
HIGH RESOLUTION CROP MAPPING ALONG THE GROWING SEASON:
METHODOLOGICAL DEVELOPMENTS TOWARDS AN OPERATIONAL

EXPLOITATION OF SENTINEL-1, 2 AND 3
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ABSTRACT

Agricultural remote sensing can be used operationally to
tackle the issues of food security and speculation on food
commodities. Timely and reliable crop specific maps are
essential to production forecasting because it supports the
estimation of its two components: yield and planted area.
This study proposes some developments towards an oper-
ational exploitation of Sentinel-1,2 and 3 for crop classifi-
cation along the season. Using proxy data, the method is
demonstrated over a large site in Russia. Three maps are
produced along the season with an increasing accuracy
and an increasing number of class: cropland in Septem-
ber, crop group in March and crop species from April to
August.
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1. INTRODUCTION

In a context of increasing pressures on croplands, the G20
has recognized the importance of timely, accurate and
transparent information to address food price volatility
and quality of data on agricultural market. Production
forecasting implies both yield and planted area estima-
tion. Reliable crop maps are often a prerequisite as they
support direct area estimates and improve the retrieval of
the biophysical variables needed in the growth models[1].

Crop discrimination is made possible by the differential
phenological development of crops. Maximum discrimi-
nation between different crops occurs at different stages
in the growth cycle and sometimes imperceptible with a
single image [2]. Crop mapping has already been exten-
sively studied using time-series of moderate spatial res-
olution images [3], high resolution images [4], Synthetic
Aperture Radar (SAR) data [5], a combination of SAR
and high resolution [6] or high and moderate resolution
[7]. A useful crop mask is one that captures the salient
features of the current growing season with a certain level

of accuracy [8] – De Wit and Clevers [9] suggested an
accuracy target of 85%. Crop masks should be available
as early in the season as possible, even with less accu-
racy than end-of-season estimates [10], so that decision-
makers have time to respond to the likely impacts of the
forecast. But to date most experiments looked at it from
an end of season point of view, selecting the best-suited
band/date combination to maximize the classification ac-
curacy. Early mapping along the the growing season rep-
resent a major challenge as only incomplete growing sea-
son time-series information is available [8]. In such a
context, reducing dependence on one sensor would sup-
port operational crop monitoring as sensor malfunction
and cloud coverage at critical periods might jeopardize
the accuracy requirements of the map[11].

To answer the need for accurate and timely crop maps,
this articles proposes some developments towards an op-
erational exploitation of Sentinel-1, 2 and 3 to produce
high resolution crop specific maps updated along the
growing season. The overarching objective aims at de-
veloping a classification method that combines the advan-
tages of each satellite: the temporal coverage of Sentinel-
3, the high resolution of Sentinel-2 and the weather in-
dependent acquisitions of Sentinel-1. The method inte-
grates time-series and object-based analysis as well as
data mining techniques and is demonstrated over a large
site in Russia. The methodological development targets
three successive outputs:

1. At the beginning of cropping season, a pre-seasonal
cropland extent map is produced using a dedicated
land cover algorithm based on the previous year
metrics at moderate resolution. The best local land
cover map available helps this early diagnosis.

2. At the end of the winter, a crop group recognition
map distinguishing winter and summer crops is de-
livered thanks to a phenological object-based time-
series classification of medium resolution data.

3. Along the growing season, a multi-sensor crop spe-
cific classification is finally achieved and updated as
data acquisition progresses taking into account the
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agricultural calendar and the crop rotation systems.
Through an iterative segmentation and classification
scheme, moderate and high resolution optical im-
ages and radar data at each new acquisition of high
resolution imagery.

All over the season, this combination of three sensors
will thus allow a continuous monitoring at regional scale.
In this way, crop maps will be updated along the season
with an increased precision (increased number of classes
and decreased omission and commission errors) that, in
chain, will support the retrieval of bio-physical variables
for crop growth models and early acreage estimation. The
first section of this paper presents the study site as well as
the data used and their pre-processing. The second sec-
tion details the methodology of the three products and the
results are discussed in the third section.

2. MATERIAL

2.1. Study area and field data

The study focuses on the Russian oblast of Tula (25,700
km2), an important winter wheat growing area (about 270
000 ha). The average field size is 70-ha. Its geographic
proximity to Moscow allows easy field data collection.
Reference samples for training and validation were col-
lected in July 2013 by the Russian Agro-Meteorological
Institute (AMI). The data set contains 600 observations
of 19 different agricultural classes (spring barley, buck-
wheat, cabbage, chamomile, carrot, clover, fallow land,
lucerne, maize, millet, oats, pea, potato, rapeseed, winter
rye, sugar beet, sunflower, spring wheat, winter wheat)
largely dominated by winter wheat and spring barley. A
parcel database is also available. Fields were manually
digitized on Landsat-5 and 7 images and last updated in
2012.

2.2. Satellite data and pre-processing

For the growing season of 2013, Sentinel data was sim-
ulated by similar and currently available satellites (see
Tab.1 for a comparison). Eleven Radarsat-2 images and
5 RapidEye coverage were acquired from February to
August (Fig.1). MODIS acquisitions span from January
2012 to August 2013.

Instead of Sentinel-1 images, 11 Radarsat-2 ScanSar Nar-
row images were acquired in dual polarization VV-VH.
According to the literature vertical polarization seems the
most adequate polarization for C-band crop recognition
[9, 11]. Images were multi-looked, ortho-rectified, radio-
metrically calibrated and co-registered. A 9x9 enhanced
Frost filter reduced the speckle.

RapidEye data served as proxy for Sentinel-2. Five cov-
erages of Tula were ordered. Each coverage totals about

Figure 1. Data acquisition plan. It includes five cov-
erages with RapidEye, 11 with RapidEye. MODIS data
were acquired all from January 2012 to September 2013.

110 tiles of 25x25 km. The images were ortho-rectified
and converted to top of atmosphere reflectance. The
unusable data mask provided along with the data, even
though perfectible, masked out clouds. To achieve a
full coverage of the oblast meeting a certain threshold of
cloud contamination, 18-20 days acquisition time win-
dows were defined. Even with such a long period and
multiple acquisition attempts, some images could not
meet the cloud coverage requirements. This emphasize
the pertinence of multi-sensor combination.

MODIS data simulated Sentinel-3. From daily quality
controlled reflectance values, 10-day mean composites
were produced according to the procedure developed by
[12]. The mean compositing reduces bidirectional re-
flectance distribution function and atmospheric artifacts,
produces spatially homogeneous cloud-masked compos-
ites with good radiometric consistency and does not
requiring model adjustment or additional parametriza-
tion. Because field survey revealed strong variations in
soil color, a soil adjusted vegetation index with a self-
adjusting soil brightness correction factor, the MSAVI2
[13], was calculated for for every pixel of the image.
Thus, the MSAVI2 minimizes soil background influences
and increases the dynamic range of the vegetation sensi-
tivity. It is calculated as follows:

MSAVI2 =
2ρnir + 1−

√
(2ρnir + 1)2 − 8(ρnir − ρred)

2
(1)

where ρnir and ρred are reflectances in the near in-
frared and red band, respectively. Time-series were then
smoothed with the Whittaker filter [14]. The gap filling
ability of this filter is particularly interesting because of
the persistent cloud coverage in the area.



Table 1. Comparison of Sentinel-1,2 and 3 with their respective proxy. Only the spectral bands used in this study area are
detailed.

SENTINEL-1 RADARSAT-2 SENTINEL-2 RAPIDEYE SENTINEL-3 MODIS

Nominal
Swath

80-km 300-km 290-km 77-km 1250-km 2330-km

Wavelength
(µm)/frequency

C-band C-band blue (0.42-
0.55), green
(0.53-0.59),
red (0.63-
0.69),
red-edge
(0.69-0.72,
0.72-0.75,
0.76-0.8,
0.84-0.89),
near-infrared
(0.72-0.96)
and 5 others

blue (0.40-
0.51), green
(0.52-0.59),
red(0.63-
0.685),
red-edge
(0.69-0.73),
near-infrared
(0.76-0.85)

red (0.6-0.7) ,
near-infrared
(0.88-0.89)
and 19 others

red (0.62-
0.67), near-
infrared
(0.84-0.88)
and 34 others

Polarization HH+HV
VV+VH

HH+HV
VV+VH

NA NA NA NA

Beam Inci-
dence angle

20◦-41◦ 20◦-46◦ NA NA NA NA

Ground reso-
lution

5-m 25-m 10-m 5-m 300-m 250-m

Repeat cycle 2 days using a
constellation
of satellites

programmable 5 days with a
pair

daily with 5
satellites

1-2days with
a pair

1-2 days

3. METHODOLOGY

Combining the proxies, three maps will be produced
along the season taking advantage of the accumulation
of the information along the growing season to pro-
gressively further discriminate the different crop species.
Such multi-scale and multi-spectral information should
improve the temporal density of observations essential
to capture the crops phenology, which is the main crite-
rion of the discrimination process. The joint use of high
spatial resolution of both optical and radar images is ex-
pected to resolved most field. The method targets the pro-
duction of three products – a pre-seasonal cropland map,
a crop group map and a crop specific map – released in
September and March for the two first and updated from
April to August for the latter.

3.1. Pre-seasonal cropland layer

Understanding the area and extent of croplands as well
as its evolution is important for a variety of societal and
environmental reasons [15]. Studies have first discarded
non-agricultural areas by means of fieldwork and photo-
interpretation [16], masks of non-arable land from land
cover maps [17] or farmland parcels delineation[9]. Us-
ing the best available land cover information seems the
most transposable solution to other sites but not neces-

sarily the most accurate. Indeed, most of the available
land cover maps do not target agricultural land and need
adjustments to fit the local conditions. Plus, changes may
have occurred since their production.

Iterative trimming is a change detection technique that
identifies outliers as plausible candidates for change [18].
Radoux et al. [19] applied non-parametric iterative
trimming to automate image-to-map discrepancy detec-
tion. However, non-parametric is computationnaly iten-
sive and processing time increases exponentially with the
dimensionality. This study proposes a multivariate nor-
mal iterative trimming alternative because the normal hy-
pothesis reduces considerably the processing time. For
each class, the selection of outliers relied on a probability
threshold α which specifies the limit at which an obser-
vation is considered an outlier. The distribution is itera-
tively trimmed until no more outliers are identified. For
the normal case, it gives:

(x− µ)′Σ−1(x− µ) ≤ χ2
p(α) (2)

where χ2 is the upper (100α)th percentile of a χ2

distribution with p degrees of freedom.

At the beginning of the season (September in Russia),
cropland at year t is mapped with the annual time-series
of year t − 1. According to the Hughes phenomenon,



images carrying little discriminating information may de-
crease the classification accuracy. To reduce the dimen-
sionality, four metrics were extracted from the time-series
because of their ability in separating cropland from other
land covers: the sum, the mean, the range and the norm
of the pixels’ signal.

Multivariate normal iterative trimming was applied on
each class of the GlobCover map but the agricultural mo-
saic classes. These classes and the resulting outliers were
reclassified according to the maximum likelihood deci-
sion rule. A priori probabilities were computed from the
initial land cover map with mixed classes probabilities re-
distributed. The four metrics were standardized to avoid
confusion between different units. The new land cover
map details six classes: rainfed cropland, urban, water
and three classes of forest. Non-crop classes were finally
grouped in order to focus the classification on crop de-
tection. Accuracy was evaluated by means of the Pareto
boundary method [20].

3.2. Crop Group layer

With its continental climate, the Tula region has two very
distinctive planting period: august for winter crops and
March-April for summer crop. Winter wheat is gener-
ally sown in mid-August and grows until the tillers prior
to the dormancy period that generally begins in Decem-
ber. After the winter dormancy, it resumes growth late
in March (Fig 2). Sensors with high temporal repetitive-
ness such as MODIS and Sentinel-3 allow to make rapid
updates of winter-wheat planted area, with the ability to
recognize a considerable part of the planted area already
before winter.

Figure 2. Crop calendar for the Tula region. The calen-
dar illustrates the timing differences of the development
stages of the main crops.

A two-step phenological object-based classification ad-
dresses the binary classification of winter crops versus
summer crops. In the first step, objects are derived by
means of a segmentation on the harmonic components of
the time-series. In the second, an automated time-series
analysis based on phenological metrics classifies the ob-
jects in the two classes. The previously derived cropland
masks out the non-agricultural areas.

Fourier or harmonic analysis transforms an input signal
from the time domain into the frequency domain. The
resulting harmonic components summarize information
on the signal: they capture the temporal dynamics while
it reduces the dimension and the noise while preserving
phenological characteristics [21]. Performing an analysis
on the frequency components, a distinction can be made
between signals frequency terms relates to vegetation dy-
namics [22].

In a closed interval [0;N], each continuous and periodic
signal can be decomposed into a series of sine-waves with
increasing frequencies and an additive term that together
reconstruct the initial signal:

f(x) =
a0
2

+

i=N/2∑
i=1

ai cos(
2πix

N
− φi) (3)

The Fourier transform is a function that transform a time
series and returns a complex array with a real (a) and an
imaginary (b) part that can be converted to polar form.
Each order i is defined by a phase φi and an amplitude
ai:

ai =
√
a2i + b2i (4)

φi = arctan
bi
ai

(5)

The high orders contain mainly noise.

Land cover and crops exhibit distinctive temporal pat-
terns and thus are characterized by different phase and
amplitude parameters. Harmonic analysis was applied
pixel-wise. Similar pixels were then spatially grouped
based on the similarity of the two first harmonic and the
additive term using the multi-resolution segmentation al-
gorithm. Multi-date segmentation is known to perform
better than single-date but requires the prior identification
of key-dates. Segmenting on the harmonic components is
an alternative to overcome this constraint.

A simple rule-based classification was developed based
on the major characteristics of winter crop time-series:
the winter growth. For every image from the 150th day
of sowing year to the 90th day of harvesting year, vegeta-
tion index values were averaged per objects. The spatial
aggregation of the surface reflectance at object level rein-
forces its signal to noise ratio.

To ensure year-to-year robustness, it is necessary to con-
sider the phenological calendar rather than the Julian
day. The automated adaptive recognition decision rule
relies on the presence or absence of an observable winter
growth peak, i.e. a maximum (Fig. 3). According to the
specificity of the task (i.e. partial time-series), new met-
rics have to be defined: (i) the snow date corresponds to
the dekade during which the MSAVI signal falls below
a threshold, (ii) the maximum of vegetation is the local



maximum MSAVI value at the winter growth peak and
(iii) the local minimum preceding the winter peak.

Figure 3. Typical temporal profile of winter wheat and
summer crops. The profiles are consistent with the crop
calendar: winter wheat exhibits a winter growth starting
in August. Snow covers both winter and summer crop
fields from December to March and makes them insepa-
rable.

The simplest decision rule would classify as winter crop
every feature with a winter peak, but this hypothesis does
not hold as other landscape elements also exhibit a maxi-
mum. Usually, those elements however are characterized
by a rapid drop and then increase of the signal whereas
winter crop shows a plateau corresponding to field prepa-
ration and sowing. To tighten the rule, the minimum
and the maximum are converted into local average of
the metric values: an object is classified as winter crop
if mean(max) > mean(min). This filters out objects
without a significant increase in their respective trajec-
tory.

To strengthen the accuracy of the classification, a cross-
validation based on the harmonic components is added.
The 25 nearest (in Euclidean distance) vectors are found
and the final label is decided by majority vote. The har-
monic component values were first standardized and then
averaged per object. In-situ validation data were reduced
to a binary legend that separates winter wheat from any
other crop. Accuracy was assessed with the traditional
error matrix and its derived statistics.

3.3. Crop specific layer

For the crop specific layer, the goal is to deliver a crop
specific mask along the season updated at each acqui-
sition of high resolution either radar or optical. This
translates into an iterative classification scheme: at each
acquisition, the newest image is segmented using the
multi-resolution algorithm [23]. This single-date clas-
sification is constrained by the former to make use of
multi-temporal information. Objects mean reflectances
and back-scattering coefficients are extracted for each ob-
jects of the available time-series. MODIS time-series
is smoothed and gap-filled with the Whittaker smoother.

Objects with missing values were regarded as a popula-
tion and new values were imputed according to an inverse
distance weighted mean of the 3 nearest neighbors.

This study investigates the potentiality of the random for-
est classifier to accurately discriminate crops [24]. Ran-
dom forests are particularly interesting as they are insen-
sitive to noise or overtraining, and are also capable of
handling unbalanced data sets. Its internal selection of
variables is expected to prevent side-effects of high di-
mensionality as information accumulates. At each new
acquisition, a classifier with 500 trees was trained taking
into account all the information available at that time.

For this paper, the method was tested on a subset of
the region encompassing six RapidEye tiles (about 3600
km2). As a result, the in-situ data set available for train-
ing and validation was reduced in terms classes and less
populated. This reduction might affect the quality of the
training and the accuracy of the map. The nine remain-
ing classes to classify were bare soil, urban areas, forest,
oats, rapeseed, spring barley, sunflower, water and winter
wheat. Again, winter wheat and spring barley dominates
largely the sample. The overall accuracy was chosen as
index to follow the evolution of the accuracy of the clas-
sifications.

4. RESULTS AND DISCUSSION

Three products were produced for the 2013 growing sea-
son. First, an updated land cover map was produced in
September to better represent the cropland area extent.
A visual analysis revealed that the pre-seasonal crop-
land layer is spatially consistent to separate urban areas,
forests and water. However, it appears that for some frag-
mented areas, e.g. small forest patches, the spatial resolu-
tion is insufficient. Being deprived of natural vegetation
class, the cropland is overestimated. The map was quan-
titatively assessed by the Pareto boundary method which
confirmed these observations (Fig. 4). The Pareto bound-
ary helps to understand whether the accuracy of a low
spatial resolution map is given by poor performance of
the classification algorithm or by the low resolution of the
remotely sensed data which had been classified [20]. The
region below the Pareto boundary characterizes the low
resolution effect; the distance from the boundary to point
defined the omission/commission errors of the product is
a function of the algorithm performance. The large com-
mission error observed translates the classification of nat-
ural vegetation class. Overall accuracy of the cropland
class reached 73%.

Second, a crop group layer distinguishing winter crops
and summer crops was produced using time-series from
September to March. Accuracy of the crop group layer
was assessed and showed a global accuracy of 78%. This
level of accuracy is satisfactory considering the timing of
this early estimation. For the winter wheat class, one can
observe a high omission rate but low commission rate.
The level of omission might be explained by the tighten-
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Figure 4. Pareto boundary of the cropland class.
MODIS’ spatial resolution appears too coarse to capture
the fragmented landscapes such as forest patches. The
absence of a natural vegetation class introduces commis-
sion errors in the cropland class. The dashed lines are
the iso-lines of accuracy.

ing of the decision rule. Visual comparison of the product
with the time-series and the validation data set showed
that the algorithm successfully captured the salient fea-
tures and omitted those hardly identifiable by human in-
terpretation.

Table 2. Confusion matrix for the Crop Type Layer. The
overall accuracy is satisfactory considering the timing of
the estimation. The level of omission can be explained by
the tightening of the decision rule.

Reference
Classification Other Winter crops User Acc.

Other 346 104 0.77
Winter crops 37 143.00 0.79

Producer Acc. 0.90 0.58
Overall Acc. 0.78

Third, a crop specific crop layer was produced and up-
dated along the season with Radarsat-2, RapidEye and
MODIS images. Quality of the map was assessed fol-
lowing the temporal evolution of the overall accuracy
(Fig. 6). Accuracy at the first two acquisitions (+/75%)
coincides with the accuracy of the crop group layer
(78%). At the third acquisition corresponding to the first
RapidEye coverage, accuracy peaks to about 85%. Thus,
at the end of May the map meets the accuracy target for
crop maps proposed by De Wit and Clevers[9]. From
April to August, the overall accuracy follows a ascend-
ing trend and reaches 93% at the end of the season. Such
behavior might be explained by the dominance of win-
ter wheat and spring barley in the training and validation
sample. In a dual situation where two classes dominates

Legend
Cropland Forest Urban Water Winter crop
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Figure 5. Combination of the pre-seasonal cropland
layer and the crop group layer for the year 2013.

and thus influence the mostly the accuracy. Extension of
the entire oblast will allow to consider more populated
classes and have a more detailed overview.
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Figure 6. Evolution of the overall accuracy of the crop
specific layer along the season. Starting at about 75%
percent, the accuracy rapidly reaches 85% (the accuracy
target). End-of-season of season accuracy is 93%. The
accuracy might be partially explained by the dominance
of two constrated classes: winter wheat and spring bar-
ley.

5. CONCLUSION

The purpose of this study was to develop a new frame-
work for multi-scale and multi-date crop classification
along the growing season to support effective agricul-
tural monitoring. Radarsat-2, RapidEye and MODIS
were used as proxies for Sentinel-1, 2 and 3 respectively.
The classification system integrates the proxies to pro-
duce crop maps updated along the season with an in-
creased number of class and a decreased error rate. This
paper presented a three step approach over a large agri-
cultural region in Russia. First, a pre-seasonal cropland
layer was derived in August from the previous year time-
series thanks to an image-to-map discrepancy approach.
Second, a crop group layer that separates winter crops
from summer crops was produced in March with an ac-



curacy of 78%. Third, a crop specific map was updated
from March to August as images accumulate. Accuracy
evolved from 75% to 93% at the end of the season with
a large increase in May (85%) corresponding to the first
acquisition of RapidEye images. The accuracy figures
showed that for agricultural landscapes such as Russia,
reliable high resolution crop mask can be derived months
before harvest. These promising results still need to be
validated at a larger scale.
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