DTU Space National Space Institute

Classification after the mass of the companion

F

Characteristics

	HMXB	LMXB
X-ray spectra:	$kT \ge 15 \text{ keV} \text{ (hard)}$	$kT \leq 10 \text{keV}$ (soft)
Type of time variability:	regular X-ray pulsations no X-ray bursts	only a very few pulsars often X-ray bursts
Accretion process:	wind (or atmos. RLO)	Roche-lobe overflow
Timescale of accretion:	10 ⁵ yr	10 ⁷ –10 ⁹ yr
Accreting compact star:	high B-field NS (or BH)	low B -field NS (or BH)
Spatial distribution:	Galactic plane	Galactic center and spread around the plane
Stellar population:	young, age $< 10^7$ yr	old, age > 10^9 yr
Companion stars:	luminous, $L_{opt}/L_x > 1$ early-type O(B) stars > 10 M_{\odot} (Pop. I)	faint, $L_{opt}/L_x \ll 0.1$ blue optical counterparts $\leq 1 M_{\odot}$ (Pop. I and II)
Orbital periods:	days to months	minutes to hours
	$M_{Comp} > M_{CO}$	$M_{Comp} < M_{CO}$

IMXB: Intermediate-Mass X-ray Binaries (M_{comp} 1-10 M_{\odot})... Why are they so rare?

F

Accretion onto compact objects

Efficiency of accretion as energy release depends on <u>compactness</u> <u>M</u> R

Process	Jkg^{-1}	$f(H \Longrightarrow He)$	$f(mc^2)$
$\mathbf{H} \Longrightarrow \mathbf{He} \ (E = \Delta M c^2)$	$6.3 imes 10^{14}$	1.0	0.007
Accretion onto white dwarf	$8.0 imes10^{12}$	1/80	$8.9 imes 10^{-5}$
Accretion onto Neutron star	$1.9 imes 10^{16}$	30	0.21
Accretion onto Black hole	$4.5 imes 10^{16}$	70	0.5

Liberation of *gravitational potential energy* as material falls on the surface of the object :

$$L_{\rm acc} = \frac{GM\dot{M}}{R}$$

 $L = \eta \dot{M} c^2$

Accretion *efficiency* (in terms of the rest-mass

energy liberated)
$$\eta = \frac{GM}{Rc^2}$$
.

Gravitational equipotential lines in binary systems

$$a = a_1 + a_2$$
$$M_1 a_1 = M_2 a_2 \implies a_1 = M_2 / (M_1 + M_2)^* a_1$$

The Roche potential depends on q and a

The Roche potential depends on q and a

Binary configurations and mass transfer

Roche lobes: useful approximations

$$a = \left(\frac{P_{orb}^2 G(M_1 + M_2)}{4\pi^2}\right)^{1/3}$$

$$a = 3.53 \times 10^8 (M_1/M_{\odot})^{1/3} (1+q)^{1/3} P_{orb}^{2/3}(h) m$$

$$R_{L_1} = (1.0015 + q^{0.4056})^{-1} \quad (0.04 \le q \le 1)$$

$$R_{L_1} = 0.5 \quad 0.227 log q \quad (0.1 \le q \le 10)$$

Eggleton (1983):

F

$$\frac{\mathsf{R}_{\mathsf{L}}(2)}{\mathsf{a}} = \frac{0.49\mathsf{q}^{2/3}}{0.6\mathsf{q}^{2/3} + \mathsf{ln}(1+\mathsf{q}^{1/3})}$$

volume-equivalent radius of the secondary star Roche lobe

$$\begin{array}{l} \displaystyle \frac{\mathsf{R}_L(2)}{a} = 0.462 \ \left(\frac{q}{1+q}\right)^{1/3} \quad 0.1 \leq q \leq 1 \quad 2\% \text{ accuracy (Paczynski 1971)} \\ \displaystyle \mathsf{R}_L(2) = f(q) \times a \Leftrightarrow \mathsf{R}_L(1) = f(1/q) \times a \end{array}$$

The Roche Lobe

The term 'Roche-lobe' is used to describe a distinctively shaped region surrounding a star in a binary systems.

This teardrop-shaped space defines the region in which material is bound to the star by gravity.

Any material outside the Roche-lobe of a star may, depending on its initial location, energy and momentum, either escape the system completely, orbit both stars, or fall onto the binary companion.

Steady accretion

- Two possible avenues for mass transfer:
 - 1. Accretion from the stellar wind of the companion (*Bondi-Hoyle* accretion)
 - 2. Roche lobe overflow through the L1 point

• An additional constraint is the *stability* of the mass transfer (angular momentum conservation)

Weighing XRBs

- Determining the mass of the donor involves measuring the motion of one object, either the donor (optical spectroscopy \Rightarrow K) or the NS (via pulsations \Rightarrow a_x sin i).
- We calculate the mass function

$$f_{\rm X}(M) = \frac{M_2^3 \sin^3 i}{(M_2 + M_{\rm X})^2} = \frac{4\pi^2 a_{\rm X}^3 \sin^3 i}{GP^2} = \frac{PK_{\rm X}^3}{2\pi G}$$

and assume the NS mass from radio pulsars. The obtained value provides a lower limit on M₂