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ABSTRACT 

Assessing the accuracy of image classification results is 
an important but often neglected step. Accuracy 
information is necessary in assessing the reliability of 
map products, hence neglecting this step renders the 
products unusable. With a classified Landsat-7 TM 
image as reference, we assessed the accuracy of NDVI 
and linear spectral unmixing (LSU) in vegetation 
detection from 20 randomly selected MERIS sample 
pixels in the Winam Gulf section of Lake Victoria. We 
noted that though easy to compute, empirical scaling of 
NDVI is not suitable for quantitative estimation of 
vegetation cover as it is misleading and often omits 
useful information. LSU performed at 87% based on 
RMSE. For quick solutions, we propose the use of a 
conversion factor from NDVI to vegetation fractional 
abundance (FA). With this conversion which is 96% 
reliable, the resulting FA from our samples were 
classified at 84% accuracy, only 3% less than those 
directly computed using LSU.  

 

1. INTRODUCTION 

The need for improved satellite data and information 
extraction methods for global land cover mapping 
cannot be overemphasised. Accuracy assessment is a 
critical part of the quality assurance procedure 
(Latifovic & Olthof, 2004), and it is therefore essential 
that researchers and users of remotely sensed data have 
a strong knowledge of both the factors needed to be 
considered as well as the techniques used in performing 
any accuracy assessment (Congalton, 1991).  

When estimating the extent of aquatic vegetation cover, 
accurate mapping is important for two reasons. First, an 
accurate estimate of vegetation cover in the lake 
provides reliable information to the lake management 
authorities used to aid in decision making particularly 
with regard to vegetation control. Second, the 
information also improves the quality of related studies 

which rely on vegetation cover estimates for their 
analyses.  

Researchers have responded by applying various 
techniques to map aquatic vegetation and to quantify the 
extent of its cover. These include, among others, 
empirical scaling of NDVI (Ma et al. 2008, Fusilli et al. 
2013) and linear spectral unmixing (Cheruiyot, 2012). 
Information about the accuracy the maps afforded is not 
always provided. Therefore the reliability of such 
products is not guaranteed and the intended user 
questions their validity. 

Both map producers and users benefit from 
accuracy assessment. To the producers, it is a means 
through which they communicate product limitations to 
users, leading to appropriate map use (Latifovic & 
Olthof, 2004). It also helps them to evaluate and 
compare the effectiveness of various classification 
methodologies, ultimately helping to improve their 
products. To the users, this information is useful in 
ascertaining the level of reliability of the products. Our 
research questions are thus; do the methods that have 
been applied to estimate vegetation cover in inland 
waters provide accurate results? And how can the 
accuracy and precision of the algorithms be tested? 

Accuracy assessment has greatly evolved over the 
past three decades since early 1980’s, with some of the 
earliest forms as casual as ‘It looks good' (Congalton, 
1991). Congalton (1991) provided a summary of all the 
standard techniques used in accuracy assessment, and 
noted that the error/confusion matrix has become one of 
the most commonly used method of classification 
accuracy assessment. It requires a lot of manual effort to 
sample and to identify homogeneous regions for the 
reference pixels. This method also largely relies on the 
assumption that the reference pixels represent the pure 
cover components (endmembers) (Asis et al. 2008), 
which may not be the case, especially when the 
reference pixels are large. 

In this study, we assess the accuracy and precision 
of two algorithms: empirical scaling of spectral indices 
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(NDVI) and linear spectral unmixing in estimation of 
vegetation cover in the lake. We assess classification by 
performing correlation between the classified results 
and the reference data. Here, we use as our reference 
data the classification results of higher resolution 
imagery.  

 

2. STUDY AREA 

Our study area is Lake Victoria, East Africa in general 
and Winam Gulf section in particular. It stretches 412 
km from north to south between 0° 30' N and 3° 12' S 
and 355 km from west to east between 31° 37' E and 
34° 53' E. The lake, which is the largest of all African 
lakes, is also the second largest freshwater body in the 
world, with an extensive surface area of 68 800 km2. 
Fig. 1 shows the geographic location of Lake Victoria.  

 

Figure 1. Geographic location of Lake Victoria in East 
Africa (a) and Africa (b), (c) Zoomed-in Winam Gulf 
section of the lake 

The almost enclosed shallow section of the lake is more 
vulnerable to vegetation invasion perhaps due to high 
levels of eutrophication. Earlier work of (Cheruiyot, 
2012) and (Fusilli et al. 2013) show that vegetation 
proliferation is preceded by high levels of water quality 
indicators of eutrophication such as total suspended 
matter (TSM) by about two months. The most prevalent 
of these invasive weeds include the non-native water 
hyacinth and hippo-grass. The weeds are associated 
with many adverse effects which include obstruction to 
fishing, navigation and irrigation, interference with the 
aquatic biodiversity, water quality deterioration and a 
general risk to public health (Mailu et al. 2000, Albright 
et al. 2004). The lake is an important economic resource 
to the three riparian countries, Kenya Tanzania and 
Uganda through fishing and transport, as well as 
providing a livelihood for the local communities. 

 

3. MATERIALS AND METHOD 

3.1 Data 

We test the performance of the algorithms in estimating 
vegetation cover with medium resolution imagery by 

comparing them with higher resolution imagery. The 
medium resolution imagery used is MERIS FR (full 
resolution mode), while the high resolution imagery 
used for validation is Landsat-7. The specifications of 
this data is summarised in Tab. 1.  

 

Table 1. A summary of satellite data used in the study 

Sensor Date of 
acquisition 

Spatial 
resolution 

Spectral 
resolution 
(Visible and 
NIR) 

MERIS FR 15 Dec 2010 300 m 15 bands 

Landsat-7 TM 15 Dec 2010 30 m 5 bands 

 

The other data required for this study includes spectral 
measurements of some endmembers for use in 
classification. Here, we use the spectral library for Lake 
Victoria developed by (Cheruiyot, 2012). This library 
was developed following a field campaign conducted in 
Lake Victoria in December 2010. Fig. 2 shows a 
compiled spectral endmember library that was used for 
classification in this study for MERIS images, while 
Fig. 3 is a compiled spectral endmember library for 
Landsat-7 images. 

 

 

Figure 2. The MERIS endmember spectral library used 
in classification 

 



 

 

Figure 3. The Landsat-7 endmember spectral library 
used in classification 

 

3.2 Pre-processing 

To use the satellite data, we convert the sensor radiance 
values into reflectance values and perform atmospheric 
corrections. Atmospheric corrections of MERIS data 
were performed using SMAC Processor 1.5.203 (a 
Simplified Method for Atmospheric Corrections of 
satellite measurements) (Rahman & Dedieu, 1994), 
incorporated in the software package BEAM (Basic 
ERS & Envisat (A) ATSR and Meris Toolbox). It is a 
semi-empirical approximation of the radiative transfer 
in the atmosphere which takes into account the 
attenuation due to atmospheric absorption and radiance 
of the scattered skylight. We used FLAASH (Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes), 
an atmospheric correction code based on the 
MODTRAN 4 (MODerate resolution atmospheric 
TRANsmission) radiative transfer model, to convert 
Landsat TM sensor radiance to apparent reflectance.  

 

3.1 Empirical scaling of spectral indices 

Normalized Difference Vegetation Index (NDVI) 
(Rouse et al. 1974 & Deering, 1978) is a dimensionless 
quantity which is an indicator of the greenness of 
vegetation in a scene, and is based on the contrast 
between the maximum reflection in the near infrared 
(NIR) caused by leaf cellular structure and the 
maximum absorption in the red (R) due to chlorophyll 
pigments (Haboudane et al. 2004). It is expressed as a 
ratio of the difference and the sum of NIR and R bands: 

RNIR
RNIRNDVI






                (1) 

Among the many vegetation indices that exist 
(Jackson & Huete, 1991), Viña et al. 2011), NDVI is the 
most commonly used indicator of vegetation parameters 
in remotely sensed data (Elmore et al. 2000, Haboudane 

et al. 2004) for global vegetation mapping. Though 
NDVI is not designed to compute the spatial extent of 
vegetation in a scene, it has been applied to estimate the 
vegetation cover in various studies, both terrestrial 
(Lunetta et al. 2006), Xiaoxia et al. 2008) as well as 
aquatic (Ma et al. 2008, Fusilli et al. 2013). When 
applied in this sense, a means to convert NDVI values 
into areal estimates must be established. Empirical 
scaling of spectral indices is commonly used. The 
challenge, however, is the accuracy in determining 
thresholds separating the various feature classes in the 
scene. Fusilli et al. (2013) estimated the aquatic 
vegetation cover in Lake Victoria using the scaling: 

    (2) 

 

3.2 Linear spectral unmixing (LSU) 

Linear Spectral Unmixing (LSU) is a supervised 
classification technique which is based on the 
assumption that the observed reflectance of a pixel at 
any given wavelength band is a linear combination of 
the reflectance of several individual class features 
represented in that pixel at that wavelength, and the 
contribution of each depends on its respective 
abundance. Therefore the reflectance, Rk of a pixel at 
wavelength k can be expressed as; 
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Ei,k is reflectance of endmember i at wavelength k, ai is 
the abundance of endmember i, n is the number of 
endmembers, and εk is the residual error at wavelength 
k. For proper functioning of the model, two conditions 
are introduced; the sum to one condition, Eq. 4, and 
positivity condition, Eq. 5.  

1
1




n

i
ia                     (4) 

10  ai                 (5) 

A constrained model is one which applies any of these 
two conditions. A model operating with both conditions 
is said to be fully constraint, while an unconstraint 
model operates without any condition. The number of 
spectral bands in an image introduces a limitation to the 
number of endmembers that can be used for unmixing 
(Theseira et al. 2002), so that it must always be less 
than the number of available bands in the multispectral 
image, m: 

mn                               (6) 



 

LSU is one of the Spectral Mixture Analysis (SMA) 
techniques which are used to decompose a mixed pixel 
into various distinct components. It is most suitable 
where the spatial resolution of the satellite data is 
relatively course. It has been applied in various 
researches which include analysis of rock and soil types 
(Adams & Smith, 1986), desert vegetation (Smith et al. 
1990), land-cover changes (Adams et al. 1995), 
estimation of urban vegetation abundance (Small, 2001 
& Small, 2003), and delineating potential erosion areas 
in tropical watersheds (Asis et al. 2008). Non-linear 
mixture models also exist (Liu & Wu, 2005), but LSU is 
by far the most common type of SMA, and is widely 
used because of its simplicity and interpretability (Asis 
et al. 2008).  

 

3.3 Sample Pixels and analysis 

We sampled out points within Winam Gulf where 
classification accuracy would be assessed. We randomly 
selected 20 sample pixels scattered within the Winam 
Gulf from MERIS and export them to Landsat, where 
the corresponding Landsat-7 pixels were identified. One 
MERIS pixel corresponds to 10 by 10 Landsat-7 pixels. 
Fig. 4 shows these sample points. Fig. 4(a) shows the 
sample pixels labeled M1 – M20, 4(b) is a zoomed-in 
MERIS pixel, while 4(c) shows the corresponding 100 
Landsat-7 pixels. With the 300 m spatial resolution 
MERIS imagery, we use as our reference data the 30 m 
spatial resolution Landsat-7 imagery for accuracy and 
precision determination of both NDVI scaling and LSU 
classification methods. 

 

Figure 4. (a) Location of the 20 randomly selected 
sample pixels, (b) M1 MERIS pixel (300 m), (c) 
Corresponding 100 Landsat TM pixels (30 m) 

 

We apply the NDVI scaling in Eq. 2 to assess accuracy 
and precision of NDVI in vegetation estimation from 
the selected sample pixels. NDVI was computed from 

Landsat TM using band 3 and band 4, centered at 660 
nm and 825 nm, for R and NIR respectively. For 
MERIS NDVI, we used bands 7 and 13, centered at 664 
nm and 865 nm, for R and NIR respectively. These two 
pairs of R and NIR are the closest we could obtain from 
MERIS and Landsat TM.  

 

Figure 5. Field measurement of water hyacinth 
spectrum 

 

Using different values of R and NIR for the two datasets 
inevitably lead to some difference in computed NDVI 
from the two images. With in-situ spectral 
measurements of water hyacinth shown in Fig. 5, we 
assessed the effect of this difference, and found that it’s 
magnitude is in the order of NDVI = 0.005, which is too 
small to cause any significant impact on our results. For 
Landsat TM, we first obtained the mean reflectance of 
band 3 and band 4 from the 100 pixels before using 
them to compute NDVI value corresponding to one 
MERIS pixel. This is because NDVI is a non-linear 
parameter, and mean NDVI cannot be computed 
directly. 

With exactly the same 20 sample pixels as were 
used for the NDVI accuracy assessment, we apply a 
fully constrained LSU with five endmembers to assess 
accuracy and precision of spectral unmixing in 
vegetation estimation. The five endmembers are four 
water classes at varying eutrophication levels and one 
vegetation class (see endmember spectral libraries 
shown in Fig. 2 and 3). These are the predominant 
feature classes in the image, identified following an 
unsupervised classification (Cheruiyot, 2012).  

 

4. RESULTS AND DISCUSSION 

We assess the scaling of NDVI for the 20 randomly 
selected sample pixels M1 – M20 following the work of 
Fusilli et al. (2013), where NDVI scaling given in Eq. 2 
was used. Tab. 2 is a summary of this analysis. The 



 

‘NDVI’ column shows NDVI value of the 100 pixels 
corresponding to the one sample MERIS pixel, while 
‘Classification’ column gives an appropriate 
classification of that NDVI value according to the 
NDVI scaling of Eq. 2. The next three columns provide 
the distribution of the 100 Landsat-7 according to their 
NDVI values to the three classes of Eq. 2; ‘Floating 
vegetation’ (FV), ‘Submerged vegetation’ (SV) and 
‘Open water’ (OW).  

 

Table 2. A summary of the NDVI scaling of some 
selected sample pixels  

Sample 
Pixel 

NDVI Classification FV SV OW 

M1 0.64 FV 97 1 2 

M2 0.19 OW 11 28 61 

M3 0.85 FV 100 0 0 

M4 0.04 OW 0 0 100 

M11 0.36 SV 42 10 48 

M12 0.38 SV 40 7 53 

M18 0.43 FV 42 13 45 

M19 0.27 OW 27 4 69 

 

The table shows NDVI computed from mean band 3 
and band 4 reflectance of 100 subpixels for each sample 
pixel, and an appropriate classification following NDVI 
scaling of Eq. 2. A closer look at these results reveals 
serious classification issues. M11, for instance, has a 
mean NDVI of 0.36, which effectively places it in SV 
category. However, only 10% of the reference pixels 
actually fall in this category, while the other 90% are in 
the other two categories. By classifying M11 as SV, one 
treats all 42 FV pixels and 48 OW pixels as if they were 
all SV pixels. Similarly, 27 pixels of FV in M19 are 
completely ignored in vegetation cover estimation, since 
the average NDVI places it as OW. This shows that 
scaling of NDVI can be misleading along the border of 
two distinct endmembers. Quantitatively, there are 9 out 
of 20 sample pixels classified as FV, which gives 
vegetation abundance of 0.45. With the mean vegetation 
abundance of these 20 pixels from the reference data 
being 0.3, then this estimation is only 50% accurate. 

A comparison was made for fractional abundance of 
vegetation as derived by LSU from MERIS imagery and 
from the reference data, Landsat-7 TM (see Fig. 6). It is 
seen here that MERIS image was classified with an 

accuracy of 87% (R2 = 0.78 and RMSE = 0.13) with 
Landsat-7 as reference.  

 

 

Figure 6. A scatter plot showing a correlation between 
vegetation fractional abundance values obtained from a 
MERIS pixel and the corresponding mean fractional 
abundance values obtained from Landsat-7 pixels over 
the same scene 

 

In this case LSU performs 37% better than NDVI in 
estimating vegetation cover. Computation of LSU 
requires a good compilation of endmembers in addition 
to the satellite imagery. Performance of LSU largely 
depends on the quality of the selection of endmembers. 
On the contrary, scaling of NDVI is easy to compute as 
one needs no ancillary data other than the NIR and red 
bands from the imagery. However, NDVI does not 
directly provide areal vegetation cover estimates. We 
explore relationship between fractional abundance and 
NDVI provided in Fig. 7 to establish a conversion factor 
from NDVI to FA, which could be used to more easily 
estimate actual vegetation cover. 

Fig. 7 shows a relationship between NDVI and 
fractional abundance over the lake area, both derived 
from the same image.  The relationship is non-linear, an 
indication that NDVI should not be used to directly 
estimate areal cover of vegetation.  While FA is a linear 
parameter, NDVI is not. It saturates at high levels of 
vegetation density especially from NDVI = 0.7, so that 
any further increase in vegetation does not give a 
proportionate increase in NDVI. 
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Figure 7. The horizontal axis is vegetation abundance, 
FA (= 1 - water abundance). The dotted line is the red 
(R) band, assumed to go down linearly from 0.12 (pure 
water) to 0.01 (pure vegetation). Dashed line is NIR, 
going up from 0.07 to 0.46. The solid curve is NDVI = 
(NIR – R) / (NIR + R), and the dots are the computed 
FA vs. NDVI for all pixels inside the shoreline 

 

We obtain an equation that best describes the curve of 
Fig. 7. We did this by selecting two pixels that we 
identified as being homogeneous; one with pure 
vegetation and the other with pure water and obtained 
their R and NIR values. Assuming linearity, we 
obtained the rate of their change over the vegetation 
abundance from 0 to 1, as shown in Fig. 8.  

 

Figure 8. The equations describing the rate of change of 
R and NIR values between pure water and pure 
vegetation pixels 

Substituting the gradient equations of R and NIR in Fig. 
8 into the NDVI Eq. 1 gives the relationship between 
vegetation abundance (FA) and NDVI; 

 
 193.02771.0

0566.05083.0





FA
FANDVI

             
(7) 

Solving for FA, Eq. 7 becomes; 

 
NDVI

NDVIFA





2771.05083.0
0566.0193.0              (8) 

The solid line in Fig. 7 corresponds to Eq. 8. With this 
relationship, we can easily convert NDVI value to its 
corresponding vegetation FA value for any pixel within 
the lake. We tested the reliability of this relationship 
with Landsat TM data, by comparing FA as computed 
directly from Landsat TM data to FA obtained by 
converting Landsat TM NDVI using Eq. 8. As shown in 
Fig. 9, these two sets of FA correlates with R² = 0.9771 
(and RMSE = 0.04), which shows 96% reliability of the 
conversion Eq. 8 from NDVI to FA. 

 

 

Figure 9. A scatter plot showing a correlation between 
vegetation FA as computed from a Landsat TM and the 
corresponding FA obtained by converting Landsat TM 
NDVI values 

 

 

Figure 10. A scatter plot showing a correlation between 
vegetation FA values obtained from a MERIS pixel and 



 

the corresponding FA values obtained by converting 
NDVI values over the same pixels 

Using Eq. 8, we converted MERIS NDVI to the 
corresponding vegetation abundances. We tested the 
accuracy of the resulting vegetation abundance values 
as compared with our reference data, Landsat TM 
vegetation fractional abundances (see Fig. 10). It is 
observed here that the converted FA values were 
classified at R² = 0.73 (and RMSE = 0.16) which shows 
84% accuracy. 

Results of Fig. 6 and 10 reveal that LSU performs better 
than NDVI by about 3%. One reason is that the 
conversion factor of Eq. 8 is not entirely perfect, and the 
other is that LSU makes use of many bands in 
computing the fractional abundances, while NDVI is 
limited to only two. Even though it is not easy to tell the 
contribution of each of the extra band to the overall 
accuracy of LSU, the increased spectral dimensionality 
certainly improves the detection of vegetation and 
discrimination from other feature classes. The 
difference of 3% in accuracy obtained by the two 
approaches; directly computing FA using LSU and 
converting NDVI to FA, is however small compared to 
the difference in ease and technicality involved in 
computing them. 

 

5. CONCLUSIONS AND 
RECOMMENDATIONS 

We have examined the performance of LSU and NDVI 
in vegetation detection and vegetation area estimation. 
Using a classified 30 m spatial resolution Landsat-7 TM 
as our reference data, we tested the performance of 
NDVI as well as LSU in detecting vegetation from a 
300 m spatial resolution MERIS imagery. Results reveal 
that scaling of NDVI may produce biased results when 
dealing with inhomogeneous regions as it assigns the 
entire pixel to one of the available class features. 
Consequently, some information in the pixel contributed 
by the other features that were not selected is entirely 
ignored. We therefore find scaling of NDVI quite 
inaccurate and unreliable for quantitative analysis of 
heterogeneous surfaces. On the other hand, LSU 
decomposes the pixel into various class features 
according to their relative abundances, and no 
information is discarded. Compared to the reference 
data, LSU with five endmembers classified MERIS 
image at 87% accuracy.  

Despite the limitations of empirical scaling of NDVI in 
vegetation area estimation, it is a lot easier to compute 
NDVI as it requires no ancillary data unlike LSU which 
requires, in addition to multispectral image, a well-
defined endmember spectral library. Besides, one 

requires other ancillary data to perform atmospheric 
corrections to the image before applying LSU. We have 
proposed a relationship that could be used to convert 
pixel NDVI values to pixel vegetation FA values in our 
study area of aquatic vegetation. The conversion 
relationship of NDVI to FA is 96% reliable, i.e. the 
converted FA compares to the directly computed FA by 
R² = 0.9771. Application of this conversion to MERIS 
NDVI produced vegetation FA which is 84% accurate 
compared to the reference data. This is only about 3% 
less accurate than what would be obtained by directly 
computing FA using LSU. The relationship may vary 
for various applications such as for terrestrial and 
aquatic environments.  
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