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ABSTRACT

This  paper  describes  an  application  of  ANN  for  the 
simultaneous  estimation  of  the  columnar  content  and 
height of the SO2 plume from volcanic eruptions using 
hyperspectral  remotely sensing data.   ANN have been 
trained using all IASI channels between 1000–1200 and 
1300–1410  cm−1, as  inputs,  and  the  corresponding 
values of SO2 amount and plume's height obtained using 
the Oxford retrieval scheme as outputs. As a case study 
we have chosen the Eyjafjallajökull volcano (Iceland), 
in particular the eruption took place during the months 
of April and May 2010, which had an enormous impact 
on the world economy. ANNs have been validated on 
some  independent  data  sets  belonging  to  the  same 
eruption  and  also  on  IASI  images  of  Grímsvötn 
eruption,  occurred  on  May  2011.  The  results  have 
provided values  of  RMSE between ANN outputs  and 
targets always less than 20 DU for SO2 and 200 mb for 
height,  so  demonstrating  the   good  performance  in 
retrieval achieved by the ANN technique.

1. INTRODUCTION

The eruption of the Eyjafjallajökull volcano, which took 
place in Iceland in April  and May 2010, revealed the 
importance  of  the  effects  produced  by  such  a  natural 
event for human safety [1] and showed the importance 
of  having  reliable  real-time  monitoring  in  place  for 
volcanic  ash  and  sulphur  dioxide,  especially  in  the 
aviation  sector  [2].  Volcanic  ash  plumes  from  the 
eruption of Eyjafjallajökull in April 2010 resulted in the 
cancellation  of  107,000 flights  in  Europe (or  48% of 
total traffic) affecting about 10 million passengers.
Satellite  remote  sensing  is  an  invaluable  tool  for 
monitoring volcanic  events  on  a  large  scale  and  in  a 
short  time  because  such  natural  disasters  may  have 
effects on the population and the economy of affected 
areas.
Estimating  SO2 is a very important task because of the 
critical role that its plume plays as a proxy for volcanic 
ash, especially within a few hours after release when the 

effects  of  wind shear  and  of  gravitation have  not  yet 
divided the ash plume from the SO2 .
For these  reasons,  accurate  and readily  available  data 
are  needed  to  properly  monitor  the  evolution  of  the 
phenomena and to manage the risk mitigation phase.
Quantitative  estimation of  SO2 is  usually  obtained by 
applying algorithms based on a comparison between top 
of  atmosphere  (TOA)  radiance  and  values  obtained 
from simulations run using a radiative transfer model: 
this  requires  long  computation  times  and  many 
parameters as input [3] [4].
More recent estimates of columnar content of SO2 in 
the  atmosphere  as  a  result  of  volcanic  eruptions  are 
available using hyperspectral data from various sensors 
operating in different  spectral  ranges  from UV to IR, 
e.g.  Ozone  Monitoring  Instrument  (OMI)  [5],  Global 
Ozone  Monitoring  Experiment  2  (GOME-2)  [6], 
Atmospheric  Infrared  Sounder  (AIRS)  [7],  Infrared 
Atmospheric  Sounding  Interferometer  (IASI)  [8]  [9] 
[10].
IASI  is  the  only  infrared  spectrometer  with  global 
coverage  every  12  hours  (METOP A),  and  now that 
METOP  B  is  available  there  should  be  no  coverage 
gaps. Its spectral resolution is slightly higher than AIRS, 
and its spectrum includes both absorption bands of SO2 
at 8.7 and 7.3 μm (AIRS only senses the 7.3 μm band). 
Another  IR spectrometer  with an even higher spectral 
resolution  is  Tropospheric  Emission  Spectrometer 
(TES), but it has very limited coverage (narrow swath).
Artificial  neural  networks  (ANN),   computational 
modelling tools, have found wide acceptance in many 
disciplines  due  to  their  adaptability  to  complex  real 
world problems.
ANNs  have  demonstrated  their  ability  to  model  non-
linear physics systems [11] involving complex physical 
behaviours, and were applied to the analysis of remotely 
sensed images with promising results. Some examples 
are: retrieval of soil moisture and agricultural variables 
from  microwave  radiometry  [12],  snow  water 
equivalent  and  snow  water  depth  from  microwave 
images [13], retrieval of leaf area index (LAI) and other 
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biophysical  variables  from  the  MERIS  and  MODIS 
instruments  [14]  [15],  estimation  of  chlorophyll  from 
MERIS [16].
Recently,  ANNs  have  been  applied  to  MODIS 
multispectral  measurements  to  retrieve  volcanic  ash 
parameters such as effective radius and aerosol optical 
depth [17], and NNs have also been used operationally 
to estimate CO, CO2 and CH4 column amounts from 
IASI [18]. The current study represents a first attempt at 
applying ANN to hyperspectral remote sensing data, for 
simultaneous estimates  SO2 total columnar content and 
plume  height.  The  present  work,  compared  to  recent 
results  of  ANN usage  with  multispectral  data,  shows 
significant  added  value  in  reduced  execution  times 
during  ANN  application  stage.  Another  result  of  this 
approach  is  the  simultaneous  estimation  of  both 
columnar content of  SO2 and plume height from high 
spectral  resolution  data  provided  by  the  IASI 
spectrometer  on  board  the  satellite  Meteorological 
Operational satellite program (METOP) since 2006.

2. METOP-IASI IASI Sensor

The IASI sensor is aboard METOP, a European weather 
satellite which has been operating since 2007. METOP 
is the first  of  three  satellites  scheduled  to operate  for 
fourteen years. It crosses the Equator on the descending 
node at a local time of 9.30. IASI is a Fourier transform 
spectrometer which covers the spectral range 645-2760 
cm-1 (3.62 to 15.5 μm) with spectral sampling of 0.25 
cm-1 and spectral resolution of 0.5 apodized cm-1 [19]. It 
has a nominal radiometric accuracy of 0.25–0.58 K. The 
field-of-view (FOV) consists of four circular footprints 
of 12 km diameter (at nadir) inside a square of 50 × 50 
km, step-scanned across tracks (30 steps). It has a 2000 
km  wide  swath  and  nominally  it  can  achieve  global 
coverage in 12 h.  IASI carries out nadir observation of 
the earth simultaneously with Global Ozone Monitoring 
Experiment (GOME-2) also onboard METOP. GOME-2 
is  a  UV  spectrometer  measuring  SO2 in  the  UV 
absorption  band  and  was  used  for  both  Differential 
Optical  Absorption  Spectroscopy  (DOAS)  [6]  and 
optimal estimation retrievals  (Nowlan et  al.,  2011) of 
SO2; more information on IASI can be found in [20].
IASI  level  1c  data  (geolocated  and  apodized  spectra) 
used  here  were  obtained  from  both  the  British 
Atmospheric  Data  Center  (BADC)  archive  and 
EUMETSAT Unified  Meteorological  Archive  Facility 
(UMARF) archive. 

3. SO2 RETRIEVAL DESCRIPTION

The SO2 column amount and altitude reference values 
were  generated  using  an  optimal  estimation  scheme 
applied  to  IASI  measurements  of  the  ν3  and  ν1 
absorption  bands,  centred  at  about  8.7  and  7.3  μm, 
respectively  [10].  This retrieval  technique uses  a  new 
approach  to  compute  and  use  an  error  covariance 

matrix,  Se,  based  on  an  SO2-free  climatology  of 
differences  between  the  IASI  and  forward  modelled 
spectra.  Any  differences  not  related  to  SO2 between 
IASI spectra and those simulated by a forward model 
are  included  in  the  covariance  matrix,  allowing  a 
comprehensive error  budget to be computed for every 
pixel.
As  IASI  measures  atmospheric  emission,  it  provides 
continuous  measurements  throughout  an  orbit.   The 
IASI  retrieval  follows the  method of  [10]  where  SO2 

concentration  is  modelled  by a  Gaussian  profile.  The 
optimal  estimation  technique  of  [21]  is  then  used  to 
estimate SO2 column amount and the height of the  SO2 

profile,  and  the  surface  skin  temperature  using  IASI 
measurements from 1000 to 1200 cm-1 and from 1300 to 
1410 cm-1 (the ν1 and ν3  SO2 bands).
The forward model is based on RTTOV  [22] extended 
to include  SO2 explicitly, and uses ECMWF profiles of 
temperatures  and  water  vapor  interpolated  to  IASI 
measurement  time and location.  The ECMWF dataset 
used  is  the  operational  one: 
http://www.badc.rl.ac.uk/data/ecmwf-op/.
Note that:  (i)  in addition to the  SO2 column amount 
retrievals return an estimate of the plume altitude (under 
the  assumption  that  vertical  concentrations  of   SO2 

follow  a  Gaussian  distribution),  when  the  column 
amount is > ~2 DU and the plume height represents the 
altitude where the Gaussian profile reaches a maximum; 
(iii)  SO2 retrieval is not affected by underlying clouds 
(if   SO2 is  within or  below an ash or  cloud layer  its 
signal will be masked and retrieval  will underestimate 
the  SO2 amount; in the case of ash this is indicated by a 
cost  function  value  greater  than  two);  (iii)  an  error 
covariance matrix is provided per pixel.
The  total  mass  of   SO2 in  the  atmospheric  plume  is 
obtained by interpolating the accepted data into a 0.125° 
grid and this is presented in Fig. 1. Error bars shown are 
the worst scenario of correlated error, obtained as a sum 
of  all  pixel  errors  (an  overestimate,  compared  to 
independent  errors).  Fig.  1  shows  the  values  of  total 
mass  obtained  considering  all  the  plume  pixels  (with 
latitude between 30° and 80° N and longitude between 
−50°  and  40° E),  taking into account  only the  pixels 
complying  with  quality  control  criteria  (convergence 
and cost function lower than two). Results show that the 
Oxford   SO2 retrieval  scheme  for  IASI  follows  the 
different phases of a medium intensity eruption in the 
lower  troposphere  such  as  Eyjafjallajökull,  in  some 
phases consistent with GOME-2, OMI, even if estimates 
from different satellites can vary significantly.

4. NEURAL NETWORK METHODOLOGY

Artificial  Neural  Networks  (ANN)  are  based  on  the 
concept of the single artificial neuron, the 'Perceptron', 
introduced by Rosenblatt in 1958 [23] to solve problems 



Figure 1. Estimate of total mass of  SO2 present in the  
Eyjafjallajökull plume from Carboni et al. (2012): IASI  

data (and error bars) are shown in black, GOME-2 
values (Rix et al., 2012) are shown in red, OMI values  
(Thomas and Prata, 2011) are shown in green, AIRS 
values (Thomas and Prata, 2011) are shown in cyan.  

Training and validation datasets used in this paper are  
here indicated with dark blue and yellow. 

in the area  of character  recognition [24].  An artificial 
processing  neuron receives  inputs  as  stimuli  from the 
environment, combines them in a special way to form a 
‘net’ input that is sent through a linear threshold gate, 
and  transmits  the  output  signal  forward  to  another 
neuron  or  the environment.  Only when the 'net  input' 
exceeds  the  threshold  limit  of  a  neuron  (also  called 
bias), does the neuron become activated. The activation 
of a given node is calculated using a transfer function 
(e.g. sigmoidal function) to yield an output between 0 
and 1 or -1 and +1. The amount of activation obtained 
represents  a  new  signal,  transferred  forward  to  a 
subsequent  layer  (e.g.  either  hidden  or  output  layer). 
The  same  procedure  of  calculating  the  net  effect  is 
repeated for each hidden node and for all hidden layers 
[25].  Perceptrons can be trained on a set of examples 
using a special  learning  rule [24], and the perceptron 
weights  (including  the  threshold)  are  changed  in 
proportion to the difference (error)  between the target 
(correct) output, and their solution, for each example.
Error  is a function of all  the weights and it forms an 
irregular  multidimensional  complex  hyper  plane  with 
many  peaks,  saddle  points,  and  minima.  Using  a 
specialized search technique, the learning process yields 
the set of weights corresponding to a global minimum. 
One  of  them is  the  Backpropagation  algorithm (BP), 
which consists of two phases: in the feedforward pass, 
an  input  vector  is  presented  to  the  network  and 
propagated  forward  to  the  output;  in  the 
backpropagation phase, the network output is compared 
to a desired output; network weights are then adjusted in 

accordance  with an error-correction  rule  [26],  [25]  or 
[27].
The performance of a trained ANN is generally assessed 
by  computing  the  root  mean  squared  error  (RMSE) 
between  expected  values  and  activation  values  at  the 
output  nodes  or,  in  the  case  of  classification,  a 
percentage  of  correctly  classified  examples  of  the 
validation set.
In  order  to  cope with non linearly discrete  problems, 
additional layer(s) of neurons placed between the input 
layer (containing input nodes) and the output neuron are 
needed,  leading  to  the  Multilayer  Perceptron  (MLP) 
architecture [24].
In this work Backpropagation Neural Network (BPNN) 
was used. 
A BPNN is an MLP consisting of an input layer with 
nodes  representing  input  variables  to  the  problem,  an 
output  layer  with  nodes  representing  the  dependent 
variables (i.e. what is being modelled), and one or more 
hidden  layers  containing  nodes  to  help  capture 
nonlinearities  in  the  data.  Using  supervised  learning, 
with  the  Error-Correction  Learning  (ECL)  rule  for 
network weights adjustment, those networks can learn 
to map from one data space to another using examples. 
The term back-propagation refers to the way the error 
computed  at  the output  side  is  propagated  backwards 
from the output layer to the hidden layer, and finally to 
the input layer. In BPNNs, data are fed forward into the 
network  without  feedback  (i.e.  all  links  are 
unidirectional  and  there  are  no same layer  neuron-to-
neuron  connections).  The  neurons  in  BPNNs  can  be 
fully or partially interconnected. Networks like this are 
versatile  and  can  be  used  for  data  modelling, 
classification,  forecasting,  control,  data  and  image 
compression, as well as pattern recognition [28].
A neural network for  SO2 total column estimation and 
another for  SO2 plume height estimation were 
implemented  using,  as  training  sets,   SO2 column 
content values and  SO2 plume height values from IASI 
optimal estimation retrieval [10], computed processing 
brightness  temperatures  from  58  IASI  images.  Data 
were acquired from both morning and afternoon orbits 
in the period 14 April to 15 May 2010. Both networks 
used  acquired  Brightness  Temperature  data  as  neural 
network inputs and  SO2 total column and plume height 
as target output respectively. Sample patterns statistics 
encompassed the entire duration of the Eyjafjallajökull 
eruption  and  they  were  considered  a  good  training 
ensemble,  because  data  covered  all  three  eruptive 
phases.  Spatial  and  statistical  distributions  of  training 
sets  for   SO2 columnar content  and plume height  are 
shown  in  Fig.  2,  top-left  and  top-right.  Network 
topologies, both for SO2 total column content and plume 
height  neural  network,  consisted  of  1242  inputs,  all 
IASI  channels,  representing  the  range  of  wavelengths 
which contain information on  SO2 and used in the IASI 
retrieval,  ten  neurons  in  one  hidden  layer  and  one 



output.
Cross validation can be used to detect when over-fitting 
starts  during  supervised  training  of  a  neural  network; 
training  is  then  stopped  before  convergence  to  avoid 
over-fitting (early stopping). Early stopping using cross 
validation was done by splitting the training data into a 
training  set,  a  validation set,  and  a  test  set,  and  then 
training  the  networks  only  using  the  training  set  and 
evaluating  the  per-example  error  on  the  test  set  on  a 
sample basis after a defined number of epochs. Finally, 
training  was  stopped  when  the  error,  the  difference 
between  neural  network  output  and  target  (retrievals 
from [10], on the cross validation set was higher than 
the previous error value [29].

5. RESULTS AND DISCUSSION

In order to evaluate the performance of neural networks 
in  terms  of  retrieval  accuracy  and  generalization 
capability,  both neural  networks for  SO2 total  column 
content  and  plume  height  estimation  were  applied  to 
three  distinct  independent  IASI  images  related  to  the 
Eyjafjallajökull eruption (see section 4.1), and to three 
independent datasets related to another Iceland volcanic 
eruption (from Grímsvötn, which occurred during May 
2011).  Regarding  the  Eyjafjallajökull  validation 
datasets,  two  images  used  were  from  morning  and 
afternoon orbits of the same day (15 May 2010) in order 
to  verify  neural  network  performance  on  both 
illumination conditions, the third image (30 April) has 
been chosen in order to test the NN performance with 
low  SO2 amount. Fig. 2 shows the spatial distribution of 
the total mass of  SO2 for the Eyjafjallajökull training 
and validation datasets.

Table 1. RMSE values related to Sulphur Dioxide total  
column  estimated  by  the  NN  for  independent  
Eyjafjallajökull  validation  sets,  STD  and  mean  
difference percentage

Date SO2 total column [DU]

samples Regr. 
Coeff.

RMSE STD Mean diff. 
%

 2010/04/30 aft 161 0.9523 0.7577 1.8084 16.9529

2010/05/15 mor 1823 0.93008 1.0523 2.7471 4.3728

2010/05/15 aft 2303 0.94372 0.8722 2.1335 8.7850

For sulphur dioxide total columnar content, RMSE is, 
for  all  three  datasets,  lower  than  the  corresponding 
values of the targets'  standard deviation (STD), which 
can be seen as  an indication of distribution spreading 
and measurement mean value error bar widening. In

Figure 2. Spatial distribution maps of IASI Sulphur  
dioxide (left), divided into training set (top),  

Eyjafjallajökull validation dataset (middle), Grímsvötn  
validation dataset (bottom) and Sulphur dioxide plume 
height and total column content statistical distribution  

for each dataset represented by histograms (middle and  
right)

Table 2. RMSE values related to Sulphur Dioxide plume  
height  estimated  by  the  NN  for  independent  
Eyjafjallajökull  validation  sets,  STD  and  mean  
difference percentage

Date
SO2 plume height [mb]

samples Regr. 
Coeff.

RMSE STD Mean 
diff. %

 2010/04/30 aft 161 0.84749 83.1373 124.543 3.4880

2010/05/15 mor 1823 0.84314 87.6765 150.815 -0.4420

2010/05/15 aft 2303 0.83194 71.2645 153.273 -1.1068

 particular,  looking at  Tab. 1,  we can see that  the 30 
April validation shows the lowest RMSE value and the 
highest regression coefficient.
An interesting behaviour of the NN is seen in the May 
results. The regression coefficient is always around 0.9 
(0.93 for morning orbit and 0.94 for afternoon orbit) but 
looking at the regression curves depicted in Fig. 3, for 
15  of  May,  morning  orbit  (top-right),  there  is  a 
noticeable  decrease  of  performance  for  target  values 
higher than 10 DU.
We hypothesised that the better performance of the NN 
in April is due to a lower number of samples (one order 
of magnitude with respect to the other two dates) and a 
range of values always below 10 DU, which represent 
most  of  the  training  sample  values,  instead  values 
higher than 10 DU represent only 6% of training data. 
Nevertheless,  considering the difference percentage of 
estimate and target means (Tab. 1, last column) the



Figure 3. Eyjafjallajökull validation dataset, 15 May  
2010, morning orbit. Top - Error distribution (left) and  

regression curve (right) for neural networks of SO2  
total column estimation. Y and T in legend represent  

estimated values and target values, respectively.  
Bottom - SO2 total column map from retrieval (left) and  

Neural Network (right).

 
 April  results show an overestimate of retrievals  with 
higher percentage.
The good performance of the NN for sulphur dioxide 
retrieving is confirmed by Fig. 3 (bottom) representing 
the comparison of the NN retrieval map with those from 
[10]. 
Statistical  results  of  applying  of  neural  network  to 
plume height estimation are summarized in Tab. 2. It is 
noticeable  that  for  all  three  datasets  RMSE is always 
below the corresponding values of the targets' standard 
deviation (STD).
In particular,  April 30 shows a lower error  dispersion 
(Fig. 3, bottom-left) and a lower regression coefficient 
than May 15.
In general,  the error  spread  in plume height is  higher 
than that obtained for the sulphur dioxide total column 
retrieval. This is confirmed by the regression coefficient 
obtained  and  corresponding  RMSE.  Nevertheless,  the 
NN estimates show good accuracy with RMSE values 
lower  than  corresponding  STD  for  all  dates  and  the 
percentage  difference  between the estimate and target 
means are very low. The regression curves for May 15, 
depicted  in  Figures  4  (top-rgiht),  show  a  good 
performance  of  the  retrieval  in  the  range  500-700mb 
(5000-3000 m).
The  validation  on  the  Grimsvotn  eruption  occurring 
during May 2011,  was centred  on three  distinct  IASI 
images on the 22, 23 and 24 May 2011. These images 
were not considered during the NNs training phase.
For  SO2 total column retrieval, looking at Tab. 3 a first 
generalization  can  be  done  since  a  lower  accuracy 
inretrieval  is  noticeable  for  all  three  validation  dates 

and,

Figure 4. Eyjafjallajökull validation dataset, 15 May  
2010, morning orbit. Top - Error distribution (left) and  

regression curve (right) for neural networks of SO2  
plume height estimation. Y and T in legend represent  

estimated values and target values, respectively.  
Bottom - SO2 plume height map from retrieval (left)  

and Neural Network (right).

  

Table 3. RMSE values related to Sulphur Dioxide total  
column estimated by the NN for independent Grímsvötn  
validation sets, STD and mean difference percentage

Date
SO2 total column [DU]

samples Regr. 
Coeff.

RMSE STD Mean diff. 
%

22 May 2011 293 0.92719 15.858 31.3802 -25.7537

23 May 2011 678 0.92411 10.558 22.4618 -19.2664

24 May 2011 584 0.93933 1.1593 3.3554 -7.0970

Table 4. RMSE values related to Sulphur Dioxide plume  
height estimated by the NN for independent Grímsvötn  
validation sets, STD and mean difference percentage

Date
SO2 plume height [mb]

samples Regr. 
Coeff.

RMSE STD Mean  diff. 
%

22 May 2011 293 0.71933 141.751 178.369 7.1257

23 May 2011 678 0.78345 118.220 177.977 4.2754

24 May 2011 584 0.77707 109.119 166.896 4.3897

despite regression coefficients are similar to those of the 
Eyjafjallajökull validations, RMSE and mean difference 
percentage  values  are  higher.  In  particular,  negative 
values  of  this  last  index  reveal  that  the  NN 
underestimates  sulphur  dioxide  retrieval  in  all  three 
cases.



The lower accuracy observed can be analysed more in 
detail with the scatter-plots and maps depicted in Fig. 5.
The  behaviour  is  noticeable  for  the  23  May  2011 
estimates in the scatter-plot  of Figure 5 (top-right).  It 
shows  a  decreasing  of  accuracy  for  sulphur  dioxide 
values  higher than 10 DU and mean value  difference 
percentage around -20%, confirming an underestimation 
again.  If  we have a look at  Fig.  5 (bottom), the map 
comparison between target and estimates, we notice the 
underestimation characterizes pixels on a strip along the 
75° N parallel.
A  distinct  performance  is  noticed  when  the  NN  is 
applied to 24 May. RMSE is of the order of magnitude 
of those observed for the Eyjafjallajökull eruption, and 
also the mean difference  percentage  is  comparable  to 
2010.

Figure 5. Grimsvotn validation dataset, 23 May 2011,  
10:00 UTC. Top - Error distribution (left) and  

regression curve (right) for neural networks of  SO2 

total column estimation. Y and T in legend represent  
estimated values and target values, respectively.  

Bottom -  SO2 total column map from retrieval (left) and  
Neural Network (right).

This  distinct  behaviour  of  performances  can  be 
explained by considering that, with the exception of 24 
May  2011,  the  mean  value  of  samples  for  2011  are 
around an order of magnitude greater than those of 2010 
Eyjafjallajökull  instances,  for  both  training  and 
validation dates. In other words Grimsvotn eruption was 
characterized by sulphur dioxide concentrations higher 
than those used during NN training phase demonstrating 
how NNs performance decrease when try to estimates 
parameters  characterized  by  values  outside   that  of 
training set.
As  regards  applying  the  NN  to  Grimsvotn  dates  for 
height plume retrieval, Tab. 4 summarizes the results for 
all three.
The 22 May shows the lowest regression coefficient, the 
highest  RMSE  and  a  slightly  higher  percentage  of 

retrieval  overestimation,  visible  in  Fig.  12  (top)  for 
those  pixels  (green)  located  in  the  north  of  Iceland 
around 70°N.
The 23 and 24 May test cases reveal a slight increase in 
coefficient regression, around 0.8, and lower values of 
RMSE (Tab. 4), and in scatter-plots depicted in Figs. 10 
and 11 (bottom-right), respectively, show the NN plume 
height retrieval is overestimated.  In particular,  for 23 
May,  Figure  6  (bottom)  shows  overestimation  over 
Greenland,  around  70°N,  whilst,  for  24  May 
overestimation is located in the south, close to Norway. 
In  general,  looking at  the  dispersion error  histograms 
depicted in Fig. 6 (bottom, left) it seems that for plume 
height  estimation the NN reveal  a  lower performance 
when  applied  to  unknown  eruptions  with  different 
characteristics in terms of sulphur dioxide 

Figure 6. Grimsvotn validation dataset, 23 May 2011,  
10:00 UTC. Top - Error distribution (left) and  

regression curve (right) for neural networks of  SO2 

plume height estimation. Y and T in legend represent  
estimated values and target values, respectively.  

Bottom -  SO2 total column map from retrieval (left) and  
Neural Network (right).

concentrations, plume height and spatial distribution.

6. CONCLUSIONS

The  analysis  demonstrates  that  Artificial  Neural 
Network is able to retrieve both SO2 column abundance 
and  plume height  with good accuracy  if  applied  to  a 
known eruption and  also  taking  into account  that  the 
goal was to replicate a model and no real measurements 
have  been  used.  Nevertheless  the  results  obtained, 
applying the NN to an eruption not known, such as the 
Grimsvotn  one,  show that  great  care  has  to  be  taken 
during the training phase.  This  is  because  the Neural 
Network  retriever  needs  to  be  fed  and  trained 
continuously  during  its  operating  phase  in  order  to 



maintain phenomena knowledge updated and retrieval's 
performance accurate at operating stage.

7. REFERENCES

1. Zehner,  C., ed. (2010). Monitoring Volcanic Ash 
from  Space.  In:  Proceedings  of  the  ESA-
EUMETSAT workshop on the 14 April to 23 May 
2010  eruption  at  the  Eyjafjoll  volcano,  South 
Iceland,  Frascati,  Italy,  26–27  May  2010,  ESA-
Publication STM-280. doi:10.5270/atmch- 10-01.

2. Miller, T.P., and Casadevall, T.J. (2000). Volcanic 
ash  hazards  to  aviation.  In  Sigurdsson,  H.,  ed.,  
Encyclopedia of Volcanoes, San Diego, Academic 
Press, 915-930.

3. Berk, A., Bernstein, L.S., Robertson, D.C. (1989). 
MODTRAN:  A  Moderate  Resolution  Model  for 
LOWTRAN 7.

4. Anderson,  G. P.,  Wang,  J.,  and Chetwynd, J.  H. 
(1995).  MODTRAN3:  An  update  and  recent 
validation  against  airborne  high  resolution 
interferometer measurements. In Summaries of the 
Fifth Annual Jet  Propulsion Laboratory Airborne 
Earth Science Workshop, 95–1(1), 5–8.

5. Krotkov,  N.  A.,  Carn,  S.  A.,  Krueger,  A.  J., 
Bhartia, P. K., and Yang, K. (2006). Band residual 
difference  algorithm for retrieval of SO2 from the 
Aura Ozone Monitoring Instrument (OMI),  IEEE 
Trans. Geosci. Remote Sens., 44, 1259–1266.

6. Rix,  M.,  Valks,  P.,  Hao,  N.,  Loyola,  D.  G., 
Schlager,  H.,  Huntrieser,  H.  H.,  Flemming,  J., 
Koehler, U., Schumann, U., and Inness, A. (2012). 
Volcanic SO2, BrO and plume height estimations 
using GOME-2 satellite measurements during the 
eruption  of  Eyjafjallajökull  in  May  2010,  J.  
Geophys.  Res.,  117,  D00U19, 
doi:10.1029/2011JD016718.

7. Prata,  A.J.,  Bernardo,  C.,  (2007).  Retrieval  of 
volcanic  SO2  column  abundance  from 
Atmospheric Infrared Sounder data, JJ.  Geophys.  
Res., 112, D20204.

8. Clarisse, L., Coheur, P. F., Prata, A. J., Hurtmans, 
D., Razavi, A., Phulpin, T., Hadji-Lazaro, J., and 
Clerbaux,  C.  (2008).  Tracking  and  quantifying 
volcanic  SO2  with  IASI,  the  September  2007 
eruption at Jebel at Tair,  Atmos.. Chem. Phys,  8, 
7723–7734, doi:10.5194/acp-8-7723-2008. 

9. Walker,  J.  C.,  Carboni,  E.,  Dudhia,  A.,  and 
Grainger,  R.  G.  (2012).  Improved  detection  of 
sulphur dioxide in volcanic plumes using satellite-
based  hyperspectral  infra-red  measurements: 

application to the Eyjafjallajökull 2010 eruption, J.  
Geophys.  Res.,  117,  D00U16, 
doi:10.1029/2011JD016810.

10. Carboni, E., Grainger, R., Walker, J., Dudhia, A., 
and Siddans, R. (2012). A new scheme for sulphur 
dioxide  retrieval  from  IASI  measurements: 
application to the Eyjafjallajökull eruption of April 
and  May 2010,  Atmos.  Chem.  .Phys,  12,  11417-
11434, doi:10.5194/acp-12-11417-2012.

11. Rumelhart, D.E., Durbin, R., Golden, R., Chauvin, 
Y. (1995). Backpropagation: the basic theory. In: 
Rumelhart,  D.E.,  Yves,  C.  (Eds.), 
Backpropagation:  Theory,  Architecture,  and 
Applications. Lawrence Erlbaum, NJ, 1–34.

12. Del Frate, F., Ferrazzoli, P., Schiavon, G. (2003). 
Retrieving soil moisture and agricultural variables 
by microwave radiometry using neural  networks, 
Remote Sens. Environ., 84(2), 174-183.

13. Tedesco,  M.,  Pulliainen,  J.,  Takala,  M., 
Hallikainen,  M.,  Pampaloni,  P.  (2004).  Artificial 
neural  network-based techniques for the retrieval 
of SWE and snow depth from SSM/I data, Remote 
Sens. .Environ., 90 (1), 76-85.

14. Bacour,  C.,  Baret,  F.,  Béal,  D.,  Weiss,  M., 
Pavageau, K. (2006). Neural network estimation of 
LAI,  fAPAR, fCover and LAI×Cab,  from top of 
canopy  MERIS  reflectance  data:  Principles  and 
validation,  Remote  Sens.  .Environ.,  105(4),  313-
325.

15. Verger,  A.,  Baret,  F.,  Weiss,  M.  (2008). 
Performances of neural networks for deriving LAI 
estimates from existing CYCLOPES and MODIS 
products.  Remote  Sens.  .Environ.,  112(6),  2789-
2803.

16. Vilas-González,  L.,  Spyrakos,  E.,  Torres-
Palenzuela,  J.  M.  (2011).  Neural  network 
estimation  of  chlorophyll  a  from  MERIS  full 
resolution data for the coastal waters of Galician 
rias (NW Spain),  Remote Sens. .Environ.,  115(2), 
524-535.

17. Picchiani, M., Del Frate, F., Piscini, A., Chini, M., 
Corradini, S., Merucci, L., Stramondo, S, (2012). 
Associative  memory  techniques  for  the 
exploitation  of  remote  sensing  data  in  the 
monitoring of volcanic events.  In Proceedings of 
International  Geoscience  and  Remote  Sensing 
Symposium IGARSS '12.

18. Schlüssel,  P.,  T.  H.  Hultberg,  P.  L.  Phillips,  T. 
August,  and  X.  Calbet  (2005).  The  operational 
IASI  level  2  processor.  Advances  in  Space 
Research 36,  982–988,  doi:10.1016/j. 
Asr.2005.03.008.



19. Blumstein,  D.,  Chalon,  G.,  Carlier,  T.,  Buil,  C., 
Hebert, P., Maciaszek, T., Ponce, G., Phulpin, T., 
Tournier, B., Simeoni, D., Astruc, P., Clauss, A., 
Kayal, G., and Jegou, R. (2004). IASI Instrument: 
Technical  overview and  measured  performances. 
In Proceedings of SPIE, 5543, 196–207.

20. Clerbaux,  C.,  Boynard,  A.,  Clarisse,  L.,  George, 
M.,  Hadji-Lazaro,  J.,  Herbin,  H.,  Hurtmans,  D., 
Pommier,  M.,  Razavi,  A.,  Turquety,  S.,  Wespes, 
C.,  and  Coheur,  P.-F.  (2009).  Monitoring  of 
atmospheric  composition  using  the  thermal 
infrared  IASI/MetOp  sounder,  Atmos..  Chem.  
Phys.,  9,  6041–6054,  doi:10.5194/acp-9-6041-
2009.

21. Rodgers,  C.  D.  (2000).  Inverse  Methods  for  
Atmospheric  Sounding:  Theory  and  Practice, 
World Scientific, River Edge, NJ, USA.

22. Saunders,  R.  W.,  Matricardi,  M.,  and Brunel,  P. 
(1999). An improved fast radiative transfer model 
for assimilation of satellite radiance observations, 
Q. J. Roy. Meteor. Soc., 125, 1407–1425.

23. Rosenblatt,  R.  (1962).  Principles  of  
Neurodynamics, Spartan Books, New York.

24. Hecht-Nielsen,  R.  (1990).  Neurocomputing, 
Addison-Wesley, Reading, MA.

25. Bishop, C. (1995).  Neural Networks For Pattern  
Recognition, Oxford University Press, Oxford.

26. Rumelhart,  D.E.,  Hinton,  G.E.,  Williams,  R.J. 
(1986).  Learning  internal  representation  by  error 
propagation. In: Rumelhart, D.E., McClleland, J.L. 
(Eds.).  Parallel  Distributed  Processing: 
Exploration  in  the  Microstructure  of  Cognition, 
Vol. 1. MIT Press, Cambridge, MA, Chapter 8.

27. Haykin,  S.  (1999).  Neural  Networks  A 
Comprehensive Foundation (second ed) Prentice-
Hall, NJ, USA.

28. Hassoun, M.H. (1995). Fundamentals of Artificial  
Neural Networks, MIT Press, Cambridge, MA.

29. Prechelt,  L.  (1998).  Automatic  Early  Stopping 
Using Cross Validation: Quantifying the Criteria. 
Neural Networks, 11(4), 761-767.


