the upcoming Sentinel-2). 

2. STUDY SITES AND DATA 

The EO4REDD study site is located 200 km north from 
Kinshasa in the province of Bandundu, at the western 
border of the Democratic Republic of Congo (DRC). It 
is located within the Maï Ndombe integrated REDD+ 
programme of DRC, which aims to progressively 
federate a range of initiatives into a coherent REDD+ 
programme at the district level [7]. The study site 
covers 15,000 km² with predominantly flat topography 
that is on average 340 m above sea level. The main 
causes of deforestation and forest degradation in the 
study area include the development of agricultural 
activities and the increase of demand for fuel wood and 
timber from urban population growth.  

We acquired a total of 60 RapidEye images with a 
cloud cover percentage inferior to 20%, i.e., one set of 
30 images for July-August 2011, and the other set for 
July-August 2012. Both datasets were acquired during 
the same period of the year to reduce possible changes 
between images that relate to seasonality. In parallel, 
one pair of QuickBird images (2.4 m spatial resolution) 
covering 324 km2 of the study area was ordered for the 
same period and acquired respectively on 6 September 
2011 and 9 January 2013. All acquired images were 
delivered as orthorectified products by the image 
providers. This paper focusses on a small-set, covering 
one RapidEye scene. 

Three preprocessing steps were applied to the imagery 
to allow for an effective comparison. First, all 
QuickBird and RapidEye images were co-registered to 
avoid false change detection. Second, each image was 
radiometrically corrected to obtain top-of-atmosphere 
(TOA) reflectance using the calibration parameters of 

RapidEye and QuickBird.  Finally, clouds, haze and 
shadow areas were systematically removed using 
multi-threshold object-based segmentation techniques 
based on the blue band (for cloud/haze detection) and 
the combination of red-edge and red bands (for shadow 
detection).  

Besides the most widely-used normalized difference 
vegetation index (NDVI), the Soil Atmospherically 
Resistant Vegetation Index (SARVI) was calculated 
and successfully used to identify burned areas. This 
index further minimizes the atmospheric effects on the 
NDVI index by engaging the red and blue channels 
instead of the red one only [8]. 

3. METHODOLOGY 

The methodology comprises multi-threshold object-
based segmentation techniques where the thresholds set 
for assigning a class can be adjusted by an operator to 
combine advantages of automated object-based 
methods and visual interpretation. This combination of 
visual and automated methods ascertains high 
classification accuracy, one of the key requirements of 
REDD+-MRV systems. The method includes four 
steps: (1) construction of a forest mask, (2) detection of 
deforested areas, (3) multi-date segmentation, and (4) 
detection of degraded areas. The methodology was 
applied to RapidEye images from 2011 and 2012, 
hereafter referred to as t0 and t1. Following slight 
adaptations to thresholds used, the same methodology 
was applied on the same RapidEye images with a 
degraded resolution of 10 and 20 m.  

3.1.  Forest mask 

A forest mask was made to exclude irrelevant land 
cover classes and focus the analysis only on forest 
changes [9]. The use of a mask optimizes the 
processing time needed in subsequent steps. It also 
enables the definition of better tailored segmentation 
rules, which do not need to take into account the 
complete image heterogeneity, given that the area 
within the forest mask is far more homogeneous. 

The forest mask was realized for the reference image, 
namely image t0, because we assumed that no forest 
regeneration occurred between both image 
acquisitions. Forest was separated from non-forest 
classes using a multi-threshold segmentation algorithm. 
The algorithm takes as input two user-defined 
parameters, i.e., spectral threshold values and 
minimum object size. The mask creation was 
performed by consecutive threshold segmentations 
using different spectral parameters (SARVI, and the 
green, red edge, and red image bands) to improve the 
forest mask step by step. The minimum object size was 
set at 200 pixels to ascertain that the minimum 
mapping unit (MMU) matches the adopted threshold of 
forest definition (0.5ha) [10]. 



Three classes resulted from this first segmentation 
process: no data, forest and non-forest. No data 
encompasses clouds, haze and cloud shadows. Forest 
corresponds to forested areas with a closed canopy. 
Non-forest includes large clearings and logging roads, 
roads, built-up areas, agricultural fields, savannah, 
fallow and water bodies.  

3.2.  Forest change detection 

Multi-temporal analysis was carried out to (i) enhance 
areas where changes occurred and (ii) estimate 
different levels of forest degradation within multi-date 
objects.  

Areas that were deforested between 2011 and 2012 
were delineated within the forest mask of t0 using the 
same multi-threshold segmentation function on image 
t1. The minimum object size was again set at 200 
pixels to match with the threshold of forest definition.  

Subsequently, degradation features (<0.5 ha) were 
detected in the area that was forest in t0 and in t1, i.e., 
in the forest that remained forest. These consisted of 
logging roads and small clearings. The aim of this step 
was to create a forest degradation map that estimates 
the level of forest degradation between both dates. The 
approach is based on multi-date segmentation that uses 
the image information of multi-date images over the 
same location to create multi-date objects. Such objects 
group pixels that are spatially, spectrally and 
temporally similar [5]. Three parameters need to be 
defined: scale, colour and shape. The scale parameter 
determines the size of image objects. If the scale value 
is high, the variability allowed within each object is 
high and image objects are relatively large. Conversely, 
small scale values restrain the variability within each 
segment, creating relatively smaller objects. The 
criteria used for colour or shape affect the resulting 
image object by determining the spectral or spatial 
homogeneity. Within the shape criterion, the user can 
also alter the compactness of the object and the 
smoothness of the objects boundaries.  

First, we performed a multi-date segmentation from t0 
and t1 images to create large multi-date objects, using 
colour, scale and shape parameters. This first object 
level (level-1) will be used for the subsequent change 
detection. The second segmentation level (level-2) 

creates small objects within the large level-1 objects 
using a multi-threshold segmentation technique. This 
segmentation was applied separately on each image 
(image t0 and t1) using the output of level-1 objects to 
constrain the detection of small patches of forest 
degradation (canopy gaps and small clearings). The 
detection of small forest gaps was performed based on 
the red edge (detection of low vegetation) and near-
infrared bands (detection of bare soil). The applied 
minimum area of created objects was set to 6 pixels 
(0.015 ha). Finally, five levels (0-5%; 5-20%; 20-50%; 
50-70%; 70-100%) of forest degradation are defined 
for each level-1 object according to the difference of 
relative area of level-2 objects per level-1 objects 
between t0 and t1.     

3.3.  Accuracy assessment 

Depending on the availability, different data sources 
may be used to assess the thematic accuracy of the 
produced maps. While field observations coinciding 
with the image dates are preferred, also VHR imagery, 
such as from aerial photograph or possibly Google 
Earth, could be used. For this case study, we could not 
obtain sufficient independent reference data through 
well-timed field campaigns. Moreover, the acquired 
pair of VHR QuickBird imagery, which was intended 
for this purpose, could not be used effectively because 
their acquisition time was delayed compared to 
RapidEye. QuickBird imagery was acquired on 6 
September 2011 and 9 January 2013, whereas 
RapidEye imagery over the same location was acquired 
on 20 July 2011 and 25 August 2012. Even within the 
relatively short 1.5 months interval between 20 July 
and 6 September 2011, many changes could be 
observed (Fig. 1).  For that reason we decided to use 
the RapidEye imagery both for classification and 
accuracy assessment. 

The thematic accuracy of the forest maps was assessed 
via a stratified random sampling strategy. The amount 
of validation points in each land cover class (forest, 
non-forest, deforested and degraded areas) was selected 
based on the area covered by the class. For each land 
cover classification, an error matrix was computed in 
which three accuracy indices were derived: the overall 
accuracy and, the omission and commission error.   

 



Figure 1: Land cover changes between QuickBird and RapidEye data acquired at 1.5 months interval. Arrows show 
some change locations. 

 

4. RESULTS 

4.1. Degradation map 

Areas that were deforested or degraded between 2011 
and 2012 were identified for one pair of RapidEye 
images. The generalized change map simplified at 
coarser scale (level-1 multi-date large objects) with 
five levels of forest degradation is shown in Fig. 2. 
Deforested areas, which correspond to a degradation 
level of 100%, are represented with forest degradation 
level 5 classes (70-100%). The object detection of 
deforested and degraded areas (small forest gaps, 
logging roads) is presented in Fig. 3 over an image 
subset.  

From a forest extent of 34,233 ha on the RapidEye 
image of 2011, about 388 ha were deforested and 267 
ha were degraded in August 2012. 

 

Figure 2:  Generalized forest degradation map over a 
subset of the study area 

 

 

 

 



 

Figure 3: RapidEye image subset: A) overlaid by the detected deforested and degraded areas in August 25, 2012, B) 
from July 20, 2011 and C) from August 25, 2012

4.2. Results comparison using different resolution 
data 

For a better understanding of the potential of current 
and future optical high resolution data to detect forest 
degradation in the Congo Basin, the exact same steps 
of the methodology were applied to RapidEye data 
degraded to 10 and 20 m resolution. Given the 
modification of the image parameters, the threshold for 
spectral and minimum object size (number of pixels) of 
the multi-threshold segmentations were adapted to 
enhance the detection of forested, deforested and 
degraded areas. In order to better match with the 
minimum mapping unit of the classification based on 
the RapidEye image at 5m (0.015 ha), the minimum 
object size for the detection of degraded areas based on 
RapidEye at 10 and 20m was set to 2 pixels (0.02 ha) 
and 1 pixel (0.04 ha), respectively. Fig. 4 shows a 
comparison of the differences in the detection of 
deforested and degraded areas based on spatial 
resolution.  

When comparing the results of the three classifications, 
it appeared that the extent of deforested areas was 
increasingly overestimated when coarsening the image, 
i.e., 388 ha for 5m, 425 ha for 10m, and 407 ha for 
20m resolution. This situation was reversed for 

degraded areas, i.e., 267 ha for 5m, 209 ha for 10m, 
and 173 ha for 20m resolution.  

Tab. 1 shows the accuracy assessment results of the 
deforestation and forest degradation mapping method 
based on RapidEye data at 5, 10 and 20 m. Results are 
presented for the two steps of the methodology, namely 
the forest mask (forest/non-forest classification) and 
the change detection. The semi-automated forest mask 
and the change detection classifications based on data 
at 5 m achieved an overall accuracy of 99.2% and 
91.5% respectively. Errors were due to omissions (0.7 
and 5.7%) but mainly to commission errors (1.1 and 
12.5%). The overall accuracy of both classifications 
decreased when using data at lower resolution, while 
omission and commission errors were increased. Given 
that the minimum mapping unit increased with the use 
of data at lower resolution, a higher percentage of 
omission errors was expected. Nevertheless, even when 
applied to degraded RapidEye data, the method showed 
high accuracy (>88%) and good detection of forest 
degradation.   

 

 

 

 



 

Figure 4: Detected deforested and degraded areas between 20 July 2011 and in 25 August 2012 based on RapidEye data 
A) at 5 m B) degraded at 10 m and C) degraded at 20 m resolution. 

Table 1. Accuracy assessment results (n=118) for the two steps of the deforestation and forest degradation mapping 
method, namely the forest/non-forest (F/NF) when using RapidEye data at 5, 10 and 20 m 

  
F/NF classif.    

(5 m) 

Change 
detection  

(5 m) 

F/NF classif.      
(10 m) 

Change 
detection  
(10 m) 

F/NF classif.    
(20 m) 

Change 
detection  
(20 m) 

Overall accuracy (%) 99.2 91.5 95.8 89.7 94.1 88.9 

Omissions (%) 0.7 5.7 8.7 10.2 13.3 11.8 

Commissions (%) 1.1 12.5 9.5 13.5 12.4 14.5 

5. DISCUSSION AND CONCLUSIONS 

The object-based change detection method proposed in 
this study proved to be an efficient and accurate 
approach to detect, map and quantify deforestation and 
forest degradation over fragmented landscapes in the 
Congo Basin. The object-based method combines the 
advantage of the contextual analysis of visual 
interpretation with the quantitative spectral 
information, and as such is an important asset when 
classifying the complex mix of different land cover in 
degraded areas.. The operator can proceed step by step 
through the classification process and adjust the 
thresholds set for assigning a class in order to enhance 
the classification accuracy. Moreover, the method 
proved to be replicable since it was successfully 
applied to different study areas with various sensors 
and image resolutions. However, extension of this 
promising method to the whole study area (15,000 
square kilometers) still provides challenges. Given that 
the semi-automated method is based on the use of 
optical sensors, thresholds set for assigning classes 
often need to be adjusted to reduce misclassifications 
resulting from radiometric distortions and atmospheric 

effects that are different among scenes. Moreover, 
when forest types, or drivers of forest degradation 
change, degradation features may become less 
discernible from the imagery [3]. 

The method proposes two levels of analysis to evaluate 
forest degradation. Level-1 multi-date objects 
aggregate information about small degradation features 
over larger area to highlight five levels of forest 
degradation, whereas smaller level-2 objects show the 
extent and the exact location of these small features. 
The forest degradation map gives an overview at 
coarser scale of the location and the intensity of 
degraded areas in the study area. This provides useful 
information for understanding the phenomenon and 
drivers of forest degradation. Within the study area, 
most of degraded areas are located near human 
settlements and along the reopened road. Drivers of 
forest degradation are mainly related to shifting 
cultivation and logging activities.  

Despite the overall success in the exercise reported on 
here, limitations remain for monitoring forest 
degradation features by optical remote sensing. 



Vegetation regrowth rapidly reduces the detection of 
small features related to degradation, as we could 
observe from imagery separated by only 6 weeks (Fig. 
1). Therefore, good-quality cloud-free remote sensing 
imagery needs to be acquired at frequent intervals (at 
least once per year). This limits the use of optical data 
especially in cloudy regions such as the study area. For 
instance, archives of VHR data are very limited and 
new image acquisition with limited cloud cover is often 
delayed. Moreover, the added high cost and small 
ground swath of this type of data hinder its use to 
monitor large areas. However, the results of this study 
show that data from high resolution sensors (<20 m) 
have potential for detecting forest degradation with 
good accuracy (>88%). This type of data which has 
higher ground swath, higher revisiting frequency 
capabilities, and lower cost seems to be best suited for 
monitoring forest degradation over large areas. In this 
study, RapidEye showed efficient acquisition 
capabilities of good-quality data. Two datasets of wall-
to-wall image mosaic at 5 m resolution were acquired 
at one year interval (July 2011 and August 2012) with 
limited cloud cover for the study area spanning 15,000 
square kilometers in DRC. Moreover, the presence of a 
red edge band sensitive to chlorophyll status and 
canopy structure improved the detection between low 
vegetation and forest. The near future launch of 
Sentinel-2, which combines a large swath (290 km), 
frequent revisit, and systematic acquisition of all land 
surfaces at high-spatial resolution with a large number 
of spectral bands (including the red edge) [11],  is very 
promising for future monitoring of forest degradation. 
Moreover, Sentinel-2 is promised to have an open data 
policy, which would greatly enhance the future setting 
up of cost-effective operational services for 
degradation monitoring. 
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