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ABSTRACT 

Multi-temporal SAR data sets are becoming more 
widely available and show a significant potential for a 
wide range of applications. This will even more so be 
the case with the upcoming Sentinel-1 SARs of ESA. 
Therefore, multi-temporal processing techniques are 
very relevant. For applications based on SAR 
backscatter speckle reduction is one important aspect of 
the processing. In this work we propose a multi-image 
filtering approach that builds upon multi-image filtering 
methodologies proposed by Quegan et al. 2001, and 
structural spatial filtering proposed by Lee et al., 1999. 
The filtering methodology is described and results are 
discussed for different satellite SAR sensors. 
 
1. INTRODUCTION 

Over the last 20 years multi-temporal SAR data sets 
were acquired in large numbers and over many sites. 
Related processing techniques were developed and the 
multi-temporal SAR data showed a significant potential 
for a wide variety of applications. This will even more 
so be the case with the upcoming Sentinel-1 SARs of 
ESA which are designed to achieve global coverage 
with short repeat intervals. It is important to clearly state 
here that true acquired coverage and not “potential 
coverage” is meant. Using a constellation of two 
satellites and operating these in a special ScanSAR 
mode permits to achieve complete coverage over land 
every 6 days or even more frequently if ascending and 
descending orbit coverage is acquired. As a result, 
Sentinel-1 will consistently provide excellent multi-
temporal data.  
 
For applications based on SAR backscatter in general, 
and particularly for a mission providing data at about 
20m resolution as Sentinel-1, speckle reduction is very 
essential. For multi-temporal data multi-channel 
filtering similar to Quegan et al. 2001, shows a very 
good potential. The main aim of this filtering is to create 
a set of M speckle-reduced images by linearly 
combining M registered images acquired on the same 
area. In the filter function the input intensity data as 
well as an estimate of the local mean backscattering 
coefficient are used: 
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where kJ  is the filtered output,  
iI  are the input intensity data,  

iI  is the estimate of the local mean backscattering 
coefficient.  It is estimated from the data by 
averaging  intensity values in a local window around 
each pixel in each image.  
 

In the original method by Quegan et al. 2001, the local 
mean backscattering coefficient is estimated from the 
data by averaging intensity values in a local window 
around each pixel in each image. One possibility to 
improve this estimation of the local mean backscattering 
coefficient is to use an adaptive estimator to optimize 
the trade-off between good reliability of the local 
estimate and little spatial degradation (Wegmüller et al., 
2002). More recently Caves et al., 2011, proposed to 
design the spatial filter used in the estimation of the 
spatial averages in the multi-temporal filtering 
considering not just the scene for which it is applied, but 
to do this based on the multi-image data stack. In our 
work presented here we developed such a solution. For 
the estimation of the spatial averages a multi-temporal 
structural filter is proposed based on the work of Lee et 
al., 1999. In the following the filter is introduced and 
results will be presented and assessed. 
 
2. FILTERING METHODOLOGY 

2.1. Filtering concept 

Starting from the above mentioned ideas, we developed 
a novel multi-scene filtering approach for co-registered 
backscatter images. A flow chart of this multi-temporal 
filtering is shown in Figure 1. 
 
The filtering starts from a stack of co-registered 
backscatter intensity images. Based on these an average 
image is calculated by a pixel-wise averaging the values 
through the stack. In this averaging the equivalent 
number of looks, ENL, increases. ENL is a parameter 
used to characterize the noise in SAR data, and it is 
typically estimated for a homogeneous region using 
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Figure 1   Flow chart of advanced multi-image filtering for 
stack of co-registered backscatter images. RMLI stands for the 
co-registered backscatter images. 
 
Both the stack of co-registered unfiltered backscatter 
intensities and the average image are then inputs to the 
spatial filtering.  
 
2.2. Structural spatial filtering 

The structural spatial filtering of multi-image SAR 
backscatter intensity stacks we developed uses elements 
of the structural spatial filter as proposed by Lee et al. 
1999. The structural spatial filtering by Lee et al. 1999 
uses eight structural windows (see Figure 2). In addition 
to these eight structural windows we use an additional 
one to include all pixels in the filtering for the case that 
no clear directionality is identified. 
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Figure 2   Eight edge-aligned structure windows used in 
Lee et al. 1999. Pixels in white are used in the filtering. 
 
To determine which structure window is applied for a 
pixel Lee et al. 1999 determine means for 3 x 3 sub-
areas (to reduce the effect of noise) and apply a set of 
simple edge masks to these sub-area means. The 
structure window with the maximum value is then used 
for the spatial filtering. 
 
Here we use an approach with two modifications as 

compared to Lee et al. 1999. Instead of using an 
individual image to determine which structural window 
should be used for the spatial filtering we use the 
average image. Because of the lower noise of the 
average image the selection process should be more 
reliable and it is faster as it is only done once instead of 
for every image. Furthermore, we compare the 
maximum value obtained against a threshold. If the 
maximum is below this threshold we conclude that the 
images do not show a dominant structure and so we 
better use the additional homogeneous structure 
window. As a consequence a higher number of pixels is 
considered in the filtering of data over homogeneous 
areas. 
 
The actual weights used in the spatial filtering of the 
images of the data stack are determined for each scene 
individually. Using the average image would not be 
adequate as its statistics are completely different. For a 
derivation of these weights assuming a multiplicative 
noise model it is referred to Appendix A of Lee et al., 
1999. The filtered value for a pixel at coordinate (i,j) is 
calculated as a linear combination between the spatial 

average of the input intensity, jiI , , and the input 

intensity at this location, jiI ,  

 jijiji bIIbJ ,,, )1(   (3) 
The factor b is calculated based on the (theoretical) 
number of looks of the image, L, which is determined 
either using Eq. 2 over homogeneous areas or calculated 
based on system parameters an multi-looking factors, 

the spatial average of the input intensity, jiI , , and the 
estimated standard deviation of the input intensity 
estimated for this location, ji,  
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In case a negative value is obtained for b it is replaced 
with 0.0. 
 
2.3. Multi-temporal filtering 

The spatially filtered images resulting from the 
structural spatial filtering of the multi-image SAR 
backscatter intensity stack are then used as the local 
mean backscattering coefficients required in the multi-
image filter function (Eq. 1). The advantage of this 
approach over the simple spatial average over a box 
around the filtered image as used in Quegan et al., 2001, 
is that edges such as field boundaries and strong 
scatterers are better preserved. 
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Figure 3   Unfiltered (left) and filtered (right, using the presented advanced multi-temporal filter) 800m x 600m section 
of a TerraSAR-X Stripmap mode scene over the Po Delta, Italy. 
 

    
Figure 4   Unfiltered (left) and filtered (right, using the presented advanced multi-temporal filter) Sentinel-1 data for a 
5km x 4km section in Zeeland, NL, simulated using a stack ERS-1 ice-phase data. 
 

     
Figure 5   Unfiltered (left), spatially filtered (center) and filtered using the presented advanced multi-temporal 
filter(right) PALSAR data for a 4km x 6km section in Hungary. 



 

  
Figure 6 Polarization ratio (HH/VV pol., scale between -6dB and +6dB) calculated for the AGRISAR’09 RSAT-2 scene 
acquired on 9-Jul-2009 over Flevoland, NL (section of 7km x 6km). The ratio shown to the left is calculated from the 
unfiltered MLI, the ratio to the right from the advanced multi-temporally filtered MLI. 
 
 
3. ASSESSMENT OF RESULTS 

We assessed the filtering performance using stacks of 
more than 25 scenes of ERS data, Radarsat-2 data from 
the AgriSAR’09 Campaign (Caves et al., 2011), 
PALSAR data and TerraSAR-X data. 
 
In the multi-image filtering, an assumption used is that 
the spatial patterns remain unchanged over time. This is 
often almost perfectly the case for agricultural fields, 
built up structures as houses, roads, power lines, dams 
and alike also meet this criteria. As a consequence, the 
filter performs well over these targets with a significant 
increase of the Equivalent Number of Looks (ENL) over 
homogeneous areas such as fields while maintaining 
individual scatterers and field boundaries sharp. In areas 
with varying geometries (e.g. in tidal zones, or for 
vehicles), where the assumption of temporally stable 
geometries is not met for all boundaries and bright 
targets, we can observe cases where the proposed 
filtering is not optimal but overall the results still look 
quite reasonable also in these cases. 
 
Applying the structural filter in the estimation of the 
spatial averages used in the temporal filtering is 
particularly attractive when working at high spatial 
resolutions with a low number of looks per pixel as it 
permits getting high resolution (for a given sensor) 
results with reasonable look numbers. Figure 3 shows a 
small section of an unfiltered and temporally filtered 
scene of a TerraSAR-X stack demonstrating the visual 
improvement from the filtering. What is more relevant 
for applications is that the ENL is increased by more 
than a factor 10 which is very relevant when applying 
algorithms. Applications as soil moisture monitoring, 
crop parameter retrieval, classification and change 
detection can strongly benefit when working at pixel 

level. The main advantages over the standard multi-
temporal filter by Quegan et al., 2001 are the much 
more local transition between different backscatter 
levels e.g. between adjacent fields and that strong 
individual scatterers remain better focused. On the other 
hand, the standard method results in slightly higher 
ENL values because a larger number of pixels is 
considered in the estimation of the spatial averages used 
in the multi-temporal filtering. 
 
Applying azimuth spectrum band-pass filtering to ERS-
1 data acquired in the ice-phase mode with 3-day repeat 
cycles we simulated data with similar characteristics as 
for the Sentinel-1 interferometric Wide Swath mode and 
applied the advanced multi-temporal filter. The results 
(see Figure 4) confirm that a significant improvement 
can be achieved. The ENL increased over fields from 
about 1.5 to about 10. 
 
For a stack of 22 PALSAR backscatter images, 
considering FBS and FBD mode data, a section of one 
image is shown unfiltered, spatially filtered using the 
above described multi-temporal version of the structural 
spatial filtering, and the proposed multi-temporal 
filtering. Both the spatial filtering and the multi-
temporal filtering significantly increase the ENL from 
about 3 to about 15. In the area of the villages and for 
the field boundaries the result is “sharper” for the 
proposed multi-temporal filtering as compared to the 
spatial filtering. 
 
For the AGRISAR’09 data over Flevoland (Caves et al., 
2011) we also applied the proposed multi-temporal 
filtering. In this case the data are from different tracks 
and different polarizations are available. In a first step 
all SLC were co-registered to a reference of the same 



 

track, then multi-looked with 2 range and 3 azimuth 
looks and then geocoded to a 10m sampling. A total of 
240 (4 x 60) co-registered geocoded backscatter data 
sets were then available. For the multi-temporal filtering 
a spatial window size of 7 pixels was used. With the 
proposed multi-temporal filtering the ENL increased 
from about 4 to 32. To assess the impact of the temporal 
filtering on the calculation of backscatter ratios we 
calculated polarization ratios from the unfiltered as well 
as the filtered data (Figure 6). A high HH/VV 
polarization ratio (>> 0 dB) at this time of the year is an 
indication for a “wheat-like” structure (HH scattering 
from ground is less attenuated in the primarily vertical 
canopy). The effect of the filtering on the polarization 
ratio image is obvious. 
 
4. CONCLUSIONS 

A novel multi-image filtering approach was presented. 
The approach is based on the multi-temporal filter by 
Quegan et al., 2001 but uses a different method to 
estimate the spatial averages used in the filter function. 
It is proposed to use a special structural filter to estimate 
these spatial averages. Given that a multi-image data set 
is available the determination of the filter structure is 
improved and made more efficient by determining it 
based on the average image. The filtering was applied to 
data stacks of various sensors permitting to increase the 
ENL significantly while maintaining a good spatial 
resolution. 
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