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ABSTRACT 

Tropical coverage by Envisat is sparse in space and time 
and has limited value for monitoring deforestation. The 
only available APG multi-temporal dataset over Riau 
province, Indonesia (9 images in a single year), is used 
to distinguish and monitor tropical plantations and their 
dynamics and is compared with L-band PALSAR data. 
For Envisat APG data, both VV and VH are important 
in discriminating different types of forest cover, while at 
L-band most of the relevant information is in the cross-
polarised channel. Whether the underlying soil is peat or 
non-peat in acacia plantations has important effects on 
backscatter and classification. Supervised classification 
of the C-band data gave overall accuracies of 86.2% and 
kappa coefficient of 0.78 by comparison with land cover 
maps derived from optical data. Classifications from 
separate phases in the C-band time series allow the 
changes occurring in acacia plantations due to 
management to be tracked.  
 
1. INTRODUCTION 

During the first decade of the 21st century, deforestation 
rates in tropical countries are reported to have declined 
significantly relative to the 1990s [1], but tropical 
deforestation still has a significant impact on the 
planetary carbon balance, leading not only to loss of the 
ability to take up carbon but also additional carbon 
emissions from biomass burning or decay arising from 
the clearing process. The deforestation process ranges 
from large-scale felling in order to establish plantations, 
agriculture and pasture, to small-scale clearance for 
shifting agriculture [2]. These conversions can bring 
major commercial profits for companies and job 
opportunities for local people. 
In Indonesia, Riau Province had the highest 
deforestation rate at an annual average of up to 4.8% 
from 1985 to 2008 and may have contributed to around 
60% to Sumatra’s total emissions from natural forest 
loss [3]. Most of the cleared land is being replaced by 
rapidly expanding commercial oil palm and acacia 
plantations: Riau is the largest producer of palm oil in 
Indonesia, with up to 24% of the total national 
production [4], and also possesses high capacity pulp 
industry mills, which generate more than two thirds of 
Indonesia’s pulp and paper production [5]. Increasingly, 
these plantations are being located on peatland, which 
stores large amounts of carbon. This causes sustained 

greenhouse gas emissions that arise not only during 
forest clearance but from continual soil oxidation during 
the plantation rotation cycle, especially for short 
rotation acacia plantations [6]. Hence, although good 
management of established plantations or other land use 
areas can reduce the pressure to clear natural forest, 
peatlands will still yield significant carbon emissions. 
Systematic monitoring of tropical plantations will help 
to estimate and manage their magnitude. 
Remote sensing of forest changes using optical, short-
wave or near-infrared reflectance and thermal spectra is 
now well established [7, 8]. However, there are large 
gaps in Indonesian data due to cloud cover and haze, 
which affect the production of annual land cover maps, 
although large area maps of forest cover loss over a 
multi-year interval are feasible by combining cloud-free 
Landsat 7 time series [9]. The higher observation 
frequency of MODIS provides more frequent cloud-free 
imagery [10], but these data are inadequate for 
accurately estimating deforestation since much 
deforestation occurs at sub-pixel scale at the coarser 
spatial resolution of MODIS [11-13]. 
Synthetic Aperture Radar (SAR) is an alternative 
technology for monitoring tropical forest, with the 
major advantage that it can provide images under all 
weather conditions, whenever there is a satellite pass. 
Furthermore, radar is more sensitive to ground 
conditions and vegetation structure, and more physically 
related to the biomass than other remote sensing 
methods [14, 15]. However, the use of radar for this 
purpose has been hampered by the lack of access to data 
and the immaturity of methods. The five-year archive of 
systematic global forest coverage by the ALOS-
PALSAR radar until its failure in April 2011 has 
allowed methods to be developed for L-band data [16], 
but these have not yet been extensively tested. C-band is 
much less developed, not least because ENVISAT 
ASAR has sparse and patchy spatial and temporal 
coverage over tropical areas. However, this situation 
will change dramatically in late 2013 when the launch 
of the first C-band Sentinel-1 satellite will guarantee 
open access data with a revisit time of 12 days at the 
equator and systematic global coverage [17]. The JAXA 
L-band ALOS-2 mission is also expected to be launched 
around the same time, and to continue the policy of 
global forest data acquisition established for ALOS-1, 
although there are concerns that JAXA’s pricing policy 
may hinder use of these data as part of a global tropical 
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forest monitoring system. Nonetheless, the availability 
of simultaneous L- and C-band data opens up exciting 
new prospects for tropical forest monitoring and 
management. 
Our original plan was to analyse joint use of C- and L-
band data to monitor tropical deforestation, but the 
limited available Envisat datasets for Riau did not 
contain such events. Instead, this paper explores the use 
of C- and L-band SAR data to monitor tropical 
plantations and their dynamics. After describing the 
ground and satellite datasets, the behaviour of radar 
backscatter from tropical forest and plantations is 
investigated for both C- and L-band data. Supervised 
classification is then performed to produce thematic 
maps, which are tested by comparison with land cover 
maps derived from optical data. Finally, the 
classification results from separate phases in the C-band 
time series are used to track the changes occurring in 
acacia plantations due to management. 
 
2. STUDY SITES AND DATA 

The study site lies in Riau province, Sumatra, Indonesia, 
which has extensive natural forest cover but with much 
clearance for commercial acacia and oil palm 
plantations. Most of the deforestation is traceable in L-
band data. However, as for most of the tropics, coverage 
by ASAR is limited and dual polarisation data are 
available only from late 2010 to late 2011. During this 
period, though ASAR provides coverage of ~100x100 
km2, little deforestation occurred in the area due to 
limited issues of clearance licences and pressures from 
the social community. Few changes were also seen in 
the oil palm plantations, as the oil production process 
does not involve much clearance or replanting. In 
contrast, acacia is harvested every 4-6 years to provide 
wood pulp, followed by replanting to begin the next 
rotation cycle. Hence acacia plantations exhibit regular 
periodic changes, with stand ages covering the range 
from planting to harvest, and then back to planting. 
Both harvest and regrowth of acacia occurred in the 
study period, and is traceable in the SAR data. 
Fig. 1 shows the locations of the study site and the 
available radar data. On the left, the background image 
is derived from an ALOS PALSAR Orthorectified 
Mosaic Product, which is a 50m reference dataset 
created under the ALOS Kyoto and Carbon Initiative 
(K&C) from ALOS PALSAR fine beam dual 
polarisation (FBD) acquisitions in 2009 [18]. The 
mosaic product is geometrically rectified using a SRTM 
90m Digital Elevation Model and projected into the 
WGS-1984 coordinate system. 
The red rectangle indicates the coverage by ASAR 
Alternative Polarization Geocoded Ellipsoid Corrected 
(APG) data. These consist of nine VV- and VH-
polarized image pairs with spatial resolution of around 
30m in range and 30m in azimuth and 12.5m pixel 
spacing acquired from track 377 over the period 

November 2010 to October 2011. These multi-look 
products have an equivalent number of looks (ENL) 
greater than 1.8 and have been relatively calibrated, 
geocoded and resampled to a map projection [19]. There 
is little temporal overlap between the K&C mosaics and 
the C-band data, since ALOS failed in April 2011.  
The reference map shown on the right top of Fig. 1 was 
produced for the World Wildlife Fund (WWF) using 
Landsat images. It is mainly based on the December 
2011 image from row 126 and path 60, although images 
from different dates were used to mitigate cloud and 
haze. Three types of tree cover are identified (oil palm 
and acacia plantations and natural forest), while other 
types of land cover, including cleared area, are marked 
as unclassified. Note that in our analysis cleared areas 
are identified by comparing the Landsat-7 image and the 
SAR images (as shown in Fig. 3) visually. In the 
Landsat image, exposed soil appears purple and is easily 
discriminated from water bodies and vegetation. The 
corresponding regions can be used to select training 
areas in SAR images. Fig. 1 (bottom right) shows the 
spatial distribution of peat soils within the ASAR scene 
according to WWF datasets. Acacia and oil palm 
plantations occur on both peat and non-peat soils, but 
natural forest and cleared areas only on peat soils. Three 
regions of interest, A, B and C, are marked and are 
inspected in the backscatter analysis: A is natural forest 
on a peat dome, while B and C are both acacia 
plantations but in different growing phases. 
 

 
Figure 1 Left: Geographical locations and SAR datasets 

from ESA Envisat ASAR (© European Space Agency) 

and JAXA ALOS PALSAR KC 50m mosaics (© JAXA, 

METI). The background image is derived as an RGB 

composite from the ALOS mosaic for 2009, with red, 

green and blue corresponding to HH, HV and HH/HV 

respectively. Top right: Land cover types in the ASAR 

APG scene derived from WWF map; green: natural 

forest; red: acacia; blue: oil palm; black: unclassified. 

Bottom right: distribution of peat soil in the ASAR scene; 

red: peat; cyan: non-peat.  

Land cover types derived 
from WWF map 

ASAR APG 

Riau Province 

A 
B 
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The acquisition dates of the satellite datasets are shown 
in Fig. 2. In order to measure changes, the nine C-band 
images are divided into three subsets, viz.: 1) November 
& December 2010 and January 2011; 2) March, April & 
May 2011; 3) June, July & October 2011, which we will 
refer to as winter, spring and summer respectively, 
despite the lack of any strong seasonality at these 
latitudes. The acquisition dates of the images in the third 
subset are closest to the date of the Landsat image on 
which the WWF land cover map is mainly based, so this 
subset is used for accuracy assessment. The earlier 
subsets are used to monitor plantation dynamics. 
 

 
Figure 2 Acquisition dates of ASAR APG (circles), 

ALOS PALSAR 50m mosaic (triangle) and Landsat 7 

(square) datasets. 

 
3. METHOD 

3.1. SAR Image Processing 

Absolute calibration and registration of the ASAR APG 
time series was performed using GAMMA software, 
and the images were speckle-reduced in a two-stage 
approach involving multi-channel filtering [20] 
followed by mean filtering with 23×23 window size 
[16]. 
PALSAR mosaic tiles were downloaded from JAXA’s 
website [21] and mosaiced by georeferencing in 
IDL/ENVI to obtain full coverage of Sumatra. The 
mosaics were then masked by the footprint of the ASAR 
scene and the amplitude DN values were converted to 
radar backscattering coefficient ( 0

 ) in dB using the 
relation [22]: 

0 2
10=10 log DN CF                            (1) 

where CF is a calibration constant equal to -83 dB. 
 

3.2. Supervised Classification and Verification 

The filtering process ideally causes the pixel values in a 
uniform distributed target to obey a Gamma distribution 
[23] with a large ENL, which is therefore approximately 
Gaussian and suitable as input to a maximum likelihood 
(ML) classifier. Training data for each land cover 
category were selected on the basis of the WWF maps 
and used to drive ML classification on each APG subset, 
leading to three thematic maps. The accuracy of the 
classifications was assessed in terms of overall accuracy 
and kappa coefficient derived from the confusion matrix, 
treating the WWF map as reference data. 
 
4. RESULTS 

4.1. Backscatter Analysis 

Landsat 7, ASAR C-band and PALSAR L-band images 

of the study area are given in Fig. 3 as colour 
composites. The ASAR image is from October 2011, 
with red and green corresponding to the VV and VH 
channels respectively and blue to the VV/VH ratio. The 
RGB composite for the 2009 PALSAR L-band mosaic 
shows the HH and HV channels in red and green and 
the HH/HV ratio in blue (note: for convenience, below 
we use “channel” to include the ratio data). The Landsat 
image was acquired in December 2011 and its RGB 
composition channels are bands 50, 40 and 30. The 
panel on the right is an enlargement of region B in the 
APG and PALSAR data displaying more details of an 
acacia plantation. Much more structure is visible at L-
band than at C-band (notably linear features associated 
with tree spacing) because of the greater penetration and 
sensitivity to the vegetation structure at L-band. This 
may aid visual interpretation but is likely to yield errors 
in automatic classification. 
 

 
Figure 3 RGB composites of the study area. (a) 

Landsat-7 from December 2011: RGB correspond to 

bands 50, 40 and 30 respectively; (b) ASAR APG from 

October 2011: RGB correspond to VV, VH and VV/VH 

respectively; (c) PALSAR 50m mosaic, data acquired in 

2009: RGB correspond to HH, HV and HH/HV 

respectively. The right panels show enlargements of 

region B of ASAR APG (top) and PALSAR 50m mosaic 

(bottom) separately. 

 
The colours in Fig. 3 indicate the different scattering 
behaviours of various land cover types, and, by 
comparison with Fig. 1 (right), suggest the potential for 
separating natural forest, acacia and oil palm plantations. 
As already mentioned, acacia and oil palm plantations 
occur on both peat and non-peat soils. While oil palm 
exhibits similar backscatter on both types of soil, there 
are big differences for acacia as illustrated by the 
histograms of the ASAR and PALSAR co-polarised, 
cross-polarised and polarisation ratio values for natural 
forest, acacia on peat and non-peat soils, oil palm and 
cleared areas shown in Fig. 4 (these histograms use all 
available pixels within each land cover). Hence, 
classification and accuracy assessment is performed on 
peat and non-peat soils separately. 
For ASAR, natural forest has the greatest backscatter in 
both the VH and VV channels, particularly VH. Acacia 
plantations on peat and non-peat soils have similar VH 
behaviour, but are quite different in VV, with 
plantations on peat soils giving the lowest VV 
backscatter amongst all classes. Oil palm gives the 
second largest backscatter in VV, but, along with 

Enlargement (a) (b) (c) 

A A A B B 
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cleared areas, the lowest VH backscatter. By contrast, 
the VV backscatter from cleared areas is greater than 
from acacia plantations on peat soils and comparable to 
that from acacia on non-peat. 
 

 
Figure 4 (a) Histograms of values using all available 

pixels for (top) ASAR VV, VH and VV/VH; (bottom) 

PALSAR HH, HV and HH/HV for five classes: natural 

forest (black), acacia on peat (red), acacia on non-peat 

(green); oil palm (blue) and cleared area (purple). (b) 

2D distribution of random samples of the five classes 

with pixels lying within the 5% cut-off of the histogram 

tails in both co- and cross-polarised channels. 

 
The L-band HH channel exhibits much less 
discrimination between different land covers than the C-
band co-polarised channel, and HV is much more 
important for separating the classes, with clear 
backscatter differences between natural forest, acacia 
plantations on peat, oil palm and cleared areas. However, 
there are large overlaps between the distribution for 
acacia plantations on non-peat soils and those of all 
other cover types except cleared areas. Cleared areas 
have the lowest backscatter in both the HH and HV 
channels. In the HV channel, natural forest has the 
highest backscatter but a bimodal distribution, in which 
the lower peak corresponds to a peat dome where the 
backscatter is lower than for the surrounding natural 
forest and is comparable to the values for acacia 
plantations on peat soils. This hinders the separation of 
natural forest from other land covers, such as acacia 
plantations, if only L-band is used. The histograms for 
acacia plantations have long tails because they are in 
various growth phases, as can be seen in regions B and 
C in Fig. 3, unlike for ASAR. Hence ALOS PALSAR 
mosaics can provide more information on vegetation 
status but this complicates automatic classification of 
natural forest and plantations. 
Significant overlaps between classes, as seen in the 
individual channels, also occur in their 2-D distributions 
(Fig. 4(b), which shows the histogram of cross-polarised 
against co-polarised data for both C- and L-band), 
which will induce classification errors. 
While some of the observed behaviour would be 

expected physically, such as the large cross-polarised 
values due to volume scattering from natural forest, 
other aspects of the data, such as the very low values of 
VV backscatter for acacia on peat soils, cannot as yet be 
readily explained. 
 

4.2. Classification 

The above backscatter analysis provides information on 
factors affecting classification using the C- and L-band 
data. For example, knowing the spatial distribution of 
peat and non-peat soils is clearly essential. Also, all 
three channels have discriminating capability at C-band, 
while for L-band the HH channel contributes little 
except through its partial separation of cleared areas. 
What is unclear is whether there is any gain in using all 
three channels, or whether the ratio data are redundant if 
the co- and cross-polarised channels are used (clearly, 
no extra information is supplied by including the ratio, 
but it may prove more effective within a given 
classification algorithm).  
Classification was performed on four separate sets of 
data: the PALSAR mosaic and the three subsets of 
ASAR APGs. The PALSAR set consists of the HH, HV 
and HH/HV ALOS PALSAR images derived from the 
K&C mosaics for 2009. For ASAR APG, each set 
contains the VV, VH and VV/VH images for three 
months (the winter, spring and summer subsets for 
2010-2011 described in Section 2), so there are 9 
images in each set. Water bodies are masked out 
because they become blurred in the filtering steps and 
induce misclassifications. The ASAR APGs are pre-
processed by a multi-channel filtering followed by 
spatial averaging over a 23×23 pixel window [16]. The 
PALSAR mosaics are used directly because they are 
already speckle-reduced by JAXA. The training data is 
selected using the WWF maps and identification of 
cleared areas is refined using the Landsat image.  
ML is applied to each APG data subset, and to remove 
isolated small regions, for both PALSAR mosaic and 
ASAR APGs, regions smaller than 9 pixels are 
reclassified to the class of the surrounding area. Since 
the acquisition dates of the images in the winter 2011 
ASAR APG subset are closest to the date of the Landsat 
image of most importance in producing the WWF map, 
this subset is used to assess classification accuracy.  
The analysis in Section 4.1 suggested that some classes 
were better discriminated using the VV/VH ratio than in 
either VV or VH. Hence classification was carried out 
using four different combinations of the polarized 
channels: VV and VH, VV and VV/VH, VH and 
VV/VH, and all three channels. On peat soils, although 
the VH and VV/VH pair gives marginally better 
accuracy than the other combinations in terms of   
overall accuracy and kappa coefficient (see Tab. 1), the 
improvement is marginal, so we base the results below 
on the combination of VV and VH, as this is 
computationally more efficient. 

(a) 

(b) 
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Table 1 Overall accuracy (%) and kappa coefficient of 

classification on peat soils using different combinations 

of the VV, VH and VV/VH channels 
 VV & 

VH 
VV & 
VV/VH  

VH & 
VV/VH  

VV, VH & 
VV/VH  

Overall 
accuracy 

85.9 84.3 86.2 85.2 

Kappa 
coefficient 

0.77 0.74 0.78 0.76 

 
Fig. 5 shows the classifications based on PALSAR 2009 
mosaics and the ASAR summer 2011 subset. For 
PALSAR, natural forest in region A is misclassified as 
acacia, for reasons clear from the backscatter analysis 
and histograms. ASAR shows better visual similarity 
with the WWF maps (see Fig. 1 right). 
 

 
Figure 5 Classifications for (left) PALSAR 2009 L-band 

mosaic and (middle) APG C-band summer 2011 subset. 

Red: acacia on peat; yellow: acacia on non-peat; blue: 

oil palm; green: natural forest; black: cleared. The 

WWF classification is shown on the right. 

 
Tab. 2 lists the confusion matrices for APG 
classifications on peat and non-peat soils separately 
(natural forest occurs only on peat soils in the region 
covered by these images). On peat soils, many acacia 
and oil palm plantations are misclassified as natural 
forest. Examples include the two circled areas in Fig. 5 
(middle): the left and right circled areas are in fact 
acacia and oil palm respectively, not natural forest. 
Possible factors are that the oil palm plantations here are 
younger than elsewhere (according to the WWF 
database, oil palm here was planted after 2005 and the 
others were planted before 2000) and the acacia is in a 
hilly area where terrain variations affect the backscatter. 
These two areas are correctly classified in L-band. 
Hence, though L-band gives serious errors in the natural 
forest on the peat dome, it can help to correct the C-
band classifications, although how to make correct 
decisions when there are inconsistencies between C- 
and L-band classifications is an unresolved issue and we 
have yet to carry out classification using both data types 
together. 
For non-peat soils, 22.7% of the oil palm area is 
misclassified as acacia because of the significant 
overlaps of the data (Fig. 4) and the weightings imposed 
in the ML classification.  

Table 2 Confusion matrices for the APG C-band 

summer 2011 subset (values given as %). Columns 

correspond to ML classification and rows to map data. 

(a) Confusion matrix for peat soils 
Class Acacia on peat Natural forest Oil palm 
Acacia on peat 73.6 0.60 0.24 
Natural forest 22.0 96.8 17.8 
Oil palm 4.30 2.61 82.0 
(b) Confusion matrix for non-peat soils 
Class Acacia on non-peat Oil palm 
Acacia on non-peat  96.3 22.7 
Oil palm 3.70 77.4 
 

4.3. Dynamics of Acacia Plantations 

Section 4.2 has shown that many of the errors in 
classifying acacia plantations in APG data arise from 
their harvest and replanting cycle. This suggests that 
time series of C-band data can be used to monitor such 
changes. To assess this, classifications for the three 
temporal subsets are used to build clearance (Fig. 6a) 
and replanting (Fig. 6b) maps for acacia plantations. In 
Fig. 6a, black shows harvest in 2010 while cyan and 
magenta show harvest in spring and summer 2011. 
Replanting is carried out soon after harvest because 
cleared areas are classified as vegetated in the next 
subset, as shown in Fig. 6b. Black is cleared areas that 
have not yet been replanted, yellow and magenta show 
regrowth in early and mid-2011. If acquisitions are 
provided frequently enough, e.g. by Sentinel-1, such 
data can be used to track plantation status and monitor 
the activity of pulp companies. Although the available 
APG has not allowed this to be directly assessed, such a 
system is also likely be invaluable for monitoring illegal 
clearance of natural forest.  
 

 
Figure 6 Dynamics of clearance (left) and regrowth 

(right) of acacia plantations derived from ASAR APG 

time series. 

 
5. CONCLUSIONS 

This paper analyses C- and L-band SAR backscatter for 
tropical forest and plantations and the use of C–band 
time series to track plantation dynamics. Our main 
conclusions are: 
a) At C-band, both VV and VH are important for 
distinguishing forest types. The backscatter from acacia 



 

in VV, but not VH, is greatly affected by whether peat 
or non-peat soils are present. 
b) At L-band, HV carries most of the relevant 
information, and L-band is much more sensitive than C-
band to structure arising from forest management. This 
can aid manually classification but is likely to induce 
errors in automatic classification. The backscatter from 
acacia is affected by whether the underlying soil is peat 
or non-peat for both HH and HV.  
c) C-band time series allow plantation activity to be 
monitored and are likely also to be useful in detecting 
illegal forest clearance.  
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