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ABSTRACT 

In this paper, we argue that the exploitation of EO land 
surface data for modelling and monitoring would be 
greatly facilitated by the routine generation of inter-
operable low-level surface bidirectional reflectance 
factor (BRF) products. We consider evidence from a 
range of ESA, NASA and other products and studies as 
well as underlying research to outline the features such 
a processing system might have, and to define initial 
research priorities. 

1. INTRODUCTION 

Optical remote sensing of the terrestrial land surface 
provides society with vital information on the state and 
dynamics of the part of our planet that we live in and 
depend on. The range of applications is wide: from 
physical measures relating to energy exchanges such as 
albedo or the fraction of shortwave radiation absorbed 
by vegetation, through monitoring of land cover, urban 
areas, ecosystem dynamics and crop yields, to 
monitoring the occurrence and spread of pest outbreaks 
and wildfire, to name but a few.  

Sensing and platform technologies are rapidly 
developing and there are increasing opportunities for 
local-scale monitoring from in-situ or UAV-mounted 
sensors (and of course there is a long tradition of 
monitoring from aircraft platforms), but the mainstay of 
global, region and national monitoring is data from 
Earth Observation satellite sensors. Part of the 
importance of these EO datasets comes from the ever-
increasing legacy collections that we now have, such as 
data from the Landsat programme going back over 40 
years or AVHRR for nearly as long. This provides 
opportunities not only for exploring and monitoring the 
current state of the planet but also for looking back at 
trends and impacts over recent decades. There is 
recognition of the importance of this legacy for climate 
and climate impact monitoring, and of the need to 
develop robust methods to extract the information we 
need from these and other data [1]. This has led to 
international efforts such as that of GTOS [2] that have 
specified the requirements for such ‘Essential Climate 
Variables’ (EVCs) and programmes such as the ESA 
CCI initiative [3] to implement and use the most 
appropriate algorithms to meet the scientific 
requirements. 

Although the emphasis has rightly been placed on 
generating the physical measures required (land cover, 
albedo, fire disturbance etc. for the land surface), we 

note that a high proportion of these make use of global 
optical EO data of various sorts and the majority of 
these need measures of surface directional spectral 
reflectance.  

Historical data are interesting and important but there is 
also a need to develop systems for monitoring the 
current state of the Earth land surface. Monitoring in 
this sense ranges from providing (near) ‘real time’ data 
for operational weather forecasting for meteorological 
agencies or information on fire or illegal logging 
activity, through to the provision of regular updates of 
land cover or other land surface properties. This is 
recognised in efforts such as the EU Copernicus 
programme [4] that aims to deliver environmental 
information services (one of which is land monitoring, 
another, climate change) for the benefit of EU citizens 
[5] and wider society. This involves the launch and 
maintenance of a suite of Sentinel satellites for the 
Copernicus Space Component as well as using data 
from other ‘Contributing Missions’. Although optical 
EO data cannot in itself serve all such needs, it again 
makes a crucial contribution. 

In summary, we need surface spectral directional 
reflectance from optical EO data for a range of roles 
involved in monitoring the land surface. Such data 
comes from many different sensors, on many platforms. 
The traditional approach to processing and interpreting 
such data has been to develop product suites from 
individual sensors (e.g. the MODIS land products [6]), 
but it has been recognised that there could be great 
benefits from improved coordination. This has led to the 
idea of seeing the combined set of satellite resources as 
a ‘virtual constellation’, one part of which is the Land 
Surface Imaging (LSI) Portal [7] that provides an 
interface to sensor information and data portals for a 
range of (optical and other) sensor data in a partially 
coordinated manner. Many of these datasets (in practice 
at present, mainly US data) are freely and easily 
available to users. ESA data are not directly included in 
this, but the revised ESA data policy [8] and free online 
access to many datasets [9] shows improvement in this 
area. US experience, for example within the MODIS 
and Landsat programmes, has clearly shown the benefits 
of easy, freely available data. The decision in 2008 to 
allow Landsat images to be downloaded free of charge 
has very significantly extended the use of these data and 
enabled the development of new approaches to 
processing and using such data: there are now more 
Landsat data downloads in one day than in a year when 
the data were sold [10]. This change in data policy has 
altered the way researchers use such data, practically 
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allowing for the first time practical multi-temporal 
approaches to imaging at moderate resolution. One 
advantage of such methods is that we are not limited to 
using the occasional ‘cloud-free’ scene, but can instead 
make use of all surface observations when we get them. 

On top of free and easy access to the raw image data, 
another reason for the success (certainly in terms of 
science use and impact) of such data has been the 
provision of (easily and freely available) derived low-
level datasets and tools. We consider low-level 
processing to include the treatment of: cloud and cloud 
shadow detection, ortho-rectification (topographic and 
sensor-related projection and sampling issues); basic 
feature detection (e.g. water bodies, snow, burned 
areas); atmospheric effects; and the BRDF effects. A 
fundamental requirement for the physical interpretation 
of EO signals is of course that the sensor is well 
calibrated. The role of such processing is to prepare the 
data for further analysis by accounting for (typically, 
‘correcting’) extraneous geometrical or radiometric 
effects and to allow access to the part of the signal that 
relates to land surface properties. Basic feature detection 
(a form of classification) can be important for targeting 
analysis at particular land surface elements (vegetation, 
for example) that may require different tools for 
interpretation. Song et al. [11] note that not all of these 
steps may be necessary or desirable for some 
applications, but when multi-temporal approaches are 
used (e.g. for change detection), they are more 
important. A danger with any modification of the 
measured signal can be that it can introduce artefacts 
that may cause misinterpretation [12], but for the vast 
majority of land surface monitoring scenarios (where 
both space and time are important dimensions) we 
suggest that placing all observations into the space of a 
regular sampling grid has distinct advantages. When 
some form of compositing algorithm is used, account 
should be taken of the true correspondence between the 
assumed pixel area and the sample grid cell. For the 
MODIS product suite, this is defined by a term obscov 
that gives the weighted proportion of the measurement 
covered by a grid pixel [13].  

2. A LAND OBSERVING SYSTEM 

2.1 An integrated Land Observing System 

We believe that all of the core technologies are now in 
place to develop an integrated Land Observing System 
(iLOS) and that such a system could play a key role in 
enabling the improved routine use of EO data and 
helping to fulfil the requirements of programmes such 
as Copernicus, the ECVs and related monitoring efforts.  

What then do we mean by an iLOS? The fundamental 
requirement we see for an iLOS is to provide (easily and 
freely available) gridded information on the best 
estimate of surface reflectance over a given spatial and 

temporal support at all wavelengths over the solar 
spectrum, along with associated per pixel uncertainty 
estimates (the concept could of course be expanded to 
other wavelength domains). We see this as the 
fundamental information that is required to generate 
land surface ECVs and other EO-based information 
services. Currently, significant efforts are spent in 
developing ‘tailor made’ datasets of this sort (e.g. within 
individual projects or countries), efforts that we believe 
would be better spent on an integrated effort. 

What uses would an iLOS have? First, it would provide 
the input data for higher-level algorithms for products 
such as LAI, land cover classification etc. Second, it 
would be of intrinsic value in directly providing an 
estimate of the (spectral and directional) shortwave 
energy interactions at the land surface, for example for 
energy budget studies, for sensor simulation studies, to 
aid the interpretation of atmospheric observations (by 
conditioning the lower boundary interactions). It would 
also provide an expectation of surface reflectance to aid 
the detection of non-land surface artefacts (clouds, 
cloud shadows etc.), provide data to aid in sensor 
calibration, as well as allow the simulation of data from 
proposed or forthcoming sensors. An advantage of an 
integrated system would mean that validation efforts 
might be more easily coordinated and targeted. As an 
integrated product, we intend that it should be capable 
of ingesting data from any optical EO instrument that 
sees that land surface, although the definition of the 
processing grid will condition the range of data spatial 
resolutions that would be usefully combined (which 
would seem to imply that a hierarchy of gridded 
representations would be most appropriate).  

It can be argued that diversity in methods and products 
is good for the community, but in practice there is little 
real variation in the robust treatment of low-level 
processing (often, rather arbitrary, historical or political 
choices about which models or datasets to use). 

2.2 BRDF/Albedo products 

A good starting point for consideration of what an iLOS 
might look like is the NASA MODIS MCD43 
BRDF/albedo and MOD09/MYD09 surface reflectance 
set of products [14, 15] at a base 250/500m spatial 
resolution, the former at an 8-day sampling and the 
latter daily (with potentially multiple samples per day). 
These products have been regularly generated over the 
MODIS era (2000 onwards) and have undergone 
algorithmic development and reprocessing to address 
any issues with the products and to make use of 
enhanced processing capabilities. It is seen (and has on 
the whole been funded as) as a long-term, strategic 
project to deliver high quality data that users require. It 
has also been backed up by the development of formal 
validation strategies (within CEOS-WGCV) and 
datasets, allowing users to know what confidence they 
might put in the products. MCD43 has currently 



 

achieved stage 3, and MOD09 stage 2 validation [16]. 
The products will soon be reprocessed for collection 6 
(C6). MOD09 provides gridded daily surface 
reflectance products from the NASA Terra and Aqua 
platforms, along with associated data layers describing 
basic scene features (cloud, cloud shadow, snow etc.), 
geometric information such as obscov and a host of QA 
information. It does not at present supply information 
on per pixel uncertainty. MOD09 provides the input 
data for the generation of MCD43. Estimation of the 
BRDF model parameters (that then allow the estimation 
of BRF at any angular configuration for which the 
models are valid, practically, up to around 70o zenith) is 
achieved by combining observations over a 16-day 
window (in 8 day steps in C5) and solving using linear 
least squares methods. If the sampling is insufficient for 
solving for the model parameters (3 per waveband), a 
backup algorithm is invoked that assumes prior 
knowledge of the BRDF shape. Some outlier detection 
is performed during the processing. One advantage of 
the product is that the estimates every 16 days are 
independent, so uncertainties should be uncorrelated. In 
practice this is likely swamped by correlation in the 
angular sampling regimes for each processing window 
(e.g. the solar zenith angle will be similar for 
neighbouring windows). The product flags whether the 
full or backup algorithms are used, providing a form of 
QA measure (but no uncertainty) and whether the input 
data were mostly over snow or snow-free conditions (as 
this can of course significantly affect the reflectance and 
the appearance or disappearance of snow within a 
compositing window can degrade the quality of the 
product.  

For a generic processing system, we should attempt to 
make use of generic radiative transfer (RT) models 
rather than imposing particular assumptions on the 
solution that may conflict with downstream 
applications. Fundamental technological breakthroughs 
that have allowed this for BRDF/albedo products 
occurred in the early-mid 1990s [17-19] with the advent 
of the MRPV and linear kernel-driven BRDF models. 
Various flavours of these models form the basis of all 
current operational products, and they have mostly been 
shown to provide very similar results in terms of fitting 
to observations and extrapolation. Comparisons between 
different broadband albedo products show very strong 
correspondence [20-21] showing that the discrepancy is 
mostly in the range +/- 0.02 and bias of around 0.01. 
This is quite remarkable given the differences in 
spectral characteristics, scale of observations and 
angular sampling regimes of the different sensors, and is 
one of the reasons that we have some confidence to 
propose combined reflectance products in an iLOS.  
One feature of these ‘semi-empirical’ BRDF models 
however is that they have no inherent ‘spectral’ 
components, so a different set of model parameters are 
required for each waveband to be processed.  

There currently exist then, various sensor-based global 
products for BRDF and albedo (e.g. NASA MCD43, 
NASA MISR, NASA MAIAC using MODIS data [22], 
EUMETSAT MSG Land SAF [23]). An exception, ESA 
GlobAlbedo [24] is designed to work with data from 
any moderate resolution optical sensor but produces 
only broadband albedo estimates (not spectral BRDF). 
All of these products use similar RT models and similar 
forms of input data to produce gridded descriptions of 
land surface reflectance mapped at core near-native 
spatial resolutions in the spectral space of the sensing 
instruments (e.g. for 7 MODIS land wavebands for 
MCD43). They also generally produce integrated 
broadband (visible, near infrared and total shortwave) 
estimates that have been seen to mostly agree within 
reasonable tolerance. It is a difficult task to tease apart 
what causes the remaining differences, but they are 
likely caused by model performance issues (e.g. in 
extrapolation), varying skill in atmospheric correction, 
and sampling differences (and different uncertainties) 
arising from ‘narrow to broadband’ conversion (i.e. the 
estimation of broadband albedo from narrow band 
spectral samples) and the angular configurations of 
sensor samples. Taberner et al. [21] comment that there 
is value in maintaining independent data product 
streams as they can be compared and serve to 
benchmark each other. Since most current products 
(other than GlobAlbedo and the MSG albedo product) 
do not produce per pixel uncertainty estimates that can 
provide assessment of the propagation of uncertainties 
throughout the processing chain, we can currently only 
compare mean estimates and cannot readily combine the 
products. This is of course further complicated by the 
use of different BRDF models. 

The MCD43 product was original designed to take 
observations from both MODIS and MISR instruments 
on the NASA Terra platform [25], but that has not yet 
been achieved, MISR instead producing its own albedo 
product using different models and assumptions, 
although [26] and [27] showed how a combined product 
(using a consistent model) offers improvements in 
sampling.  

An interesting feature of the MSG Land SAF product 
[23] is its use a temporal weighting function to combine 
observations rather than compositing over a fixed time 
window with constant weighting as in MCD43. This is 
conceptually similar to using a Kalman filter for the 
parameter estimation [28]. Another feature is the 
propagation of uncertainty in the approach, though the 
treatment of atmospheric correction uncertainty is 
simplistic. It produces BRF and albedo estimates, along 
with associated uncertainty, in the sensor bandpass 
channels (0.6-, 0.8- and 1.6 mm) in the MSG grid near 
real time. The concepts of temporal weighting and 
uncertainty propagation have also been used in the 
GlobAlbedo [24], but in that case, a fuller propagation 
of uncertainty in the treatment of atmospheric effects 



 

and gridding effects is implemented, including 
correlations in uncertainty between wavebands. 

Temporal processing for the large datasets involved in 
these products can be computationally expensive, but 
there can be much value in having an expectation of 
BRF. For instance: MOD09 processing in C5 makes use 
of the previous time step estimate of BRF from MCD43 
in estimating BRF shape to deal with surface 
atmosphere radiative coupling; Roy et al [29] use a 
previous estimate of BRF to detect sudden signal 
changes for burned area detection; because of the 
weighting scheme of the MSG Land SAF product and 
the GlobAlbedo product, information from previous 
(and in GlobAlbedo, future) time steps are passed 
through to constrain the BRDF model parameter 
estimates as a prior constraint. Another interesting 
product in this context then is MAIAC [22] which uses 
its accumulated estimate of BRF to detect outliers  
(residual clouds, cloud shadows etc. that are not flagged 
in initial pixel identification). This allows for improved 
‘cleaning’ of the dataset (to ensure that pixels are 
representative of the land surface reflectance), as well as 
an estimate of the BRF for atmospheric coupling and 
refined atmospheric correction. There is a not 
insignificant computational cost to such iterative 
processing, but the quality of the result seems very high. 

As noted, most BRDF/albedo products are generated 
using data from individual sensor types. This can 
greatly simplify the processing chain, especially when 
semi-empirical BRDF models are used as all samples 
are in a consistent set of wavebands and we have only to 
solve for the model coefficients. If we wish to combine 
data from sensors with different wavebands using these 
models, we have two main choices [30], either: (i) 
develop some set of spectral basis functions to apply to 
each of the model parameters and solve for the 
combined spectral-directional model parameters; or (ii) 
apply some (e.g. linear) transformations to map from 
one spectral band to an estimate in another. Both of 
these approaches have been considered for providing 
broadband albedo estimates from narrowband spectral 
samples, though typically the latter is used. To develop 
such transforms, RT simulations are generally run over 
a range of conditions to derive effective mapping 
functions. Since the accuracy of any transformation will 
depend strongly on particular instrument spectral 
sampling coefficients, the uncertainty in this transform 
should be propagated through, as in GlobAlbedo.  

The approach taken for GlobAlbedo builds on the work 
of [30] in this regard. In processing streams for e.g. 
MCD43 or the MSG product, the BRDF model 
parameters are first solved for in the spectral sampling 
space of the instrument. Linear transformations are then 
applied to convert the model parameters to broadband 
equivalents. Lewis notes [24] that provided a linear 
transformation is used, and provided the BRDF models 

are themselves linear (as in the class of kernel-driven 
BRDF models), and provided only broadband (i.e. not 
narrow band spectral) albedo estimates are required then 
the order of processing can be changed and we can use 
the linear transformations to map the input reflectance 
samples to broadband equivalents. So, a (relatively) 
simple processing chain is enabled within which 
atmospheric correction and flagging of clouds etc. is 
carried out in the spectral space of each sensor, but the 
surface spectral reflectance is transformed to broadband 
values on a grid, along with associated uncertainty from 
these processes. At the end of this ‘data preparation’ 
step for whichever sensor we use, (MERIS and SPOT 
VEGETATION for GlobAlbedo) we have a product that 
is very similar in form to MOD09, except that the 
‘wavebands’ represented are broadband values (and we 
have associated uncertainty). 

In the ESA ADAM project [31] this idea is taken further 
and a set of spectral basis functions developed (from 
spectral databases) to map from MODIS waveband 
sampling to full spectrum representations. This means 
that from estimates of the BRDF model parameters in 
the 7 MODIS bands, we can estimate the spectral 
directional reflectance at any angle of wavelength 
(along with associated uncertainty if uncertainty in the 
base product is provided). These basis functions also 
contain the information required to map from any other 
spectral sampling to MODIS sampling, although in 
practice it is preferable to develop specific functions for 
mapping from individual sensors to/from MODIS 
spectral space (or directly to the basis function space). 
This is a very interesting idea, and one that in many 
ways provides the final technology required to develop 
an iLOS. It can be seen to follow the excellent thesis of 
Samain [30] and illuminates how to implement what 
should be one of the key features of an iLOS (full 
spectral and angular coverage). In practice, it provides 
the information needed to use methods similar to that of 
GlobAlbedo where we transform all input datasets to a 
common spectral representation, but not now just for 
broadband coverage. Indeed, this was proposed as a 
refinement for ADAM. The choice of the MODIS 
spectral representation as the core spectral sampling is a 
little arbitrary, but pragmatic and convenient. In that 
context, the current MCD43 of MAIAC products (with 
uncertainty) could be to all intents and purposes, a 
contribution to an iLOS that we can use predict the 
spectral directional reflectance at any configuration. 
There are many advantages offered by using linear 
models throughout the processing chain: it simplifies 
the propagation of uncertainty, and allows for linear 
transformations e.g. between different waveband at will 
(e.g. taking a iLOS MCD43 to predict reflectance in 
MERIS bands), as well as the many others [32].  



 

3. A PROTOTYPE iLOS 

3.2 Overview 

We now attempt to demonstrate some of the features 
that an iLOS provides and to develop a prototype 
system. In doing so, we aim to take the best features of 
the various BRDF/Albedo products developed. At 
present, we limit the design to a single pass of 
processing, though obviously refinements (e.g. to 
atmospheric correction) could be made by iteration as in 
MAIAC.  

In essence, our proposal for a prototype iLOS involves a 
first-pass pixel identification and atmospheric correction 
with propagation of uncertainty using codes such as 
those developed in GlobAlbedo and ADAM (or 
MAIAC/MCD43). During this processing, a gridded 
product is generated in the MODIS grid and spectral 
space (at 10 km for ADAM processing). We then have a 
set of synthetic MODIS inputs, as well as actual 
MODIS (MOD09) observations. 

We keep track of three versions of land surface state, as 
in GlobAlbedo processing: snow-free, snow and actual 
(snow or snow-free) conditions, represented by an initial 
estimate of the BRDF model parameters for such 
conditions, for the first day that we wish to ingest data 
(doy 001, 2005 in the example processing here). We 
have developed these initial estimates from MCD43 
climatologies to demonstrate principles here, and then 
refined the estimate by reversing the order of data in the 
first month (to mimic boundary conditions has we 
processed further years of data). 

In the next stage, we apply a Kalman Filter with a zero-
order process model to these data. For each day of 
processing, we read each dataset for that day (in time 
order of acquisition) and refine the pixel identification 
by detecting outliers as unexpected values. We then 
apply the Kalman filter to the remaining samples and 
update out estimate of state (BRDF parameters). When 
we reach the end of the time series, we process the data 
in reverse order and combine the results to achieve 
processing with a Kalman smoother. This provides the 
posterior estimate of state and its uncertainty, on a 500 
m grid for (in this case) daily time steps. 

3.2 Spectral mapping 

Although it requires some further investigation, we 
suppose (as in the ADAM project [31]) for the present 
that a spectral representation in MODIS waveband 
space is sufficient to permit full spectrum mapping (at 1 
nm intervals). This greatly simplifies processing chains, 
as the core requirement then is to derive a representation 
of BRDF model parameters in these wavebands. This is 
clearly trivial for MODIS data. For other sensors, we 
develop linear models for example from SPOT VGT 
and MERIS: 

𝑅!"#$% = 𝑅!!"# +𝑀!"#𝑅!"# 

𝑅!"#$% = 𝑅!!"#$% +𝑀!"#$%𝑅!"#$% 

Examples of these are shown (developed in the ADAM 
project) in Fig. 1, developed using a range of spectral 
databases for MERIS. Fig. 1 also shows the normalised 
eigenvalues associated with these functions (along with 
cumulative values). We can see that functions 9 to 15 in 
Fig. 1 have rather high (positive and negative) 
magnitude but only contribute a small amount to the 
variance in the spectra. It is probably worthwhile then 
applying some cutoff to this set of functions rather than 
using the full set. We also see that the main role of these 
higher order basis functions is in predicting the MODIS 
reflectance at wavelengths longer than those sampled by 
MERIS, which will in any case have a significantly 
higher uncertainty than the prediction of reflectance in 
the visible and near infrared bands. Similar information 
is available for mapping from the SPOT VGT 
wavebands to MODIS. In this case, we are attempting to 
map from 4 input wavebands to the 7 MODIS bands and 
at least 3 basis functions will be required for this. 

 
Figure	  1.	  Left:	  MERIS	   to	  MODIS	  basis	   functions;	  Right:	  
Normalised	   Eigenvalues	   associated	   MERIS	   basis	  
functions	  

 
Figure	   2.	   RMSE	   over	   independent	   test	   spectra	  
(Left:MERIS,	  Right:	  VGT)	  

	  
Figure	   3.	   Reconstruction	   of	   Alder	   spectrum	  
(Left:MERIS,	  Right:	  VGT) 

Fig 2. shows the RMSE achieved in the mapping using 
a test spectral database for MERIS (left) and VGT 
(right) to MODIS mapping. Unsurprisingly, the errors at 
the unsampled (longer wavelength) bands are relatively 
high, but provided we characterise this correctly and 
propagate the uncertainties, we should still achieve a 



 

consistent product. The case of VGT is in many ways 
simpler. Although the error is generally higher, it is 
relatively consistent across MODIS wavebands, due to 
the fuller spectral sampling offered by this instrument. 
Fig. 3 shows example reconstructed spectra in MODIS 
wavebands, given these mapping functions and spectral 
samples in MERIS (left) and VGT (right) wavebands. 
We see that even in the case of MERIS, the correlations 
inherent in reflectance spectra allow a reasonable 
mapping to MODIS wavebands, with larger errors in the 
VGT and MERIS mappings corresponding to where we 
see higher overall errors in Fig. 2.  

3.3 Outlier detection 

Although first-pass pixel identification (identification of 
snow, cloud etc.) can be quite successful, it is never 
completely so and we must expect the masked surface 
reflectance dataset to contain contamination. This is 
likely to be better for some instruments than others (e.g. 
it is generally easier to detect cloud if a thermal band is 
available). Whilst the modelling of temporal parameter 
development with a Kalman filter/smoother will be 
robust to outliers to some extent, it is preferable to 
remove them from consideration. Further, improved 
pixel identification can lead to improved atmospheric 
correction in a multi-pass system such as MAIAC. In 
the prototype, we apply a simple but seemingly robust 
approach in which we compare each pixel initially 
identified as clear with a simulation of the image (at the 
correct viewing and illumination angle configuration) 
and calculate a form of Z-score between the predicted 
and observed values (relative to the uncertainty in the 
measurement and the prediction). We then examine 
samples for which the Z-score is over a given threshold 
(3.0 here) to make a decision to reject them as snow or 
snow-free samples. The use of different state estimates 
for snow and snow free conditions adds to the 
processing time, but seems to allow much better 
filtering of outliers (as well as interesting by-products). 

3.4 Kalman Filter/Smoother 

We initialise the processing with a prior estimate of 
state for the first day we consider (001, 2005 here), and 
then apply the Kalman Filter to update the state estimate 
for pixels that are flagged as uncontaminated land 
surface observations. We also ingest pixels identified as 
clear and snow free into the update of the snow-free 
state, and similarly for the snow state. We then step on 
to the next day with our zero-order process model, 
inflating the uncertainty by our expectation of change 
(i.e. departure from this model) in this time period (a 
standard deviation of 0.001 here). This process is then 
iterated, moving over each day until the end of the time 
series. For each time period we have observations, we 
write out a state representation file (in netCDF format) 
on the forward pass through the data. We then 
implement a return pass to achieve a Kalman smoother 
where we load the state file and in essence combine this 

with the state estimate from the reverse sweep. In both 
forward and reverse sweeps, we keep careful track of 
pixels identified as outliers, with the intention of 
studying these for persistent effects that may be 
indicative of fire activity or other causes of dramatic 
change to the land surface state. 

4. RESULTS 

	  

	  

	  
Figure	  4.	  State	  estimates	  over	  Scotland,	  shown	  as	  BHR	  
RGB	  true	  colour	  composites	  for	  snow-‐free	  (top),	  snow	  
(middle),	  and	  actual	  (bottom)	  conditions.	  DOY	  1	  2005. 



 

We have performed an initial implementation of the 
algorithm, and initial testing (using only MODIS Terra 
and Aqua data, for the year 2005) over Scotland. This is 
a challenging environment to do land surface 
monitoring, due to high cloud cover and complex snow 
impacts. This is illustrated in Fig. 5, which shows the 
cumulative (obscov-weighted) number of samples from 
MODIS available over the area by the end of February 
2005. This is very small over mountainous areas, but we 
can see in Fig. 6 that we have captured the dynamics of 
the snow cover well with this. 

 
Figure	   5.	   Cumulative	   weighted	   number	   of	   MODIS	  
(Terra	  and	  Aqua)	  samples	  between	  1st	  Jan	  and	  28th	  Feb	  
2005	  (total,	  snow	  and	  clear). 

 
Figure	   6.	   BHR	   estimates	   over	   Scotland,	   as	   RGB	   true	  
colour	  composite	  for	  actual	  conditions:	  DOY	  59	  

Figs. 4 and 6 illustrate the state datasets on the 500 m 
MODIS grid and MODIS wavebands. We have not as 
yet produced any validation of the product, but a visual 
inspection confirms the data to be of high quality. In 
particular, the appearance and disappearance of snow is 
consistent in these data over Scotland with historical 
weather reports and other dynamics as expected.  

5. DISCUSSION 

The algorithm we propose and prototype here is in 
many ways, simple and elegant. It takes heterogeneous 

input datasets to/from a homogeneous representation (as 
in GlobAlbedo) to enable it to function with any optical 
input datasets. Of vital importance to this step is the 
estimation of uncertainty inherent in the observations 
(sensor calibration uncertainty and gridding effects), in 
the treatment of atmospheric effects, and in estimation 
of reflectance at MODIS wavebands (or some other 
basis set) and the application of data assimilation (DA) 
methods through the use of the Kalman Filter/smoother. 
Whilst this is one of the simplest DA methods available, 
it is the most relevant to use in this context where all 
models are linear. As demonstrated previously with 
MAIAC and further shown here, outlier detection can 
be simply and robustly applied once an expectation of 
surface state is available. We have not yet investigated 
other potential improvements likely to be provided by 
this expectation, e.g. improved atmospheric correction 
etc., but this is likely to occur with this form of 
processing as with MAIAC.  

Although we suppose the core processing grid to 
(conveniently) be at 500 m resolution here (to match 
MODIS datasets), it is very likely that the estimates of 
surface state obtained will enable the improved 
conditioning (e.g. atmospheric and BRDF correction) of 
higher resolution datasets by providing an expectation 
of coarser scale reflectance in a similar manner to many 
recent studies using MODIS and Landsat TM data. It is 
also likely to have significant impact when processing 
coarser resolution datasets, particularly for improved 
methods of (sub pixel) cloud detection.  

Whilst there is clearly further work required to fully test 
this and develop an operational algorithm, the ideas 
behind it are based on methods used in the processing of 
existing land surface products, so development is likely 
to be rapid. 

This form of a processing system should be robust and 
generic in providing routine estimates of surface BRF 
(with by-products, albedo, normalised BRF, snow-free 
BRF, change events). By using generic linear models 
throughout, practical algorithms can be developed that 
are in keeping with the desire for not over-constraining 
the BRF estimates. The approach provides a route for 
the integration of data from heterogeneous (in 
wavebands and spatial scale of observations) data 
sources, and does so within a Bayesian framework that 
tracks uncertainties throughout. 

Research priorities we identify include: implement, test 
and compare demonstrator products, including the 
testing some options (e.g. change detection); get 
community by-in to the idea and agree the broad 
approach and requirements; define conditions to be met 
for merging data streams (learning from existing 
operational DA; and further investigate spectral 
mapping issues; and demonstrate and test spatial scaling 
concepts.
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