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ABSTRACT 

The challenges of sustainably securing food production 
for a growing world population require an increased 
efficiency of agricultural production. Site specific 
management is one key towards higher agricultural 
production efficiency. However, it is dependent on 
spatial information on crop status during the growth 
period. Such information may be provided by complex 
growth models, whose spatial parameterisations are 
enriched through assimilation of optical remote sensing 
data. Optical satellite observations again are highly 
dependent on weather conditions and sensor 
availability, resulting in a limited number of 
observations that can be acquired of a certain target 
during the course of a growing season. This study 
therefore investigates the effect of observation 
frequency on the spatial modelling of winter wheat yield 
in northern Germany. Based on the comparison of 
modelled and measured spatial yield maps, covering 
more than 500 ha of winter wheat, it is shown that the 
accuracy of the model results decreases significantly, if 
less than four spatial observations per season are 
available. Thereby, observations covering phenological 
growth stages from BBCH 70-90 proved to be best 
suited for the modelling of yield, followed by 
observations from BBCH 50-70, while satellite images 
taken during BBCH stages 30-40 turned out to be least 
suitable for yield modelling. 
 
1. INTRODUCTION 

Predominantly driven through the continuing growth of 
the world population, the competition between food, 
fibre, energy and environmental demands for 
bioproductive land surface is gradually becoming more 
severe [1]. The conflict between limited availability of 
bioproductive land surface on one hand and rising 
demands of biological production (food, energy, fibre, 
carbon sinks etc.) on the other, also has led to an 
increased public awareness of the necessity of increased 
agricultural production [2]. Due to climatic, 
pedogenetic, ecologic or logistic limitations, further 
spatial expansion of the currently cultivated farmland is 
rarely feasible. Although global simulations indicate 
that locations of potential farmland might change in the 
future, because some areas might become usable due to 
global warming, while others in future might not be 

suitable any more due to erosion or water scarcity as an 
effect of climatic shifts, the absolute area of potential 
farmland is supposed to more or less stay constant. An 
increase of agricultural production therefore has to be 
achieved by gaining higher amounts of yield from the 
already agriculturally exploited acreage, i.e. by 
reasonably and sustainably increasing the efficiency of 
agricultural production [3].  
Being sensibly applied and thoroughly supported by up-
to-date spatial information, smart farming practices, 
such as site specific seeding, fertilization or plant 
protection, as well as advanced computer aided farm 
management systems may significantly contribute to an 
increased efficiency of agricultural production [4]. 
Reliable information on crop status during the different 
development stages of a growth period thereby are the 
key to improved crop management. Above all, site-
specific management approaches are based on the 
awareness of spatial heterogeneities of growth 
conditions. Therefore, only monitoring techniques able 
to deliver spatially explicit data may successfully be 
applied. Satellite-based earth observation (EO) currently 
represents the only technological solution capable of 
providing spatially continuous information on land 
surface heterogeneity. Furthermore, remote sensing may 
effectively be applied to the derivation of specific plant 
physiological variables, such as the concentration of 
chlorophyll pigments or the amount of 
photosynthetically active leaf area. In order to allow for 
the generation of agricultural application maps, spatially 
explicit information on crop status is required one or 
two days in advance of the scheduled execution of the 
site-specific management measure (seeding, 
fertilization, plant protection, harvesting etc.). The 
availability of information therefore is very time-
critical. Due to various restrictions associated with 
optical remote sensing (e.g. weather conditions, sensor 
availability etc.), the number of observations that may 
be acquired of a specific target, such as a certain field, 
during a single growth period normally is rather small. 
However, the surface processes monitored by remote 
sensing, e.g. plant growth and development, are highly 
influenced by dynamic variables (weather conditions, 
human or animal interference, occurrence of pests and 
diseases etc.) and therefore cannot be assumed to follow 
a linear course. Bridging the gaps between satellite 
observations through simple interpolation over longer 
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spans of time consequently will not allow for an 
adequate representation of crop development. To 
overcome these temporal constraints, advanced 
information systems have been developed, which are 
based on the assimilation of EO data into process-based 
models of agricultural production [5]. Model-based 
approaches are able to mechanistically combine 
spatially explicit information derived from EO data with 
temporally dynamic information, such as growth 
processes driven by hourly weather data. They thus may 
provide the desired information, e.g. the current 
distribution of aboveground biomass, in hourly intervals 
mostly independent from the date of the satellite data 
acquisition. Nonetheless, the assimilation-based model 
approaches largely depend on high-quality satellite 
observations that ideally should cover the major 
development stages of the crop. The conflict between 
the general necessity of routinely acquiring high quality 
EO data in order to produce high quality information 
products for smart farming on one hand and the 
difficulties of generating highly frequent (daily) 
monitoring series using optical sensors on the other, 
leads to two important research questions:  
 
1. How many EO acquisitions actually are required 

during the course of one growing season to allow for 
the generation of a reasonably accurate agronomical 
information product? 

 
2. Are there preferred periods of time during a growing 

season, where EO acquisitions may contribute more 
information to the final product than during other 
periods? 

The presented study therefore aims at investigating the 
impact of satellite observation frequency on 
assimilation-based simulations of winter wheat yield. 
Thereby, also the question of preferable acquisition 
dates for the modeling of winter wheat yield is 
addressed.  
 
2. MATERIALS & METHODS 

2.1. The Model System 

Remote sensing as a stand-alone technique is limited 
with respect to the derivation of information products of 
practical farming relevance. This on one hand is due to 
the fact that the derivation of absolute biomass from 
remote sensing remains difficult [6], but mostly results 
from the uncertain predictability of observations for 
specific dates/times, due to variable weather conditions. 
To overcome these limitations, an approach is proposed 
that combines information on the spatial heterogeneity 
of the land surface from EO data sources with 
information on the temporal dynamics of non-linear 
land surface processes from a physically based land 
surface model. For the land surface simulation 
component, the model PROMET (Process of Radiation, 
Mass and Energy Transfer; [7]) is used, while the 
optical remote sensing part of the combined model 
system is represented by the complex canopy 
reflectance model SLC (Soil-Leaf-Canopy; [8], [9]), as 
it is indicated in Fig. 1. SLC is used in inverted mode to 
derive spatially explicit maps of photosynthetically 
active leaf area (greenLAI) from EO data. At the same 
time, PROMET simulates greenLAI at an hourly time-
step as the result of biomass allocation within the leaf 

Figure 1. Overview of the combined (PROMET/SLC) assimilation system, including EO data sources, model 
parameters and components as well as different levels of validation options. 



 

fraction of the modelled canopy. GreenLAI therefore 
may be used as spatial exchange variable between the 
land surface model and the satellite observation during 
run-time. Major management events, such as harvest, 
are derived from hyperfrequent X-band SAR time series 
and are made available to the land surface model on 
field level (Fig. 1). 
With the help of this integrated EO/model system, it is 
possible to simulate a variety of land surface variables 
at an hourly time step, among them being highly 
sophisticated outputs such as agricultural yield. Yield is 
a variable that is extremely sensitive to growth 
conditions, mostly because all growth influencing 
factors, such as the duration of the single phenological 
stages, the water and nutrient supply during the course 
of the growing season, the occurrence of pests and 
diseases or unexpected natural hazards such as wind 
break or hail damage, more or less are aggregated 
within the final product. A correct simulation of yield 
therefore implies the correct representation also of other 
growth influencing variables in the model. Due to this 
interconnectedness of the variable yield and also due to 
the fact that yield more or less is the only biophysical 
variable that can be measured spatially without 
destroying the crop during the active growth phase, it 
was decided to use yield as the benchmark variable for 
the analyses of this study. 
 
2.2. Test Area and Model Setup 

The integrated EO/model approach is applied to a test 
site in Saxony-Anhalt, northern Germany, thus choosing 
one of the most intensively cultivated areas of Germany 
for the experiment. Winter wheat fields of two large 
farms in the vicinity of Blankenburg, east of the Harz 
low mountain range, were modelled for the growing 
seasons of the years 2010 and 2011. While for 2010 
more than 280 hectares of wheat were modelled, the test 
site was cultivated with more than 560 hectares of 
winter wheat in 2011. The area is generally 
characterized through relatively large acreages, fertile 
soils (mostly chernozems) and low annual precipitation 
sums (approx. 600 mm), combined with a continentally 
dominated climate. The required spatial parameters for 
the model setup could mostly be derived from publicly 
available data sources (soil map from FAO/HWSD, 
DTM from NASA/SRTM) or from own observations 
respectively (land use), while the meteorological driver 
variables were commercially acquired from the 
European Weather Consult (EWC) measuring network. 
The geometric features of the modelled fields could be 
derived from the Farm Management Information 
Systems (FMIS) of the test farms.  
The spatial resolution of the simulation should represent 
a compromise between the characteristics of the 
available satellite-based sensors, the computational 
efficiency and the requirements for information density 

on field level. All spatial input data sets thus were 
resampled to a common resolution of 20 x 20 meters. 
 
2.3. EO Data 

The applied assimilation concept, being based on the 
retrieval of greenLAI with help of an inverted canopy 
reflectance model, allows for the integration of 
multisensoral data. Accordingly, combinations of 
RapidEye and Landsat 5 TM images were used, both 
sensors providing adequate spectral and spatial 
information for the retrieval of greenLAI on the field 
scale. The images from both sensors were equally 
resampled to a resolution of 20 x 20 meters. Five 
satellite scenes could be obtained for the season of 
2010, while even seven acquisitions were available for 
2011 (Tab. 1). 
 

Table 1. Earth Observation data available for 
assimilation into the PROMET model (OZA = Observer 

Zenith Angle, GSD = Ground Sampling Distance). 

Acquisition Date Sensor OZA GSD
May, 21st 2010 RapidEye 10.33° 5 m
June, 16th 2010 RapidEye 6.96° 5 m
June, 29th 2010 Landsat TM Nadir 30 m

July, 8th 2010 Landsat TM Nadir 30 m
July, 20th 2010 RapidEye -12.04° 5 m

March, 3rd 2011 RapidEye -19.55° 5 m
April, 2nd 2011 RapidEye 3.6° 5 m

April, 18th 2011 RapidEye 6.73° 5 m
May, 5th 2011 RapidEye 6.99° 5 m
June, 1st 2011 RapidEye 0.34° 5 m

June, 29th 2011 RapidEye -6.18° 5 m
July, 1st 2011 Landsat TM Nadir 30 m

 
In order to investigate the influence of the assimilation 
of single observations on the finally resulting modelled 
yield map, repeated model runs were performed for both 
growing seasons, while the absolute number of 
observations that were included in the assimilation were 
gradually varied. For each quantity of observations that 
were taken into account, the possible combinations of 
the available acquisitions were iteratively tested. This 
data mining approach is comparable to a study by 
Murakami et al. [10], who investigated the 
discrimination of favourable scene combinations for 
agricultural land cover classification. The five satellite 
observations from 2010 resulted in 32 different 
combinations of the available observation dates. Based 
on the seven observation dates available for 2011, even 
128 combinations could be investigated. 
 
2.4. Validation Data 

For the validation of the model outputs, spatially 
explicit yield maps could be used that were supplied by 
the managers of the test sites. Being collected during the 
actual harvesting process through a GPS-supported 



 

combine harvester of the Type Claas Lexion 600, the 
yield maps allow for a spatial analysis of absolute wheat 
yield. The yield maps obtained with this method 
nonetheless suffer from some serious uncertainties, 
which partly can be reduced through sensible 
calibration [11]. The raw data provided by the combine 
harvester consists of data points that are spatially 
referenced, but do not have a defined spatial extent. 
They were converted into a spatially continuous raster 
through inverse distance interpolation (30 neighbours, 
weighting parameter = 0.5). Measurement outliers lower 
than 0.5 or higher than 18 t ha-1 were excluded. 
Although the yield maps indicate the spatial distribution 
of harvested yield, the absolute values recorded by the 
combine harvester may incorporate a strong bias. The 
yield map thus was calibrated with the absolute weights 
of the harvest mass of the respective fields. With the 
help of field-based moisture content measurements, the 
yield values of each field finally were standardized to a 
dry matter content of 86 %, which is the ideal 
percentage of dry matter aspired for wheat harvest and 
which is also assumed in the outputs of the PROMET 
model. After these corrective steps, the yield map was 
considered to represent a reliable spatial validation 
raster data set.  
 
2.5. Assessing the Impact of Observation 

Frequency 

Although the EO/model system is designed to serve as 
decision support instrument throughout the course of the 
vegetation period, spatial validation of intermediate 
model outputs, such as aboveground biomass 
distribution, would necessarily result in the destruction 
of the crop. Validation therefore was confined to the 
output variable ‘yield’, where spatial in-situ 
measurements were available.  
The model was set up to calculate yield maps for the 
respective harvest days of the individual fields (around 
the middle of August) for both seasons. By gradually 
reducing the quantity of satellite observations included 
in the assimilation process and repeatedly comparing 
modelled against measured yield, the impact of 
observation frequency was assessed. Thereby, all 
possible combinations of the available satellite images 
for each observation quantity were iteratively applied to 
the model. To account for the intensive computational 
demands, the task was distributed to a 27-node cluster 
computer located at the Department of Geography of the 
LMU Munich.  
The model outputs generated from each possible 
combination of included observation dates were 
individually compared to the validation data set through 
direct regression between the modelled and the 
measured yield map. Accounting for different aspects of 
model accuracy, two statistical indicators were 
calculated for each combination. While the coefficient 
of determination (R²) indicates the agreement of spatial 

patterns, the Root-Mean-Squared-Error (RMSE) 
represents the agreement of absolute values between 
modelled and measured yield. The statistical results 
were averaged within categories of available 
observations (0, 1, 2, 3, 4, 5, 6*, 7*; *only 2011). The 
comparison of averaged results was preferred to the 
ranking of absolute values to give a more general 
indication of the change in confidence and stability of 
the model results with increasing temporal frequency of 
assimilated EO scenes.  
In order to analyse the importance of single observation 
dates as well, the model results were mined to find the 
combination of satellite observations that resulted in a 
model output with the best overall results. Assessing the 
achieved model accuracy in spatial as well as in 
absolute terms, the two complementary error indices (R² 
and RMSE) were normalized to the actual data range, 
thus generating equally dimensionless quality measures. 
The average of the two normalized error indices then 
was used as overall quality indicator, ranking the model 
outputs according to their agreement with the measured 
yield. The 20 % best performing combinations of each 
season then were selected (6 out of 32 for 2010 and 26 
out of 128 for 2011) and the actual observation dates 
that had been included in the simulation of the 
respective results were analysed, thus ranking the 
individual observation dates according to their positive 
impact on model accuracy.  
 
3. RESULTS & DISCUSSION 

3.1. Observation Frequency 

The results obtained for the season of 2010 show that 
the accuracy of the modelled winter wheat yield 
increases with respect to spatial patterns (increasing R²) 
as well as with respect to the simulation of absolute 
yield values (decreasing RMSE), when a higher number 
of EO data sets are included in the simulation 
process (Fig. 2).  
 

 
Figure 2. Statistical error indices derived from the 

spatial comparison of modelled and measured yield of 
winter wheat on >280 hectares on a test site in Saxony-
Anhalt (Germany) for the season of 2010 in dependence 

of the absolute number of satellite observations that 
were assimilated into the model. 

 



 

 
 

Figure 3. Results of modelled winter wheat yield (a-f) obtained for a subset of the test area (approx. 70 ha) for the 
season of 2010 in comparison to the calibrated measured yield map (g). 

 



 

The gradual increase of agreement between model 
outputs and spatial validation measurement is visualized 
in Fig. 3. It can be observed in Fig. 3a that without EO 
information the model results represent optimal growth 
conditions and thus overestimate yield. The spatial 
patterns are determined through the rough resolution of 
the static spatial input data sets (DEM, soil map etc.). 
By adding more and more satellite observations to the 
assimilation chain, these drawbacks are gradually 
resolved.  
It was also found in the results for 2010 that the RMSE 
decreased significantly, when up to four observations 
were included. The inclusion of a fifth satellite scene, 
however, did not result in a further 
improvement (Fig. 2). The agreement of spatial patterns, 
indicated through the R² value, nonetheless shows a 
definite increase with every observation that was added 
to the assimilation chain of the season 2010 with only 
one exception. Surprisingly, the model returned a 
slightly higher R² value without EO support compared 
to the average obtained when only one observation date 
was used. This is due to the fact that the variety specific 
parameterization of the PROMET model for the year 
2010 returned two clusters of data points (one relatively 
high, one relatively low). The resulting correlation only 
indicates an agreement of field averages and should not 
be statistically misinterpreted as positive correlation of 
in-field heterogeneities. The bold decline of RMSE with 
the inclusion of a single observation date nonetheless 
clearly indicates the positive effect of the additionally 
assimilated information on the model results.  
Also for 2011, a general increase of the regarded 
accuracy measures can be observed with an increasing 
number of EO scenes involved (Fig. 4).  
 

 
Figure 4. Statistical error indices derived from the 

spatial comparison of modelled and measured yield of 
winter wheat on >560 hectares on a test site in Saxony-
Anhalt (Germany) for the season of 2011 in dependence 

of the absolute number of satellite observations that 
were assimilated into the model. 

 
Again, the increase of accuracy is not linear, so that 
with an increasing number of included observations 
effects of saturation can be observed. While the gain in 
accuracy is strong when up to four scenes are 
successively added to the assimilation chain, including 

more than four scenes only led to a moderate but 
nonetheless positive increase of model accuracy. This 
saturation trend was equally observed for 2010 and 
2011. Nonetheless, the best results could be achieved 
for both seasons by using the maximum number of 
available observations (Fig. 3f; Tab. 2).  
 
Table 2. Statistical measures for the validation of both 

growing seasons (2010 & 2011), obtained under 
consideration of the respective maximum number of 

available observations. 

R² RMSE Area 
Season of 2010: 0.58 1.25 t ha-1 > 280 ha 
Season of 2011: 0.57 1.38 t ha-1 > 560 ha 

 
The results obtained for the season of 2011 (Fig. 3) 
seem to indicate more stable trends compared to the 
results for 2010 (Fig. 2). This on one hand may be due 
to the higher number of available EO acquisitions and 
the higher homogeneity of the EO data used for 2011 
(6 out of seven from the same system, i.e. RapidEye, 
see Tab. 1) but on the other may also be traced to 
smoothing effects induced by the larger area that was 
covered by the 2011 experiment (see Tab. 2). 
 
3.2. Observation Date 

Assessing the importance of single observation dates is 
difficult, mostly because it is not the calendar date that 
determines the information content contributed to the 
model through an EO image, but more the phenological 
stage that is covered by the observation. Phenological 
information unfortunately was not consistently available 
for both growth periods. It nonetheless could be verified 
that phenological development between both respected 
seasons was very similar, only differing significantly 
during the month of May, where the development 
during 2011 was accelerated by approximately one 
week compared to 2010. The results achieved for the 
two growing seasons therefore may well be jointly 
interpreted.  
It could be found for the season of 2010 that among 
the 20 % best performing combinations, the satellite 
observations from June 29th and from July 20th were 
selected most frequently (6 out of 6 times = 100 %), 
while the early observation from May 21st was least 
frequently represented among the best performing 
combinations (Fig. 5). Not only providing a higher 
number of available scenes, but also showing a more 
even distribution of observations in the course of the 
season, the analysis of the results achieved for the 
season of 2011 returned slightly different findings that 
nonetheless mostly confirm the results obtained for 
2010. From the 20 % best performing combinations of 
available observation dates for 2011 (26 out of 128), the 
RapidEye observation from the 2nd of June was selected 
most frequently (26 out of 26 = 100 %). Unfortunately, 
for 2010 no observation exists close to that date, so that 



 

the dominating importance of this observation cannot be 
confirmed. In accordance to the results found for 2010, 
the satellite observation from June 29th, which 
fortunately was available for both seasons, was second 
mostly selected (88 %). Additionally confirming the 
results achieved for 2010, the observation during May 
was significantly less often selected also for 2011, while 
the observation from the middle of July for both seasons 
seems to contribute average significant information, 
being selected 3 out of 6 times (50 %) for 2010 and 17 
out of 26 times (65 %) for 2011. This may be due to the 
fact that satellite observations during late July are likely 
to capture spatial growth patterns that distinctly appear 
during the ripening phase of the crop. Very late 
observations additionally may be of increased 
importance, when unforeseen damages are affecting 
yield even at late development stages.  
Interpreting the results, it has to be taken into account 
that, due to climatic differences, phenological 
development was approximately one week earlier 
during May 2011 compared to May 2010, while during 
the rest of the growth period the development was rather 
parallel between the two seasons. It therefore can be 
stated that observations covering the growth stages from 
BBCH 70 to 90 proved to be best suited for the 
modelling of yield, followed by observations from 
BBCH 50 to 70, while satellite images taken during 
BBCH stages 30 to 40 turned out to be least suitable for 
yield modelling. A sensor-related preference of 
observations could not be detected in the results. 
 
4. CONCLUSIONS 

Although the model results could only be validated 
through the variable yield, it can be assumed to some 
extent that correctly modelled yield is likely to be the 
result of equally correctly modelled plant development 

during the growing season, since many intermediate 
variables, such as phenological progress, photosynthetic 
performance, biomass accumulation etc., are directly 
influencing yield formation. According to our findings, 
the research questions posed in section 1 consequently 
may be answered as follows: 
 
1. At least four observations per season are required for 

the generation of a reliable information product on 
crop status, when the entire growing season shall be 
covered. If more than four observations are 
available, they should also be integrated into the 
assimilation process to further improve the model 
performance. Nonetheless, the gain in accuracy 
shows some saturation effects, if more than four 
observations are used. 
 

2. For the modelling of winter wheat yield in northern 
Germany, satellite observations from the end of June 
are ideal, followed by middle of July and end of 
April. Also high impact could be detected for one 
observation from 2010 that was taken shortly before 
the actual harvest (end of July). Unfortunately no 
corresponding observation was available for 2011, 
so that this effect could not be confirmed. Both 
seasons agree on the minimum information content 
of observations from middle of May. 

 
Our study emphasizes that global efforts of improving 
agricultural efficiency may strongly be supported by 
satellite monitoring. However, the results also imply the 
necessity of careful selection of EO acquisition dates for 
agricultural applications. According to our results, 
global earth observation activities should aim at reliably 
providing at least four spatially continuous datasets on 
field level during the growing period/summer. Thinking 

Figure 5. Frequency of selection of the EO dates that were available for the weeks of the seasons 2010 and 2011 
among the 20 % of possible combinations (6 out of 32 for 2010 and 26 out of 128 for 2011) that performed best in 

comparison to the validation data. 



 

globally, this would mean aiming for at least eight 
cloud-free data acquisitions at reasonable resolution for 
the monitoring of in-field heterogeneities (10-30 m) per 
year.  
Taking the challenges of obtaining multi-seasonal 
optical remote sensing data series into account, this goal 
will still require a lot of effort. Nonetheless, some 
elaborated EO systems are about to be launched in the 
near future, which are ideally designed for agricultural 
applications at the field level, e.g. the twin configuration 
of ESAs Sentinel-2. These systems will complement the 
existing data sources, such as Landsat 8 or RapidEye, 
and thus will strongly contribute to the goal of improved 
multiseasonal EO coverage. With the help of continuous 
multisensoral earth monitoring data streams, it will also 
become possible to more carefully assess the growth 
stage dependent impact of acquisition selection on the 
quality of agronomical information products. 
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