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ABSTRACT 
 
 

     To establish a nationwide consistent height system for an archipelago country like 

Indonesia is exceptionally challenging. Yet, it needs to be resolved in order to provide 

infrastructure for mapping and the cadastre, planning and the development in natural 

resources or hydrocarbon exploration, monitoring sea level rise or flood control and 

other civil works. The height system generated from the precise leveling 

measurement has been inconsistent between islands datum. In this investigation, the 

height datum misfits between separated islands are assessed using various geoid 

models (i.e., EGM96, INDGED, GRACE and EGM08) and the results show different 

scales of distortions depending on which geoid model is used. The datum distortion 

between Sumatra and Jawa is 0.78m using INDGED, 0.80 m using the EGM96 and 

0.48 m using the EGM08 geoids.  

 

     Replacing the tedious terrestrial leveling observations by the more rapid technique 

which uses Global Navigation Satellite System (GNSS) will certainly accelerate the 

establishment of the height system and give a more consistent height datum.  

However, adopting the GNSS observation techniques to determine the modern height 

system requires a high precision gravimetric geoid model. This is the main problem 

that is addressed in this work. 

 

     Various methods of geoid computation applied in the RINT and the GRAVSOFT 

program packages are tested for the gravimetric geoid solution. The comparison 

between the gravimetric and the geometric geoid using the Ring integration method 

computed with smaller capsize (0.2 degrees) shows similar results to those obtained 

using the FFT method applying Wong-Gore kernel modification up to degrees 360. 

Similar trends are also given by using the Collocation method. The result confirms 

that a high precision geoid model is achievable for the test area and with improved 
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gravity data coverage as demonstrated in the error propagation study by simulating 

‘fill-in airborne data’. The analysis shows that it should be possible to produce a 

geoid to better than 10 cm. 

 

     A combination of the newly released EGM08 model, a high resolution DEM (e.g., 

3 arc second SRTM) and the proposed airborne gravity measurements, (especially) in 

the coastal zone will provide the desired geoid. It is therefore, highly recommended 

that such measurements are implemented and (hopefully), that the high precision 

geoid for modernization of the Indonesian Height System can be realized in less than 

5 years from now. 
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CHAPTER 1 

 

 INTRODUCTION 

 
1.1 General background and motivation for the investigation 
  

The orthometric and the normal heights are height systems that have been used 

world wide for more than a century to define the vertical position for points on or 

near the earth surface. A reference surface for which the datum is assumed to be zero 

is historically the mean sea level determined from tide gauge observations over a 

period (18.6 years) of time. Due to oceanic variability and the effect of sea surface 

topography, mean sea levels as defined from tide gauge observations at various 

locations will not necessarily lie on a common equipotential surface. As a result, 

height distortions exist between different zones or regions.  

 

The use of mean sea level as the reference surface causes some problems in the 

definition of vertical datum for a wide area.  Fixing tide gauge estimates from mean 

sea level to “zero” in a leveling network adjustment over a large region causes 

discrepancies through out and beyond the region and the resultant height values have 

significant differences from those obtained from a free adjustment. For example, the 

height differences between constrained and free adjustments of the National 

Geodetic Vertical Datum (NGVD) 1929 in the United State exceeds more than 50 cm 

with a very large relative height difference of 86 cm occurring in a specific area 

(Zilkoski et al., 1992).  Similarly, the Australian Height Datum, AHD 1971, the 

difference between constrained and free adjustment suggested a rise of Mean Sea 

Level up the east coast of about 1.5 m (Roelse et al., 1971, Morgan, P., 1992), 

although subsequent re-leveling tended to lessen this difference. 

 

The other problem caused by the use of mean sea level as a reference surface for 

height determination is that the deviation of the mean sea level from the equipotential 

surface defined as the geoid is quite significant, and in some parts may reach the 

order of ± 2 m (Rapp and Balasubramania, 1992). These facts will affect the 
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definition and the unification of vertical datum separated by oceans if the mean sea 

level is to be used as height reference.   

 

      To reduce the problem resulting from the use of mean sea level as a reference 

surface, we may adopt the geoid, the equipotential surface of the earth gravity field 

that best fits mean sea level, as a better definition of the “zero height” reference 

surface. In addition to that, in precise leveling measurements the geometric height 

difference which is measured along the local plumb line is everywhere orthogonal to 

this equipotential surface of the earth gravity field. Therefore, from a number of 

theoretical and practical view points, the geoid is considered more appropriate for the 

geodetic vertical reference surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      A properly defined geodetic reference system is not only essential for the 

definition and the unification of the vertical datum but also for other purposes, 

including an understanding of environmental issues such as sea-level change, 

integrated spatial data infrastructure as well as the monitoring of seismic, volcanic 

and tectonic activities and for engineering and cadastral applications. 

Figure 1.1 The deviation of mean sea level from the geoid (Za and Zb are 
MSL zero points of local datums A and B)  
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This thesis work attempts to establish a national unified geodetic vertical 

reference system for the Indonesian archipelago. A consistent national vertical datum 

is necessary for this country made up of thousands of islands in order to enable a 

proper connection of the many local height systems. Such a height system connection 

would be beneficial for many practical applications such as civil constructions or 

flood control monitoring. Moreover, for a broader application a unified national 

vertical datum will allow the connection of the Indonesian height system to the 

regional and the global one. The unification of height systems has become a major 

problem, above all through the growing demands for height determination by the 

combination of precise point positioning from Global Positioning Satellite 

measurements and a geoid model, also known as GNSS surveying (GPS, GLONASS 

and GALILEO). In line with the Cartagena Statement on Vertical Reference Systems 

declared in 2001, the International Association of Geodesy (IAG) agrees that there is 

an urgent need for the establishment of an integrated national and regional geodetic 

vertical reference system, with the longer term aim of establishing a unified global 

vertical reference system.  For those reasons this investigation is highly relevant.  

The background for the Indonesian vertical datum is outlined in Section 1.2 of this 

chapter.    

 

     In Chapter 2 the theoretical basis of height systems, their fundamental 

relationships and the mathematical model are presented. Also the role of the 

regional/global geoid in the solution for the unification of vertical datum is described 

in this chapter. In Chapter 3 a preliminary investigation of vertical datum distortions 

between different islands in western part of Indonesia is performed. The height 

datum comparisons are carried out by using the GPS (ellipsoidal) heights, leveling 

heights and the gravimetric geoid computed from a combination of EGM96 

geopotential model and the regional gravity dataset. The EGM96 model was used in 

the geoid computation   since the latter EGM08 model was not yet available at the 

time when this preliminary part of the work was undertaken. The results and the 

problems encountered are also discussed in this chapter. The geoid plays the most 

important role in the vertical datum unification and its accuracy is critical. Having 
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evaluated the results and analyzed the problems appearing in the datum comparison, 

it was necessary to search for a more precise gravimetric geoid model.  

 

     In Chapters 4 and 5 the geoid computation work are emphasized. The main 

objective of the investigation presented in Chapter 4 is to search for the best geoid 

computation technique to be applied for the test area with typical gravity data 

coverage. The geoid model was computed based on the remove-restore method with 

various applications. Different techniques namely Ring Integration, Collocation and 

FFT techniques are applied in the practical computation for a selected test area where 

local observed gravity data are available. In order to examine their accuracy the 

computed gravimetric geoid were compared to the geometric geoid at control points. 

The results of this comparison are also presented and discussed in Chapter 4. The 

results implied that the situation of the precise geoid model for the Indonesian region 

may only be improved once the gravity data coverage is improved.  As data gaps are 

mainly in inaccessible remote areas and areas of difficult terrain and using 

conventional techniques such as terrestrial gravimetry for land data measurement 

will be very difficult. Also, it is difficult to use shipborne measurements in the 

transition zone between land and open sea, which is an area with a pronounced lack 

of reliable data, since it is mainly characterized by shallow waters.  

 

     An alternative way to improve the gravity data situation in such areas is by using 

airborne or spaceborne techniques. In Chapter 5 an error-simulation study is 

performed by fill-in data gaps with airborne gravimetry of different line spacing. The 

error propagation from gravity data to geoid is analyzed by the use of collocation for 

two scenarios. One scenario is the existing data coverage the other is a simulated 

situation with airborne fill-in data in the near coastal zone. Chapter 6 is devoted to 

the analysis of global gravity and geoid models. Geopotential models from the 

CHAMP and GRACE satellites are compared to other datasets. There is also a look 

towards the future where data from the GOCE gravity satellite will be available. 

Later on, after being released, the most recent earth gravitational potential model (the 

EGM08) is used for computing the Indonesian geoid and the height datums 

comparison is re-assessed. The impact of using the new constant gravity potential of 
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the geoid (W0 ) upon the geoid values is also explored. Their results are presented 

and discussed in the last section of Chapter 6. Finally, conclusions and the 

recommendation are written in Chapter 7.                         

  

1.2 Background for the Indonesian Vertical Datum 

 

The geodetic control network in Indonesia was initiated during the colonial era in 

1862. The intention of this network was to provide control for mapping as well as for 

hydrographic surveying and charting. The measurements were undertaken mainly in 

Jawa Island and resulted in a triangulation network with an average spacing of 

approximately 60 km throughout the island.  Later on, between 1925 until the late 

1930’s the first vertical control network in Indonesia was established under the 

Dutch administration. The network specified as first order precise leveling was 

measured in west Jawa and in part of central Jawa, while second order precise 

leveling network were established in some parts of north and south Sulawesi and 

Bangka islands. The definition of the datum point for Jawa network (NWP-3 Jakarta) 

was based on mean sea level (MSL) derived from tide gauge observation in 1926. 

Figure 1.2 Leveling Network in Jawa and Sumatera 
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Unfortunately, these initial networks were not well documented, and only a few of 

the vertical control points in Jawa were recovered. Most of the old benchmarks were 

either destroyed or disappeared; only 420 benchmarks from about 2083 in Jawa 

remain and of these, a mere 280 benchmarks were in good condition. 

 

 Because of the fundamental importance of height data for mapping, engineering, 

and other physical planning applications, a new national vertical control network in 

Indonesia was re-started in 1980 by the Indonesian Coordinating Agency for Surveys 

and Mapping (BAKOSURTANAL) as part of the government’s long-term 

development programs for infrastructures. As a result a systematic first order 

geodetic leveling network  started in 1980 in Jawa Island and was completed in 1987.  

These leveling measurements were continued to the island of Bali (from 1987 until 

1991), then Lombok and Madura islands (from 1991 until 1994).  The total length of 

the classified First Order Leveling lines is approximately 22 273 km and a total of 

5503 benchmarks were established.  Second Order Leveling Networks were carried 

out in Sumatra Island (from 1988 until 1993), the western part of Kalimantan Island 

(from 1988 until 1993) and in northern and southern part of Sulawesi Island (from 

1988 until 1995). The orthometric height systems were used by applying the gravity 

Figure 1.3 Distribution of tide gauge stations 
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correction obtained from gravity observations at leveling benchmarks. The height 

references for these geodetic leveling networks were defined separately per island 

partition based on tide gauges observation of mean sea level at each island. There are 

about 28 tide gauge stations operating between 5 to 15 years distributed across the 

country. Five of these stations (two located in Jawa, one each in Sumatera, Bali, and 

Sulawesi islands) are part of the world Permanent Service for the Mean Sea Level 

(PSMLS). In addition to that there are 25 new stations mounted recently and 

monitored for less than five years. The variability of these tide gauges records may 

consequently vary and the accuracy of the mean sea level at the tide gauge and the 

tide gauge estimates of height (H) will depart from the orthometric height above the 

datum.  

 

The first attempt to connect the local heights datum in this region was undertaken 

by using an oceanographic approach (Khafid et.al., 1994). The solution concentrated 

on the ocean-related component using the mean sea surface determined from satellite 

altimetry and the oceanographic leveling derived from hydrographic data. The 

preliminary results suggested that the sea surface topography in the Southwest coast 

of Sumatera is about – 16 cm, while in South coast of Jawa it increased from –14 cm 

in the west to –8 cm in the east (Khafid, 1998). The results also showed that 

altimetry can provide a reliable component for vertical datum connections. However 

its accuracy in this region was limited by the lack of accurate regional tide models.    

      

The spirit leveling used in the determination of the vertical datum is very precise. 

The networks in Jawa is classified as the National 1st Order Leveling Network and 

the precision of the heights is around ±2 cm, while the leveling networks in Sumatra 

has a lower order with average height accuracy of ± 4 cm (Sutisna , 2001). On the 

other hand the inaccurate definition of zero level at tide gauges causes height   

inconsistencies between the regions and hence height datum unification becomes a 

major problem. The spirit leveling technique also has the disadvantage when used for 

the vertical control network for vast areas with rough terrain like Indonesia. This 

technique is very time consuming and therefore very expensive. 
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CHAPTER 2 
 

THEORETICAL BASIS AND HEIGHT SYSTEM 
 

2.1 Height system 

 

The height of a point located on the earth’s surface is defined as the vertical 

distance between this point and a specified reference surface. The classical technique 

of height determination using spirit leveling technique in principle is to measure the 

difference in height between two points, obtained as the difference between backward 

and forward readings on a level rod. This conventional way of height determination 

by spirit leveling introduces misclosure in the closed line measurements if the gravity 

field is ignored. This is due to the fact that leveled height differences do not only 

reflect the topographical variations but they also include the effects of the earth’s 

gravity disturbances. Theoretically the potential differences which are derived from 

the height differences measured vertically by spirit leveling in combination with 

gravity observations are adopted as basic in height systems (Heiskanen and Moritz, 

1967).  

 

Basically, the heights used in geodesy are categorized according to the way they 

were determined, i.e., the application or the mathematical or physical models used in 

their definition. In principle there are two types of heights, namely the geometric and 

the physical heights. The geometric types include leveled and ellipsoidal heights, 

while the physical types include dynamic height, normal height and orthometric 

height.  

 

2.1.1 Geometric height 

 

The leveled height (H) is commonly obtained by spirit leveling. It measures the 

vertical distance between points located on the earth surface to a defined local mean 

sea level. The observed height differences fluctuate in response to the local gravity 

field variations. Therefore, in practice the algebraic sum of all measured height 
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differences in a closed network will not in general be zero as maybe expected 

intuitively. If the gravity field is ignored in the observations (i.e., the gravity 

component not applied), this height system can only be applied in a local network of 

approximately 10 km extension (see Section 2.1.2 below). 

 

The ellipsoidal height (h) is the distance between the topographical surface of the 

earth and the mathematical model of the reference ellipsoid surface. It is measured 

by, for example, the global satellite positioning techniques (GPS). The vertical 

distance is defined along the straight line perpendicular to the ellipsoidal surface. This 

type of height is only practical if the information of the geoid undulation is available. 

 

2.1.2 Physical height 

 

Theoretically, the way to 

determine actual height 

differences is through their 

potential differences. This is 

due to the fact that the potential 

differences measured along the 

closed loop line give zero 

misclosure regardless the 

chosen path of the loop.  The 

potential difference between an 

observed point and the equipotential surface of the earth’s gravity field (geoid) is 

known as the geopotential  number (C ) and can be determined through classical 

leveling procedures along with gravity measurements or their estimates along the 

level line. The equation is written as (Heiskanen and Moritz, 1967) 

 

    dngCWW
A

o
Ao ∫==−                                                       (2.1)   

where,   

                 oW    is the potential of the geoid 

Figure 2.1  The geopotential differences 
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           AW  is the potential of the surface that passes the measured point. 

  g  is the observed point gravity  

           dn  is the leveled height differences 

 

The unit dimension of the geopotential numbers is in (m2/s2). Practically this is 

inconvenient, as height dimension is commonly given in metric length (m). The 

geopotential numbers can be converted into unit length by dividing them by gravity 

values as follows,    

    

G
CH =  

 

H is the obtained height in meter, C is the geopotential number and G is the “gravity” 

values. The type of the calculated H depends on the type of the gravity used in the 

conversion.  If G is a constant value of a theoretical gravity for an arbitrary point (e.g. 

eγ ), then H is known as a dynamic height. The advantage of this dynamic height is 

that it is the same for all identical height values located on an equipotential surface. 

However, by ignoring the gravity variations between points, the calculated height 

distance may differ slightly from its actual geometric distance.  For that reason some 

prefer to use the actual gravity values for G instead. If the gravity value used is the 

mean normal gravity between the reference surface and the measured point, then the 

obtained height is called normal height and the formula can be written as, 

 

γ
CH normal =                                                    (2.2) 

 

The gravity value (γ) is computed by using the formula for the earth’s normal gravity 

field (Heiskanen and Moritz, ibid), 

 

  ( )ϕβϕβγγ 2sinsin1 2
2

2
1 −+= e                                         (2.3) 
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which is a function only of the geographical latitude (ϕ) of the measured point. The 

eγ  is the normal gravity at equator and its value based on the geodetic reference 

system 1980 (GRS-80) is 9.780 327 ms-2, while β1 and β2 are constants to account for 

the ellipsoidal flattening and their values are 0.0053024 and 0.0000058 respectively.  

 

This normal height can be derived as well from the combination of GPS 

ellipsoidal height (h) and the quasi-geoid undulation (also called height anomaly) as 

shown in the following equation, 

 

  ζ−= hH normal                                                             (2.4) 

 

The height anomaly ζ  can be computed by gravimetric or satellite methods. 

 

The other type of the physical height system is known as the “orthometric height”, 

where the geopotential numbers are divided by the mean value of the true or actual 

gravity ( g  ) between the measured point and the respective reference surface as given 

in the equation below, 

 

  
g
CH etricort =hom                                                        (2.5) 

 

This type of height can be determined if the subsurface density is known.  Since 

the actual gravity values (g) are measured on the topographic surface the density 

distribution of the terrestrial masses is required for the downward continuation along 

the plumb line between the surface point and the geoid.  The mean gravity is written 

as (e.g., in Heiskanen and Moritz, 1967, p.167), 

 

  Hk
h

gg ⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂

−= ρπγ 2
2
1                                           (2.6) 
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where ρ is the assumed constant density and k = 66.7 x 10-9 c.g.s unit is the 

gravitational constant. 
h∂
∂γ  is the normal free-air gradient, can be computed from the 

following formula, 

  ( )ϕγγ 2sin212 fmf
ah

−++−=
∂
∂                                         (2.7) 

 

where a and f are geometric parameters of semi-major axis and the flattening of the 

respective ellipsoid and  m is a constant value related to the centrifugal force and 

gravity at the equator. The corresponding orthometric height obtained from equations 

2.5, 2.5 and 2.7 is called Helmert height and can be expressed as, 

 

  
H

h
Hkg

CH Helmert

∂
∂

+−
=

γρπ
2
12

                                         (2.8) 

 

The reduction in the approximated mean gravity in Helmert height is derived from 

a model of an infinite Bouguer plate of constant density down to the geoid. If a terrain 

correction was also considered, then, the orthometric height is known as Niethammer 

height and the mean gravity is written as, 

 

      TgHk
h

gg Δ+⎟
⎠
⎞

⎜
⎝
⎛ +

∂
∂

−= ρπγ 2
2
1                                       (2.9) 

 

where TgΔ is the terrain correction.   

 

A simplified mean gravity can also be obtained by assuming that gravity g 

measured at the topographic surface varies linearly along the plumb line, hence  

 

  ( )02
1 ggg +=                                                           (2.10) 

 

where 0g  is the computed gravity value at the geoid.  
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The orthometric height can be estimated as well from the ellipsoidal height h, by 

applying the geoid undulation (N) to h as follows, 

 

  NhH orth −=                                                      (2.11) 

 

The geoid undulation is determined from gravity taking into account the indirect 

effect, hence in this evaluation density distribution of the masses inside the earth is 

also required. 

 

Having seen various types of physical heights, it is a matter of preference which 

type of height systems to use because the dependency of both orthometric and normal 

heights on geopotential numbers. Therefore it is possible to transform from one to the 

other system, given the gravity information is adequate.  So, we have, 

 

  etrichomortnormaldynamic
c HgHHC =γ=γ=                               (2.12) 

 

If the geopotential numbers are not available and only the orthometric heights are 

given, then the normal heights can be converted from the simplified equation given as 

follows, 

 

  orth
B

orthnormal H
mgal

g
HH

)(982000
Δ

+≈                               (2.13) 

 

where BgΔ  is the Bouguer anomaly.    

 

 

2.2 The fundamental relationships 

 

The reference surface for which the height is zero corresponds with the chosen 

height system. Figure 2.2 shows various reference surfaces and their relationships. 

The measured heights datum commonly refers to the local mean sea level as a zero 

point. The reference surface for orthometric heights is an equipotential surface of the 
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earth’s gravity field that is closely associated with mean sea level on a global basis, 

the geoid, which in fact deviates relatively from the datum reference surface by up to 

± 2 m. The reference surface for normal heights is the ‘geoid-like’ surface called the 

quasi-geoid, which is neither a physically defined level surface nor a geoid, and has 

no physical meaning. However, it is more practical to compute than the geoid since 

no mass density distribution between the measurement point and the geoid is 

required. In general there is only a small difference between orthometric and normal 

height systems, and at the coastline the geoid and the quasi geoid are at the same 

level. Another reference surface is the ellipsoid, which is a simple mathematical 

model for the earths shape and is an ellipsoid of revolution about its minor axis 

defined by an equatorial radius and flattening. This is the reference surface for heights 

derived from e.g. the global satellite positioning or satellite altimetry.         

  

Combining equations (2.4) and (2.11), and following (Rapp, 1995), the 

fundamental relationships between various height systems can be written: 

 

 Figure 2.2 Relationships between different reference surfaces 
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  Δ++=Δ++= *
DD HHNh ζ                                                    (2.14) 

 

where Δ is the deviation between the vertical datum reference surface and the geoid 

surface. If the geoid is the reference surface, then the Δ value will be zero. In terms of 

potential numbers, the deviation can be expressed as, 

 

  
γ

ζ 00 W
h

g
W

Nh
g
CNh

Δ
−−=

Δ
−−=−−=Δ                               (2.15) 

 

where 0WΔ  is the geopotential difference between the geopotential value at the 

observed point and the geoid.   

 

2.3 The role of the Geoid  

 

The term “geoid” has been in common use for more than hundred years since first 

introduced by C.F.Gauss in 1828. However, the problem of what is the definition of 

geoid remains an open question. To answer the question of “what is the geoid ?”, 

(Grafarend, 1994) following the Gauss and Listing proposal, adopted the geoid as a 

specified reference equipotential surface for the geodetic heights. In addition, 

according to the US National Geodetic Survey, the geoid is defined as the 

equipotential surface of the earth gravity field which best fits, in a least squares sense, 

global mean sea level.  Since height differences which are measured along the local 

plumb line, are everywhere orthogonal to this equipotential surface of the earth 

gravity field, this equipotential surface (geoid) is considered better for the height 

reference surface. 

 

On the other hand, the mean sea surface appears to be a “natural” reference for 

heights. The “traditional” way to define national height systems was also to refer it to 

mean sea level where the long records of a tide gauge were averaged and the height of 

a nearby marker was defined relative to this realization of mean sea level. This local 

mean sea level defined at different tide gauges has the real advantage that it is 

physically defined and measurable, but it may deviate from the geoid due to the 



 16

oceanic variability. The difference between the local mean sea level and the geoid is 

called sea surface topography (SST). The SST depends on both oceanographic and 

meteorological factors such as salinity, temperature, pressure, etc. Its magnitude is 

about ± 2m.  The SST also shows temporal variations with long and short period and 

in different spatial scales due to changes in water density and meteorological 

conditions.  In the definition of the conventional vertical datum the SST is usually not 

considered because the mean sea level is assumed to coincide with the geoid. 

Excluding SST may introduce a systematic displacement of height datum relative to 

the geoid and distortions in the height reference with respect to the equipotential 

surface. As a result, height unification becomes more complicated in particular when 

points are separated by sea, if the mean sea level is used as the reference for local or 

national height datums. 

 

The unification of height systems has become a major problem, above all through 

the growing demands to determine physical heights by the combination of precise 

satellite-based point positioning measurements in combination with the evaluation of 

the geoid    

 

2.4 Regional and global height datum references 
 

The development of a world height system has been discussed for the last two 

decades by various authors. Mather, et, al., (1978) considered the role of satellite 

altimetry in a global unified vertical datum determination. Another approach by 

Colombo (1980) described the development of a world vertical network of 

fundamental stations with all data referring to them, emphasizing the determination of 

the potential differences between vertical datums. Rummel and Teunissen (1988) 

considered the height datum definition and connection problem emphasizing the role 

of the geodetic boundary value problem. Rapp (1995) described a simplified approach 

to define a world height system based on a world vertical datum reference surface and 

Kearsley (1999) proposed the geoid to serve as a regional and global reference for 

height systems. In addition, Bursa (1999) introduced the geopotential value at the 

geoid surface (Wo) as global datum where the local vertical datum shift can be 

defined. 
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2.5   The unification of height systems 

 

In line with the rapid increase of space techniques for positioning determinations, 

studies on the solution of height datum unification has been in focus for the last two 

decades.  The method for vertical datum unification has been discussed and written 

by numerous authors. For example Rummel and Teunnissen (1988) proposed the 

integrated approach based on the solution of the Geodetic Boundary Value Problem 

(GBVP), and the so-called indirect method is proposed in order to connect datum 

separated by ocean (Rummel and Ilk, 1995). Other discussions on the solution for 

vertical datum unification can be found as well in Rapp and Balasubramania (1992), 

Rapp (1995) and Kearsley (1999). In this section, the solution strategy is reviewed for 

the regional vertical datum unification, applicable for Indonesian region. The geoid 

surface is adopted as the fundamental surface, therefore this requires the 

determination of the geoid height. 

 

 The geoid heights can be determined geometrically, i.e., by combining the GPS 

ellipsoidal height and the leveling measurements at chosen benchmark stations. At the 

same sites geoid computations can also be performed by solving the geodetic 

boundary value problem using the local gravity anomaly field and the global 

geopotential model. From these two independent estimates of the geoid heights the 

datum connection parameters can be solved by a least-squares adjustment. 

 

2.5.1 Solution strategy 

 

Theoretically, the potential numbers (C), which are determined from leveling and 

gravity observations (see section 2.1.2), are the parameters used for datum 

comparisons. Let Cd be a potential numbers with respect to the local vertical datum d 

and Cw is the potential numbers with respect to the global vertical datum (geoid). By 

comparing the two geopotential numbers at all common points, following Rapp 

(1995), the mean potential off-set is written as,    

 

  wd CCC −=Δ                                                          (2.16) 
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and the datum connections can be written as, 

 

  CCC wd Δ+=                                                         ( 2.17) 

  

In practice, a simple way to determine the datum off-sets for which the 

orthometric height H, ellipsoidal h and geoid N are known, is written as, 

   

iiiiD HNh −−=Δ )(                                              (2.18) 

 

However, this approach has limitations since it does not convert the geometric 

heights into a potential system. Various techniques can be applied to compute the 

∆D(i)  based on a set of  points.  In this case, the least-squares adjustment is proposed, 

since this method allows the verification of the precision of the derived datum 

connection parameters and the reliability of the measured parameters. 

 

A rigorous method based on Heiskanen and Moritz (1967), following Rummel 

and Teunnissen (1988) and  Xu and Rummel (1991) and re-written in Onselen (2001),  

the  datum connection parameter is expressed as,  
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where 0WΔ  and 0iQC  are unknown quantities and the parameters to be determined.  

J(ψ) is the Stoke integral and can be derived according to Lambert and Darling 

(1936), and is given as,    
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By defining the radius of integration up to a known cap size ψ, the J(ψ) can be 

evaluated and hence the parameters 0WΔ  and 0iQC  can be determined through a 
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rigorous adjustment process.  For the adjustment purposes the misclosure vector in 

the observation equation is formed as,  

 

  Δ+= AXY                        (2.21) 

 

where, 

 A is the design matrix 

 X is parameters of the model 0WΔ  and the potential differences 0iQC    

 Δ is the observation  residual vector 

 

From (eq. 2.20) the coefficient for 0WΔ  and 0iQC  are  
γ
1

−   and  ( )
γ
ψ )(21 J+  

respectively. By assuming Δ =0, and the three observation types (h, H and N) are 

independently determined, then AXY =  and the solution of the observation equation 

by least square adjustment gives the estimated parameter vector of, 
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where,   

 

  NHhy ∑+∑+∑=∑  

 

and, 

{ } yYD ∑=  

 

is the variance-covariance matrix of Y , and the error variance-covariance matrix can 

be written as follows,   
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2.5.2  Practical Implementation 

  

The vertical datum connection can be solved according to the equation model 

given in (Section 2.5.1), provided following conditions are fulfilled. First, precise 

geocentric coordinates derived by space methods and orthometric heights measured at 

co-located benchmark sites. Second, an accurate geopotential model and sufficient 

terrestrial gravity anomalies around the benchmark sites. However, in practice some 

aspects need to be examined. Kearsley (1999), identified that the main barriers to a 

practical implementation are being the accuracy of each of the parameters N, h and H 

for the areas, and the reliability and the stability of the selected benchmark sites at 

which the datum comparisons are made. 

  

The accuracy of the parameters h and H depends on the observation procedure 

and the precision of the measurements, while the accuracy of the N component 

depend on several factors. Such factors are errors associated with the gravity data in 

the vicinity of benchmarks site, errors associated with the geopotential coefficients 

model used as the reference field and errors in handling the topography corrections.       

   

There are advantages and disadvantages in choosing the co-located sites at tide 

gauges versus benchmark sites located inland as fundamental stations for datum 

comparison. The computed geoid undulation suffers from gravity deficiencies in near 

off-shore field while inland the benchmark sites can be chosen in stable areas where 

gravity data are well supplied. In addition to the disadvantages related with tide 

gauges station is that the ellipsoidal height (h) measured from GPS technique may 

suffer from multipath. Given the weaknesses of using the tide gauge station for the 

datum comparison, for a practical approach it is proposed to make the comparisons at 

selected sites located inland, where h and H observations are available and the 

gravimetric geoid (N) values can be computed from a reasonable coverage of local 

gravity data.  
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CHAPTER 3  
 

 VERTICAL DATUM COMPARISON 
 

 

In general, a connection of various local heights datum located on one island or 

continent is made directly by comparing the potential numbers with respect to the 

local vertical datum (Cd) and the potential numbers with respect to the reference 

surface or global vertical datum (Cw) at all common points, and the connection can be 

performed according to the (eq. 2.17). The potential numbers differences can be 

established provided that levelled heights referring to each local datum are known and 

the gravity information is available. The differences in the geopotential numbers at 

common points can be considered a reasonable first approximation to the relationship 

between local heights datum. These values need to be heavily qualified when 

distortions in the local height datum from an equipotential surface are known to exist.   

 

In order to connect points separated by oceans an indirect comparison can be   

applied. In this case, a simple practical way to determine the datum offsets is based 

on eq. (2.18) provided the orthometric height H, ellipsoidal height h and the 

gravimetric geoid undulation N are known. Combining the geoid undulation N with 

the ellipsoidal height h at leveling benchmarks will provide from GPS an orthometric 

height above the reference equipotential surface (geoid) at co-located points. The 

mean differences between the leveling heights and the GPS-geoid heights is 

interpreted (as a first approximation) as the local vertical datum offset, and written as  

 

kikki HNh
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                                               (3.1) 

                                                        

where, 

   Δi  is the vertical offset of local datum i, 

   hk is the GPS derived ellipsoidal height  

   Nk is the gravimetric geoid at point k 
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Hki is the leveling height at point k which refer to the local datum i,  

n is the number of comparison points. 

 

The differences between various local datum offsets to a common regional (or global) 

datum are considered as the distortion of the local vertical datum, and is written as, 

 

jiij Δ−Δ=δ                                                         (3.2) 

 

where Δj is the vertical offset of local datum j.   

 

      This approach admittedly has many shortcomings. For example, systematic errors 

in GPS heights, in the gravimetric geoid and in the leveling data are likely to exist. 

Nonetheless, this value should give a reasonable ‘first estimate’ of the magnitudes of 

the local datum offsets. A more rigorous comparison would be achieved by using 

geopotential numbers instead of orthometric heights (Rapp, 1994; 1995). For that 

purpose, measured gravity values are required at GPS/Leveling common points. 

Unfortunately, most of the GPS/leveling points in our test area did not have measured 

gravity, so the geopotential number option was not yet available. However, it is hoped 

that measured gravity will be available for the future, and the comparison then 

refined. 

 

3.1  Data requirements and datasets 

 

It is important in performing vertical datum comparisons that the reliability and 

stability of the chosen benchmark sites at which the comparisons are made, are 

considered. However, the accuracy of each parameters N, h and H are the most 

critical elements. The expected standard deviation of the datum comparison depends 

on the accuracy of those parameters in the dataset used for the comparison. In the 

following section accuracies of each component are investigated and the expected 

accuracy of the datum connection is assessed. 
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3.1.1 GPS Heights. 

 

The accuracy of the coordinates determined from GPS measurements depend on 

many factors, such as observation precision and the method of the GPS data 

processing and the post-processing adjustment. These factors could contribute up to 

several meters. There are several sources of observation errors such as satellite orbit 

errors, the ionosphere and troposphere effects, receiver related errors and multipath 

effects. The major error sources such as satellite orbit and tropospheric refraction 

effect could degrade the GPS height estimation by 10 cm each. In addition to that, the 

effect of ocean loading should be considered. For sites near the coast the effect may 

reach more than 10 cm and even for stations located far from the coast the effect 

could be at the 1 cm level (Rothacher, 2000). Another major error source is 

introduced by inaccurate geocentric coordinate of the fixed station height in the 

network adjustment. This could give up to 10 cm error in the GPS station height 

estimation.           

 

In order to eliminate, or at least minimize the measurement errors an adequate 

observation procedure should be followed. For instance, the double-differenced 

pseudorange method will eliminate the systematic errors originating from the 

satellites and the receiver clocks, while a proper combination of dual frequency phase 

data will reduce the ionospheric refraction effect (Hofmann-Wellenhof et, al, 1994).  

To reduce the satellite orbit errors the IGS precise orbit should be used and the IGS 

estimation of trophospheric zenith delays should be applied to minimize the 

tropospheric effect.  In order to reduce errors from inaccurate geocentric coordinates 

of fixed station heights, the ITRF coordinate should be used for the fixed sites. By 

selecting the benchmark stations which are free from signals reflection such as trees, 

buildings, vehicles or other reflecting surfaces (including water surfaces), the 

multipath effect will be reduced. Establishing the GPS stations far from the coast will 

reduce both multipath due to reflections on the surface and ocean loading effects. 

   

The ideal GPS sites appropriate as fundamental stations for the vertical datum 

comparison are those measured for GPS-Geodynamic stations where both the quality 
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of the observations and the stability of the sites are reliable. In addition to that, 

stations located inland some way (e.g., 50 km) are preferable than those near the tide 

gauges. The GPS-geodynamic stations in Indonesia are part of a geodynamic network 

of 42 sites located in the South and South-East Asia region. The observations were 

conducted simultaneously and periodically from 1994 to 2000 within the frameworks 

of the Geodynamics in South East Asia (GEODYSSEA) and the Asia Pacific 

Regional Geodynamics (APRG) projects.  The data was computed by several analysis 

centers and the precision of the coordinates of the GEODYSSEA stations are reported 

as 4-7 mm for horizontal and 10 mm for the vertical components (Becker, 2000).   

 

3.1.2 The leveling heights 

 

The approximate accuracy of the orthometric height component H cannot be 

accessed here, as most of the GPS-geodynamic stations are not located at leveling 

benchmarks. It is therefore proposed that these stations should be tied into the 

national leveling network. The precision of the leveling height H will be a function of 

the length of the tie from the benchmark to the GPS station and the accuracy of 

leveling employed.  Xu and Rummel (1991, p.25) consider an acceptable accuracy of 

leveling to be 1 mm/km excluding systematic effects. However, Rapp (1992, p.23) 

assigned a standard deviation of 5 cm for the orthometric heights of the fundamental 

stations used in the first attempt to unify the world vertical datum.   

 

3.1.3 The gravimetric Geoid 

 

The precision of the geoid undulation depends upon the accuracy and coverage of 

the gravity data used in the geoid computation. The geoid undulation computed from 

gravity anomalies according to the classical Stokes formula is written as (Heiskanen 

and Moritz, 1967, p. 94), 
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where,  

 gΔ  is the gravity anomalies which should be known over the entire globe 

 )(ψS  is the Stokes function  

γ  is the earth’s mean gravity 

           R  is the earth’s mean radius 

 

More detailed discussions on the implementation of the Stokes formula for the geoid 

computation are given in Chapter 4. 

 

In practice, the computation of the geoid undulation is done by a combination of a 

global geopotential model, local free-air gravity anomalies and topography data and 

can be expressed as, 

 

  sl NNN +=                                                  (3.4) 

 

where lN  is the long wavelength geoid component calculated based on the 

geopotential coefficients model and the sN  is the short wavelength geoid component 

computed from gravity anomalies and the topographic data. The accuracy of the 

computed total N value depends on the contributions of the long wavelength error
lNε  

introduced by the errors in the geopotential coefficients models and the short 

wavelength error
sNε  coming from the local gravity and topographic data.  

 

The error in the geopotential models is expressed in terms of error degree 

variances and given as, 
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where nmCε  is the standard deviations of the geopotential coefficients model. This is 

called the commission error. The estimated global RMS value of the commission 
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error based on the geopotential models OSU91A and EGM96 is shown in Table 3.1 

(Lemoine et.al, 1998, p.10-36). However, the actual long wavelength geoid 

undulation errors may vary geographically and could be considerably larger in areas 

like South East Asia where there is a lack of gravity data in several places. 

 

                      Table 3.1 The RMS Geoid Commission Error from   

                                     Geopotential Models.  

Errors in cm  To degree 

 (n) OSU91A EGM96 

2 0.18 0.05 

6 2.2 0.6 

10 5.1 1.8 

20 10.8 4.9 

30 17.2 7.9 

50 25.8 14.6 

70 32.7 19.0 

75 34.0 20.6 

100 38.8 26.0 

120 41.7 29.0 

180 47.3 34.7 

360 54.7 42.1 

 

 

The error in the short wavelength component depends on the coverage, density 

and the accuracy of local gravity data. In addition to that, errors are also introduced 

by the inaccurate topography data used in the reduction of the gravity anomalies. 

Kearsley (1986) suggested that the short wavelength contribution is achievable to 

better than ± 5 cm over 100 km providing the mean error of 10 km grid gravity data 

used in the computation does not exceed ± 3 mgal. Errors are also introduced by 

inaccurate topography data used in the reduction of the gravity anomalies. By using a 

good elevation model of 1 km by 1 km the relative errors can be reduced to below 2 

ppm. 
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    More precise geoid models are expected from the GRACE and GOCE gravity 

satellite missions.  The accuracy could be as good as 1 cm for spatial resolutions from 

100 to 20000 km (Rummel, 2002).  Such models will help greatly in the unification 

of vertical datum compared to the present situation.  

 

3.2.  The Actual Pilot Test Computation 

 

At present time, the data needed for the vertical datum comparison are not 

available for the whole Indonesian region that consists of more than 17 000 islands. 

The GPS-Geodynamic stations are mostly established in major islands (Jawa, 

Sumatera, Kalimantan, Sulawesi and Irian Jaya) and only a few sites are located in 

several smaller islands. However, the leveling heights are not available at most of 

those stations. The leveling measurements were only completed in the two major 

islands of Jawa and Sumatera and part of Sulawesi.   

 

 Due to these data constraints, the pilot test computation is performed only for a 

subset area in the western part of the Indonesian region. The vertical datum 

comparison is carried out in an area chosen so as to connect the Sumatera and Jawa 

islands, where the parameters h, H and N are available. The test area is bounded by 

160x200 (-10º<φ< 6º and 94º<λ<114º).  There are 8 GPS-Geodynamic stations located 

within the test area, which are ideal as fundamental stations for the vertical datum 

comparison. Unfortunately only two of these points coincide with the leveling 

benchmarks and a connection of the remaining stations to the national leveling 

network was not possible during this study. As an option, it was decided to employ 

the documented Bakosurtanal GPS/leveling common points as fundamental stations 

for the datum comparison, see Figure 3.1. 

 

3.2.1 Data sources and the quality of the datasets 

 

a. The geometric heights 
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For this test computation 56 GPS points located at leveling Benchmarks in the local 

networks have been used. These are made up from 47 points in Sumatra and 9 points 

in Jawa. The distribution of these points is shown in Figure 3.1. In addition to these 

points, the GPS-geodynamic stations of GEODYSSEA/APRG sites co-located with 

leveling benchmarks (one each in Jawa and Sumatra) were also used. 

The GPS-Geodynamic coordinates were given in the ITRF2000 datum (Morgan, 

P., 2002, pers. comm.). The local GPS points at leveling Bench Marks in Sumatra and 

Jawa were measured in several different networks within the period of 1991 to 1993.  

To avoid any inconsistency in the GPS heights used in this computation, their 

geodetic coordinate positions have been re-adjusted into ITRF2000 and their new 

documented coordinates are consistent with the GEODYSSEA/APRG coordinates 

(Subarya, 2002, pers. comm.). The leveling networks in Jawa is classified as the 

National 1st Order Leveling Network and the precision of the heights is around ±2 

Figure 3.1 Distribution of GPS/Levelling points  (●) and the GPS-
geodynamic stations  (■ ) for the test area. 
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cm, while the leveling networks in Sumatra has a lower order with average height 

accuracy of ± 4 cm (Sutisna , 2001). 

 

b. The gravimetric Geoid  

 

A high precision regional geoid model for the country has not yet been available. 

The main impediment to its production is the deficiency of gravity data, especially in 

mountainous and coastal regions. To date, the existing regional geoid model that 

covers the whole Indonesian region was computed by either combining the global 

free-air gravity anomaly data set with the gravity anomalies derived from GEM-8 

potential coefficients (Kahar, 1981), or by using the 5’ grid Indonesian gravity 

database with the geopotential coefficients model OSU91A (Kahar J., Kasenda, A., 

Prijatna, 1996). The accuracy of the first model was relatively low (of the order of 4 

to 5 meters).  Improvement was made in the latter model (order of 1 to 1.5 m), but 

still far from the accuracy required for vertical datum comparison. Therefore, these 

models can’t be employed for such purpose and a better geoid is needed. 

 

As mentioned earlier, the accuracy of the gravimetric geoid depends on the 

computation method and the quality and coverage of the gravity data. The gravity 

data over the Indonesian region consist of land and marine gravity dataset measured 

by different groups and institutions, mainly by the National Oil Company and the 

Geological Survey Department. Since the observations are mostly aimed at 

geophysical exploration and geological structure interpretations, the spatial density of 

the data distribution is uneven. It is very dense in some prospecting areas and rather 

sparse to non-existent in the areas of lesser hydrocarbon potential. There is also a lack 

of gravity data in rugged terrain or in swamp areas. The distribution of the terrestrial 

and marine gravity data over the region is given in Figure 3.2. This gravity data 

situation will influence the accuracy of the computed geoid. 

 

To date, the only regional gravity dataset that covers the whole Indonesian region 

is from the South East Asia Gravity Project (SEAGP). This project was undertaken by 

The Geophysical Exploration Technology, The University of Leeds, UK in 
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collaboration with the Indonesian Gravity Commission. The project ran from 1991 to 

1995. All the available land and offshore gravity data on different datum and from 

various sources were adjusted and standardized into a uniform South East Asia 

Gravity data set. Offshore data gaps were filled with gravity anomalies derived from 

satellite altimetry. All observed datasets have been adjusted into the IGSN71 gravity 

datum, and processed using the WGS84 gravity formula (GETECH, 1995).  

However, the accuracy of the final 5’ grid dataset remains uncertain due to large data 

gaps in the land areas, especially in the mountains and in the coastal regions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 The Gravity Data Distribution over The 
Indonesian region (GETECH/KGN, 1995) 
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Figure 3.3 The free-air gravity anomalies over the test area 

Figure 3.4 The residual anomalies after removing the EGM96  
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The gravimetric geoid for the test area (namely INDGED02) is computed based 

on the free-air gravity anomalies from the data mentioned above, combined with the 

geopotential model EGM96 as the reference field. The gravity features over the test 

area are quite dynamic, the free-air anomalies varies from –190 mgal over the ocean 

areas in west of Sumatera and south of Jawa to more than 250 mgal over the land part 

of Jawa island.  After removing the long wavelength components from the ‘observed’ 

data, the residual gravity field becomes smoother (compare Figure 3.3 and Figure 

3.4). The statistics of the data reductions are given in the Table 3.2 below. It is seen 

from this table that the residual anomalies have an effective zero mean value (- 0.61 

mGal)  and a much reduced standard deviation (± 18 mGal) and range (around 320 

mGal), as would be expected, since much of this gravity data were likely used in the 

evaluation of the EGM96 coefficients. 

 

Table 3.2 The statistics of the gravity reduction 

 (unit in mGal).           

Free-air Anomalies Mean Std. Deviation Min. Max. 

‘Observed’ data 15.63 40.65 -190.02 272.70 

EGM96 16.24 39.13 -159.47 237.13 

Residual -0.61 17.96 -154.68 172.87 

 

      The computation is carried out using the FFT technique as implemented in the 

GRAVSOFT packages. A more detailed discussion on the FFT technique is given in 

Chapter 4. The geoid height is calculated at a grid spacing of 5’ for the larger area 

before interpolating into the control points. The variation of the geoid within the test 

area is relatively high, ranging from – 40 m in the west to more than +40 m in the 

eastern part of the area (see Figure 3.5). The contribution of the residual geoid varies 

from a minimum of -1.35 to a maximum of +1.84 m over the area. The standard 

deviation of the residual geoid is about 0.11 m, while the interpolated values at the 

control points have standard deviation of about 0.24 m.  

 

The global geoid commission error from the EGM96 geopotential models 

expanded up to 360 degrees is about 42 cm (see Table 3.1). The accuracy of the 

residual geoid from the geoid computation done here by FFT cannot be assessed 

directly, since the FFT technique does not propagate errors. So the total geoid error 
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budget is unknown. To assess the error of the residual geoid Least Squares 

Collocation should be used. This is done in Chapter 5 for a smaller area (i.e., part of 

Jawa and southern part of Sumatera). The error estimates here were between 20 and 

30 cm for most areas. If we assume the error to be 25 cm for the present residual FFT 

geoid and that the global commission error is applicable for this specific area, then the 

total geoid error should be around 50 cm. Although far from the desired precision, this 

result is considerably better than the previous geoid models for the area. This geoid is 

therefore adopted as the reference surface and its value at GPS/leveling common 

points are then used in the vertical datum comparison.  

 

3.2.2 The Comparison at control point 

 

A comparison is carried out using equations (3.1) and (3.2). The ellipsoidal height h, 

the orthometric height H and the computed geoid undulation N are given in Table 3.3 

and Table 3.4 together with the misfit for the control points. The local datum offsets 

Figure 3.5 The gravimetric geoid (INDGED02) over the test area  
(contour interval 2 m) 
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from the reference surface is given in Table 3.5 in terms of mean and standard 

deviations of the misfit from Table 3.3 and Table 3.4. It shows that the mean offset of 

local heights in Sumatera is about 0.38 m from the reference surface with a standard 

deviation of 0.67 m. In Jawa the local heights deviate more from the reference 

surface. The mean offset is 1.16 meter with a standard deviation of 1.54 meter. This 

large standard deviation shows that significant variation from the mean offset is 

present. This may be partly explained by the small sample size in Jawa. However, for 

Sumatera, where we have much bigger sample, the standard deviation of 0.67 meter 

also indicates that there are problems in the data used in the comparisons. Since the 

geoid was estimated to be accurate at the 50 cm level, the combined error for leveling 

and GPS must be approximately at the same level in order to give a total misfit of 

0.67 m standard deviation (assuming the GPS/leveling error to be uncorrelated with 

the geoid error). These may both include errors in ellipsoidal height h and leveling 

height H, but could also point to the presence of distortions in the local height datum, 

i.e. that the local height datum refer to different tide gauges (see Kasenda and 

Kearsley, 2002).  

 

 Table 3.3 The comparison at Jawa GPS/leveling control points 
      

Pt 
# 

Latitude 
 

Longitude h 
(meter) 

N 
(meter) 

H 
(meter) 

dH 
(meter) 

1 - 8.168 113.702 119.770 31.641 85.766 2.363 
2 -7.826 112.010 94.640 26.302 66.809 1.529 
3 -8.177 111.045 411.510 24.814 384.503 2.193 
4 -6.984 110.409 31.280 25.905 4.793 0.582 
5 -6.889 109.664 28.610 24.776 6.426 -2.592 
6 -6.333 107.673 32.150 20.189 10.967 0.994 
7 -6.808 107.156 427.490 19.446 405.723 2.321 
8 -6.731 107.041 1075.390 19.913 1053.558 1.919 
9 -6.491 106.849 158.170 18.629 138.410 1.131 

 
 
 
  Table 3.4 The comparison at Sumatera GPS/leveling control points 
      

Pt 
# 

Latitude 
 

Longitude h 
(meter) 

N 
(meter) 

H 
(meter) 

dH 
(meter) 

1 -4.553  105.221 38.620 15.725 22.226 0.669 
2 -5.240 105.175 100.380 14.322 85.879 0.179 
3 -4.847 104.856 46.090 14.037 31.748 0.305 
4 -3.412 104.824 25.910 14.635 10.422 0.853 
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Pt 
# 

Latitude 
 

Longitude h 
(meter) 

N 
(meter) 

H 
(meter) 

dH 
(meter) 

5 -4.166 104.197 71.910 12.250 58.907 0.753 
6 -5.188 103.934 9.330 4.953 3.758 0.619 
7 -2.888 103.839 21.910 11.297 10.192 0.421 
8 -3.786 103.533 123.560 9.637 112.816 1.107 
9 -1.205 103.066 40.680 7.736 32.324 0.620 
10 -0.349 102.333 26.000 3.720 21.746 0.534 
11 -2.075 102.288 65.200 5.227 59.806 0.167 
12 -1.463 102.123 54.790 4.154 49.701 0.935 
13 0.462 101.446 39.070 -0.207 39.503 -0.226 
14 -2.054 101.390 808.810 1.292 805.439 2.079    
15 1.619 101.436 15.880 -1.281 17.355 -0.194 
16 -1.806 100.855 35.100 -3.338 37.366 1.072 
17 -2.514 101.068 -0.680 -4.657 3.831 0.146 
18 0.346 101.025 35.240 -1.736 36.896 0.080 
19 -0.728 100.944 180.240 -0.908 180.314 0.834 
20 -0.223 100.633 511.170 -2.339 512.747 0.762 
21 -0.271 100.369 910.740 -3.899 913.796 0.843 
22 -0.620 100.120 -3.440 -6.977 3.853 -0.316 
23 2.095 99.833 29.160 -7.800 37.070 -0.110 
24 2.848 99.653 19.160 -9.276 29.364 -0.928 
25 3.569 98.677 12.190 -15.539 28.193 -0.464 
26 0.693 99.652 391.470 -8.088 398.038 1.520 
27 1.369 99.278 286.090 -10.142 295.520 0.712 
28 2.936 99.047 422.670 -11.098 434.551 -0.783 
29 2.020 98.962 945.320 -10.771 955.779 0.312 
30 1.687 98.818 -9.630 -12.907 3.322 -0.045 
31 3.145 98.328 1291.910 -15.573 1305.441  2.042 
32 2.736 98.328 1084.770 -14.417 1099.377 -0.190 
33 4.457 97.999 -19.030 -21.075 2.750 -0.705 
34 3.258 97.184 -22.530 -26.577 2.298 1.749 
35 4.153 96.132 -27.080 -30.819 3.054 0.685 
36 5.366 95.933 -25.290 -31.160 4.619 1.251 
37 5.120 97.158 -21.130 -25.180 3.969 0.081 
38 2.665 98.198 401.800 -16.395 417.874  0.321 
39 2.742 98.399 1008.300 -13.613 1021.839  0.074 
40 2.762 98.459 1380.100 -12.987 1392.892  0.195 
41 2.192 98.642 1303.100 -11.874 1314.914  0.060 
42 2.225 98.656 1409.400 -11.517 1421.008 -0.091 
43 2.252 98.678 1465.300 -11.159 1476.592 -0.133 
44 2.257 98.712 1393.700 -10.890 1404.726 -0.136 
45 2.262 98.859 1402.500 -10.038 1412.740 -0.202 
46 2.248 98.902 1394.600  -9.902 1404.513 -0.011 
47 2.225 98.939 1309.900  -9.891 1319.374  0.417 
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Table 3.5 The departure between local height datum and the reference surface 

(unit in meter) 

 Mean  
  

Standard 
Deviation 

Minimum Maximum 
 

Sumatera  0.380 0.675 -0.928 2.079 
Jawa 1.160 1.542 -2.592 2.363 
 
 

Since documentation for the adjustment of the leveling networks is not available, 

it is difficult to identify which control points refer to which tide gauge. There is little 

systematic error in the spatial distribution of the misfit shown in Figure 3.6, 

eventhough there is some tendency to clustering, e.g. in the northern part and there 

may also (in some areas) be a correlation between elevation and misfit. A closer look 

at a possible correlation between elevation and misfit, though, shows that there is little 

correlation for Sumatera as a whole (see Figure 3.7). Based on these observations, the 

mean value of 0.38 m for the misfit was adapted as a common datum offset for 

Sumatera. The mean value of the misfit for Jawa is 1.16 m, which indicates that a 

local datum distortion of about 78 cm appears between Sumatra and Jawa.  In cases 

where the misfit displays a more systematic pattern it may be better to assess the 

offset as a correction surface across the area rather than adopt a single value for the 

offset between the local datum and the equipotential reference surface or global 

datum.   

 

 

 

 

 

 

 

 

 

 

 

                                 Figure 3.6 Misfit at control points 
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CHAPTER 4  
 

THE GEOID SOLUTION 
 

 

4.1 Implementations of Stokes’ integration formulae 

 

Determination of the geoid undulation N is based on Stokes integration formulae 

which was published in 1849 by G. G. Stokes (Heiskanen and Moritz 1967, p. 94) 

and given as, 

 

( ) σψ
πγ σ

dgSRN ∫∫Δ=
4

                                              (4.1) 

 

where R is the Earth radius, γ is normal gravity, gΔ is the gravity anomaly at the 

geoid and ψ  is the spherical distance between the computation and the data point. 

The function S is Stokes’ function and given by 
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ψ
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Equation (4.1) gives the solution to a boundary value problem for the disturbing 

potential T, assuming T to be harmonic, i.e. obeying the Laplace equation, outside the 

geoidal surface and further assuming that the gravity anomalies are given on the 

geoid. This means that actual observed gravity has to be reduced to meet these 

requirements (at least approximately). The reduction will normally consist of two 

steps. First is a removal or shifting of masses above the geoid and secondly a 

lowering (or downward continuation) of the actual gravity station from the surface 

upon which it is measured to the geoid.  

 

The shifting or removal of masses will obviously have an effect on the derived 

geoid and a correction term to account for this so-called indirect effect on geoid has 

to be computed. The indirect effect will depend on the actual reduction scheme used. 

The condensation reduction of Helmert, used here as an example, has the advantage 
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of a rather small indirect effect, and a first order approximation may suffice in 

practice. The Helmert reduction corresponds to condensation of the masses above the 

geoid to a surface layer on the geoidal surface. Helmert reduced gravity anomalies 

(also called Faye anomalies) are computed as (Heiskanen and Moritz 1967, p. 145) 

 

cgg FAH +Δ=Δ                                                           (4.3) 

 

where FAgΔ  is the traditional ‘free air anomaly’, which formally refers to the geoid, 

and c is the classical terrain correction. A small term called the indirect effect on 

gravity has been neglected here. The indirect effect on the geoid for the Helmert 

reduction scheme is in the planar approximation given by (Sideris, 1994) and written 

as, 

 

HHGNHelmert ⋅−≈
γ
γρπδ                                                    (4.4) 

 

A more recent formulation of the geodetic boundary value problem was given by 

Molodenskii, where a “quasi geoid” is determined. Here the solution is computed 

directly from observations on the topographic surface 

 

( ) σψ
πγ

ζ
σ

dSggR
FA∫∫ +Δ= )(

4 1                                            (4.5) 

 

where the free air anomaly FAgΔ  now formally refers to the topographic surface. The 

distinction between free air anomalies referred to the surface and those referred and to 

the geoid is mainly a conceptual distinction, for practical purposes they can be 

considered identical (Heiskanen and Moritz 1967, p. 310). The expression 1g  is the 

first term in the Molodensky series and for practical purposes can be approximated 

with the classical terrain correction term c (Heiskanen and Moritz 1967, ibid). The 

integral (4.5) yields the quasi-geoid or the height anomaly, which relates to the 

definition of normal heights, see also Section 2.1. 
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The separation between the geoid and the quasi-geoid, δζ , may to a first order 

approximation be expressed as (Heiskanen and Moritz 1967, p. 327) 

 

H
mgal

gHg B ⋅
Δ

≈⋅
−

=
000,981γ

γδζ                                      (4.6) 

 

where g  is mean value of gravity along the plumbline between the surface of 

topography and the geoid, γ  is the corresponding mean value of normal gravity, BgΔ   

the Bouguer anomaly and H the orthometric height.  

 

So despite of the conceptual difference between the original formulation of the 

geodetic boundary value problem by Stokes and the more recent one by Moledenskii, 

there is little difference in the computation of a solution to the problem as seen from a 

practical point of view. 

 

The integration in (4.1) and (4.3) is formally done over the whole globe. For 

practical implementations the gravity signal and the corresponding geoid signal are 

split into three terms, reflecting the spectral content of the signals 

 

toporegGM gggg Δ+Δ+Δ=Δ                                            (4.7) 

 

Similarly, the geoid can be split up into the equivalent components 

  

toporegGM NNNN ++=                                                 (4.8) 

 

The first term GMgΔ  or NGM contains the longest wavelengths of the anomalous 

gravity field and is taken from global geopotential coefficient models such as EGM96 

(Lemoine, et. al, 1998), Eigen-2 from the satellite mission CHAMP and GGM01 or 

GMM02 from the GRACE satellite mission. These models are given as spherical 

harmonic coefficient sets, [ ]nmnm SC , , to degree and order, for e.g., 360 for the 

EGM96 model and 120 for GGM01s. The corresponding geoid undulation and 

gravity anomaly are expressed as 
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and, 
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where R is earths radius, G is the gravitation constant, M the mass of the earth and  

nmP  are fully normalized associated Legendre polynomials. The spherical functions 

)(sincos φλ nmnm PmC  and )(sinsin φλ nmnm PmS  are all solutions to the Laplace 

equation.  The highest degree of the models corresponds to wavelengths of 100 and 

300 km respectively. The GRACE model is later on amended to degree 200 in the 

GMM02C and the EGM06 is updated into a higher degree (see later Chapter 6).  

 

To split the remaining signal into two components reggΔ and topogΔ , Nreg and Ntopo 

respectively, serves two purposes. First the gravity data coverage may not be 

adequate and gravity values have to be interpolated from existing data. Second is to 

account for topographic effects on gravity and geoid.  Due to the high correlation 

between gravity and topography a gravity field reduced for topographic effects will 

be much smoother and therefore more suitable for interpolation than the original free 

air anomaly field. The Bouguer anomaly field BgΔ  has been widely used for this 

purpose but it suffers from the fact that even the Bouguer gravity field is rather 

smooth on shorter scale, there is considerable energy in the field for wavelengths 

longer than 50 to 100 km due to isostatic compensation. This can lead to large 

systematic interpolation errors in areas where larger data gaps are present. The use of 

residual terrain models, RTM’s, where the longer wavelengths are absent may serve 

better for interpolation purposes. 

 

4.1.1 FFT techniques in geoid computation 

 

Stokes integral (eq. 4.1) is basically a convolution integral. Such integrals can be 

estimated very efficiently by Fast Fourier Transforms (FFT) methods (Forsberg and 
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Sideris, 1993). The program SPFOUR from the GRAVSOFT package (Tcherning et 

al, 1992) was used for the FFT-based geoid computations presented here. In this 

program the Fourier transform is done as a bandwise 2-dimensional FFT, where the 

underlying coordinate system is the geographical coordinates scaled to mean latitude 

for each computation band. 

 

Other implementations of the Fast Fourier Transform are the spherical FFT 

(Strang van Hess, 1990) and multiple 1-dimensional FFT with subsequent 

interpolation between the computation parallels (Haagmans et al, 1993). 

 

A prerequisite for the use of FFT is that the data are on a grid format. The 

program GEOGRID (also from the GRAVSOFT package) was used to this purpose. 

Since the gridded data will be treated with equal weight in the FFT step, it is very 

important to consider what happens in the gridding process, especially in this test case 

with rather large data gaps. Both the near coastal offshore zone and the more 

mountainous parts of Java Island have very little reliable gravity data, see also Figure 

4.4. The GEOGRID program offers two ways of interpolation, either by a simple 

weighting of the data, where data are weighted with the inverse squared distance, or 

by collocation based interpolation.  

 

The collocation approach will give predicted values close to zero in areas where 

the nearest data point is further away than the correlation length used in the prediction 

(see Section 4.1.3). This may lead to systematic interpolation errors if the real (and 

unknown) mean value for the data gap fails to be close to zero. The correlation length 

can be chosen arbitrarily, but too long a correlation length will smooth the predicted 

values too much. So, despite the advantages of collocation based interpolation like the 

availability of error estimates there are also some drawbacks. Collocation based 

interpolation is treated in more details in Section 4.1.3. 

 

The weighted mean interpolation method will give values that reflect the mean 

value of the surrounding data points better. Gridding by weighted mean was used in 

the geoid computations presented in the sequel. 
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Systematic or long wavelength errors in the gravity data can produce large geoid 

errors, which may degrade the geoid derived from the geopotential model instead of 

improving it. Wong and Gore (1969) proposed a modification of Stokes’ function or 

Stokes’ kernel to avoid this problem. With the Stokes’ kernel written in terms of 

Legendre polynomials 
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Wong and Gore proposed to modify the kernel by removing the low degree 

harmonics, (4.11) then becomes, 
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where  τ is the Wong-Gore cut-off degree. This will make the resulting gravimetric 

geoid less prone to long wavelength errors in the gravity data. On the other hand 

choosing too high a cut-off degree could mean that the medium wavelengths of the 

geoid signal won’t benefit enough from the information in the gravity data. The 

choice of an optimal cut-off degree is based on a judgment, which adds some 

subjectivity to the geoid determination process. 

 

4.1.2 The RING integration approach 

 

The Stokes’ function in equation (4.2) becomes infinity as ψ (the angular distance 

between the computation point and the surface element dσ) approaches zero (see 

Figure 4.1). To avoid the nonlinearity of the S(ψ) as ψ becomes small, the F(ψ) 

function is used (Kearsley, 1985).  It is given in the form of S(ψ)sinψ, 
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This F(ψ) function behaves better (see Figure 4.1 below), having a maximum 

value of about 2.5 at ψ ≈10° and moving towards 2 as ψ approaching zero.   

 

The solution of the Stokes’ integral formula in equation (4.1) is then carried out 

using this modified Stokes function and the geoid undulation formula and written as, 
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ddgFR                                  (4.14) 

 

where dψ is the increment in the spherical radial distance originating from the 

computation point, dα  is the increment in the direction of the radial line. The 

practical evaluation of this integration formula is called the Ring Integration method. 

Figure 4.1 The S(ψ) and F(ψ) functions 
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It is implemented in the RINT software package and is fully developed in Kearsley 

(1985). In this method, the surface is subdivided into compartments formed by 

concentric rings and radial lines centered on the computation point P (see Figure 4.2). 

The mean gravity anomalies values of each compartments ( gΔ ) are estimated by 

fitting plane surfaces to the point data and interpolating the value from the plane at 

the mid point.  The contribution in meters to the geoid per mGal of gΔ  values from a 

compartment bounded by ψi and ψj is written as, 

 

ψψ
ψ

ψ

dFkC
j

N )(
1

∫=                                             (4.15) 

 

and the integration is then calculated in terms of summation, 
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where Ns is  the short wavelength component of the geoid (the inner zone contribution 

where 0º≤ ψ ≤1.5º), h is counter for the azimuth component and i is counter for the 

radius component.  The CN is set up to 0.3 mm/mGal for this test. The formal error 

estimate in Ns is simultaneously propagated through the Ring integration solution, 

based upon its variance estimate in the gravity anomaly (Kearsley, pers. comm.).   

    

 

 

 

 

 

 

 

 

 

 

       Figure 4.2 The concentric ring compartments 
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The medium to long wavelength component of the geoid undulation (the remote zone 

contribution) is determined from the geopotential coefficients model using the 

formula (4.9) mentioned in Section 4.1. 

 

4.1.3 Least Squares Collocation (LSC) 

 

Estimation or prediction of the gravity field in areas with no data is of major 

importance for the determination of the geoid. It is obvious that the roughness of the 

gravity field has an impact on such predictions. It is easier to make good predictions 

in areas with a benign or gently undulating gravity field than in areas where the field 

is wildly fluctuating. In the first case neighbouring points are more likely to have 

similar values than in the latter.  

  

The empirical covariance function, )(ψC , which is a measure of the tendency for 

neighbouring points to have similar values plays an important role in least squares 

prediction.  It is written as, 

 

ψ
ψ

=
Δ⋅Δ=

),(
)(

QPdistQP ggC                                   (4.17) 

 
 
 
where the mean is taken over all pairs of data points P and Q separated by the 

spherical distance ψ. An example of such a covariance function is shown in Figure 

4.3. 

 
The spherical distance where )(ψC  drops off to one half of the maximum value 

is called the correlation length. The figure shows both the empirical covariance 

function as determined from (4.17) and an approximate analytical representation. 

 

The optimal prediction of the gravity field in a point P expressed as a linear 

combination of all observations igΔ  is given by the following matrix form (Moritz 

1980, p. 80 and  p.102) 
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where n is the number of observations and )),(( jidistCCij =  denotes the value of the 

covariance function with an argument equal to the distance between  the data points i 

and  j. The matrices [ ijC ] and [ ijv ] are called the auto covariance and observation 

error covariance matrices. The observation error covariance matrix will often just be a 

diagonal matrix assuming the observation error or noise to be uncorrelated from one 

observation point to another. 

  

The least square prediction method also gives estimates of the prediction errors. 

The squared standard error in the prediction point P is given as 
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Geoid heights N can also be estimated from gravity observations if the cross 

covariance matrix [ Ng
ijC ] between geoid heights and gravity anomalies are known 

(Moritz 1980, p 102).  
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The method is called least squares collocation, when derived quantities like the 

geoid undulation are estimated. Also geoid error estimates becomes available in a 
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manner similar to (4.19). The key point in this approach is that the cross covariance 

matrix [ Ng
ijC ] between geoid undulation and gravity anomaly can be derived from the 

analytical representation of the empirical covariance function. This important 

property is called covariance propagation (Moritz 1980, p. 87). The method is not 

limited to making predictions based on one type of observations like gravity 

anomalies. The observation vector in eq. (4.20) can consist of any combination of 

quantities that can be expressed as a linear functional of the disturbing potential T, 

e.g. gravity anomalies, geoid heights, deflections of the vertical or the disturbing 

potential T itself. Also upward/downward continuation of the quantities can be 

performed in the same collocation step (Moritz 1980, p. 97). 

      

There are two basic assumptions about the underlying structure of the gravity 

field that should apply when using collocation. First the mean value of the gravity 

field is assumed to be zero and secondly the field is assumed to be isotropic, i.e. 

behaves (statistically) the same in all directions and is independent of azimuth. Both 

assumptions will be closely approximated even for smaller areas when a good global 

reference field is subtracted the observed anomalous gravity field. Kearsley (1977) 
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has shown there needs to be significant anisotropy before the collocation solution 

breaks down. 

In mountainous areas it is however necessary to go a step further and also try to 

remove regional and local trends in the gravity field before using optimal estimation 

and/or collocation. The classical Bouguer anomaly is much smoother and exhibits 

less local features than the Free Air anomaly but suffers from pronounced regional 

trends in the anomaly field stemming from isostacy. The Residual Terrain Model 

approach (RTM) take into account both the local topography and the effect of 

isostacy and thus represents the most sophisticated scheme for the reduction of 

gravity observations (Forsberg and Tscherning 1981). 

 

4.2 Data sets and Pre-processing  

 

The island of Java was chosen as test area for the geoid computations due to the 

relatively better surface gravity data coverage as compared to other parts of Indonesia 

and because of the presence of several control points with geometric geoid values 

from combined GPS and levelling measurements (see Figure 4.4). Gravity and 

elevation data within the area bounded by southern latitude -10° to -4° and eastern 

longitude 103° to 119° were included for the computations.  

 

4.2.1 Gravity Data for the Test Area 

 

Most of the terrestrial gravity data are compiled from exploration surveys for oil, 

gas and coal and collected by different private companies, or they are data collected 

for general geological interpretation purposes by the Department of Geology. There is 

good reason to be somewhat cautious about the geodetic quality of both types of data. 

Documentation for a proper connection to the Indonesian Gravity Network can in 

general not be established. In addition to that is the fact that some of the data are 

interpreted from Bouguer anomaly maps with heights and Bouguer corrections back-

substituted from topographic maps.  

 

A small part of the terrestrial gravity data were collected by the Indonesian 

Mapping Agency (Bakosurtanal) along levelling lines and these data are of course  of  



 

                    Figure 4.4. Distribution of gravity data and GPS/levelling points. 



 51

a very good quality. The total number of terrestrial gravity data points within the test 

area (10° to 4° S and 103° to 119° E) is 26,483 of which approximately 1,200 data 

points were collected by Bakosurtanal. Statistics of the data are given in Table 4.1. 

 

The marine data dates back to the 60’s and 70’s era and were gathered for oil 

exploration purposes. The total number of data points within the test area are 110972 

concentrated in two blocks, one Southwest of Java and the other East of Java (see 

Figure 4.4). Gravity derived from satellite altimetry was also included to supplement 

the marine data. The data was extracted from the KMS99 gravity model. This model 

is based on sea surface height observations from the GEOSAT and ERS-1 geodetic 

and repeat missions satellite altimetry. Sea surface heights are subsequently inverted 

to gravity anomalies by the inverse Stoke’s method (Andersen and Knudsen, 1998). 

In near coastal regions, the accuracy of this altimetric gravity field is known to 

degrade due to the coastal sea state variability (Andersen and Knudsen, 2000).  

      

Comparisons between satellite altimetry and marine data showed rather large 

discrepancies near the coast; in some places the difference amounts to more than 200 

Figure 4.5. Difference between marine and satellite gravity as function of distance 
to coast. 
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mGal, see Figure 4.5 and Table 4.1. This is thought to be mainly due to problems 

with the altimetric gravity model, as the discrepancy shows a close relationship with 

the distance to the coastline.  

 

If the comparison is limited to data points more than 50 km from the coastline the 

agreement is seen to be considerably better, see again in Table 4.1 below. 

  

It was therefore decided to discard gravity estimates from the altimetric model 

that were closer than approximately 50 km from the coastline even though  50 km is 

much further away from the coastline than the error model associated with the 

altimetric gravity model would suggest for reliability of the model. The distance of 50 

km was therefore chosen as a trade off between reliability and good data coverage. 

Table 4.1 also indicates that there is a problem with the mean value of the data sets 

the mean difference between marine and satellite data being –5.7 mGal when the 

comparison is restricted to points more than 50 km from the coast.  

 
 
Table 4.1. Comparison between marine and satellite gravity. Marine minus satellite as 
function of distance to coast [mGal] 
 

Min.dist. to coast No data* Mean Std. Dev. Minimum Maximum 

0 km 5347 -3.6 26.8 -167.8 417.1 

50 km 3162 -5.7 13.3 -67.0 64.7 

100 km 1876 -8.3 9.8 -44.9 18.2 

*) Comparisons include satellite data points less than 5 km from nearest marine data point  

 

 

The marine data refer to IGNS71 system according to the data provider 

(GETECH, 1995), so it is not likely to be due to some of the marine data referred to a 

wrong datum, e.g. the old Potsdam datum which is approximately 14 mGal to high.  

 

The processing of the satellite altimetry data is based on the EGM96 geoid 

(Andersen and Knudsen, 1998), and possible deficiencies in the EGM96 geoid of 

wavelength longer than 200 km will not be improved from the altimetric 

observations. This may lead to long wavelength errors in the altimetry derived gravity 

field (Andersen and Knudsen, ibid). 
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Table 4.2. Free air anomalies statistics [mGal] 
Data set No data Mean Std. Dev. Minimum Maximum 

Terrestrial 26483 54.0 48.3 -43.8 268.3 

Marine 110973 5.8 60.3 -188.8 195.4 

Satellite* 20415 -4.5 55.1 -177.8 171.9 

*) Satellite data given on 3 arc minutes grid. Only data points more than 50 km from the 

coastline are included in this table 

 

 

It was decided to use all of the marine data and to use altimetric data located more 

than 50 km from the coast for the geoid processing. This means effectively that in 

areas with both altimetric and marine data most weight is given to the latter due to the 

relative high density of marine data in these areas. 

 

 

4.2.2 The EGM96 reference field 

 

The geopotential model EGM96 (Lemoine et al, 1998) is used to estimate the 

long wavelength components of the free air gravity field and the corresponding quasi-

geoid in the remove/restore geoid computation scheme. The model is based on 

surface, marine, submarine, airborne and altimetric gravity data, satellite tracking data 

and digital elevation models. Statistics of the gravity data after removal of the 

geopotential model (EGM96) contribution up to degree 360 are given in Table 4.3.  
 

Table 4.3. Residual free air residuals relative to EGM96 [mGal] 

Data set No. data Mean Std. Dev. Minimum Maximum 
Terrestrial – EGM96 26483 3.4 25.0 -108.9 169.2
Marine      – EGM96 110973 -5.6 21.1 -188.8 195.4
Satellite   –  EGM96 20415* 1.0 15.9 -60.4 89.7
*) Satellite data given on 3 arc minutes grid. Only data points more than 50 km 
from the coast line are included in this table 

 

 

      Clearly, the residual anomaly field is smoother than the original (i.e., before the 

model removed). The standard deviation of the terrestrial gravity data for e.g 

improves by 23.3 mGal (see Table 4.2 and Table 4.3). However, the residual values 
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shown in Table 4.3 or in Figure 4.7 are still very large and the results of the local 

geoid analysis are likely to suffer inaccuracy as a result.   

 

      The significant positive and negative residual free-air anomalies shown in Figure 

4.7 are related to the high topography in-land Jawa and the deep trench in Indian 

Ocean, south of Jawa. The local dynamic features of the gravity field are not present 

in the EGM96 model.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4.6. The combined terrestrial, marine and altemetric free air anomaly gravity field for the area of investigation. Discrepancies between the 
marine and the altimetric data show up very clearly in the southeast part of the area. Also shown are the GPS/levelling control points. 



 

Figure 4.7. The combined terrestrial, marine and altemetric residual free air anomaly field for the area of investigation. Free air anomalies are subtracted 
the EGM96 reference field to degree 360. 
 



4.2.3 Digital elevation models, DEM’s 

 

Due to the high degree of correlation between the gravity free air anomaly and 

topography, high resolution models of elevation or topography may be used to densify 

the existing gravity data. Two different elevation models were retrieved and tested for 

the geoid computations.  

 

The first is The Global Land One-km Base Elevation (GLOBE) model from the 

US National Oceanic and Atmospheric Administration (see GLOBE Task Team, 

1999).  

 

The other elevation model is the Shuttle Radar Topography Mission (SRTM) 

model from the US National Aeronautics and Space Administration (NASA). It is a 

preliminary 30 arc seconds model. The final 3 arc seconds model for the test area was 

not available during this test computation. 

 

The DEM results from both models along one grid scan line over Java Island are 

shown in Figure 4.8. From this figure the SRTM model appears to be more detailed 

than in the GLOBE model. It also appears to be a lateral shift between the two 

models.   Elevation comparisons are made at levelling control points.   Statistics of the  
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Figure 4.8. DEM results along one grid scan line at 7.2 degrees southern 
latitude. 



 

Figure 4.9. The SRTM DEM for Java Island. Also shown, as small dots, are the BAKOSURTANAL gravity points that have been levelled at the time when 
the gravity data were retrieved. The levelling has later on been extended to include all of the GPS/levelling control points (labelled diamonds). 
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two models and their comparison to levelling data is given in Table 4.4. Location of 

the levelling data is shown in Figure 4.9 and Figure 4.10 together with the SRTM 

model for Java.  

 

Table 4.4. Statistics of the GLOBE and SRTM model over the area bounded by 10 to 4 
southern latitude and 103 to 119 eastern longitude and comparisons to levelling data and 
gravity station heights. Unit is metre. 

Data set No. data Mean Std. Dev. Minimum Maximum 

GLOBE 246736* 328.1 407.4 1 3690

SRTM 246736* 318.9 412.9 1 3426

Levelling heights 774 251.3 258.8 1.2 1386.9

Gravity station heights 26483 158.8 228.9 0 1603

SRTM – GLOBE 246736* -1.7 35.3 -917 839

Levelling – GLOBE 774 -20.5 55.1 -329 151

Levelling – SRTM 774 -6.8 20.3 -141 87

Station height – GLOBE 26483 -14.7 108.4 -1990 637

Station height  – SRTM 26483 -5.9 105.3 -2070 527

*) data given on 30 arc seconds grid. Only data points over land areas included. 

 
 

Table 4.4 shows that the SRTM model fits the levelling data much better than the 

GLOBE model, the mean and standard deviation of the difference between levelling 

data and DEM’s being –6.8 m and 20.3 m range for the SRTM model compared to -

20.5 m and 55.1 m for the GLOBE model. The difference between the models is less 

striking when compared to the gravity station heights for all the land gravity data. The 

standard deviations of the differences between gravity station heights and DEM’s are 

108.4 metre and 105.3 metres for the GLOBE and the SRTM respectively. This 

observation may be explained with noise in the gravity station heights, which to some 

extent will blur the difference in quality of the two DEM’s. 

 

Based on this comparison, it was decided to use the SRTM model for the geoid 

computations because of the better fit to the levelled heights. The discussion in the 

following is restricted to the SRTM digital elevation model. 

 

If the levelling points are representative of the roughness of the landscape in areas  
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with gravity data then the fit of the levelling data to the DEM and the fit of gravity 

station heights to the DEM may be compared directly. The standard deviation of the 

levelled heights is 258.8 metre compared to 228.9 for the gravity stations. The poorer 

fit of the DEM to gravity stations than to levelling points cannot be explained by the 

gravity points located in a generally rougher terrain than the levelling points. Table 

4.4 therefore indicates that the noise of the gravity station heights is at least at the 100 

metres level and thereby much poorer than the DEM heights.  

 

    The formal error analysis is as follows. The combined noise of DEM and gravity 

station heights is 105.3 m. The noise on the levelling data can be neglected in this 

context so the comparison of levelling data with DEM gives an estimate of the noise 

on the DEM for the actual area and that is 20.3 metre. This leaves approximately 100 

metres noise to be attributed to the gravity station heights if this noise is assumed 

uncorrelated with the noise in the DEM. I tested whether the bad fit between gravity 

station heights and DEM could be explained by a lateral offsets, but only small 

insignificant improvements in the fit could be achieved by minimising the misfit as a 

function of a shift in the two horizontal directions. 

 

An error in the heights of gravity measurement will propagate into the 

computation of the free air anomaly, which means the free air anomalies could also be 

as noisy. Since the supplied data is only available as free air anomalies this may be a 

concern.  

 

An alternative land gravity database was built by substituting the gravity station 

height with the height from the SRTM elevation model. The free air anomaly was 

corrected accordingly, i.e. 0.3086 mGal was added for each meter the height was 

increased. There will for certain be blunders in the DEM as well as in the station 

heights. So in order not to do more harm than good, only those points whose misfit 

between DEM and station height were less than twice the estimated noise were 

included, i.e. points where the difference between DEM and station heights were less 

than 200 metre. 
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Table 4.5 Comparison of the effect of topography on the original data set and on the 
‘improved’-height data set [mGal] 

Data set No. data Mean Std. Dev. Minimum Maximum 

Original land data* 23917 49.8 45.8 -43.8 243.8

Effect of topography 

removed from do 
23917 35.7 38.5 -56.5 184.9

Improved-height data 

set 
23917 49.7 49.3 -65.8 289.2

Effect of topography 

removed from do 
23917 35.6 41.3 -69.4 203.8

*) Only data points where the difference between DEM and station heights is less than 200 

m are included in this table 

 

 

It is not possible to tell definitively which of the two datasets, the original one or 

the one with ‘improved’ heights, is the best, but the smoothness of the field after a 

reduction for terrain effects may give a lead. Table 4.5 shows that the original data set 

gives the smoothest gravity field after the effect of topography is removed and thus 

indicates that it may not be justifiable to replace the station heights with heights from 

the DEM. 

 

4.3 Geoid computations in the Test area 

 

Several local geoid models were computed using different methods of 

computations and incorporating the digital elevation model in the gridding step for the 

FFT approach. All grids produced are essential Faye anomaly grids. The simplest is 

just gridding of the point residual Faye anomalies without any information added 

from the DEM. The residual is relative to the EGM96 gravity model. Next method is 

gridding of point residual Bouguer anomalies with subsequent back substitution of 

the Bouguer correction term at the grid points. The last method is the Reduced Terrain 

Model approach, where only the shorter wavelengths of the topography are used in the 

removal of topographic gravity signals in the data before the gridding process. The 

topographic signal is then back substituted to give the final grid values. 
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Ring integration and collocation were performed on point residual Faye 

anomalies. For collocation, the data set was thinned to avoid excessively large 

equation systems to be solved in this approach. The thinning was done with the help 

of a grid in the following way: for grid cells containing data points the data point 

closest to the midpoint of the cell was chosen, and the rest of the data was discarded. 

This way the thinned data set still reflects the geometry of the original data set, see 

Figure 4.10. A grid specification of 0.1 times 0.1 degree was used for the terrestrial 

data, whereas offshore data were selected at a 0.2 times 0.2 degree spacing.  

For the sake of the collocation method a noise of 3 mGal was assigned to the 

gravity data, apart from the Bakosurtanal data set measured at levelling points. These 

data were assigned a noise of 0.2 mGal. This thinned data set was used both for the 

collocation and the ring integration methods. 

 

 

 

Figure 4.10. The thinned data set used for ring integration and collocation. The thinning 
was done with the help of a grid in the following way: for grid cells containing data points 
the data point closest to the midpoint of the cell was chosen the rest of the data was 
discarded. A grid specification of 0.1 times 0.1 degree was used for the terrestrial data, 
whereas offshore data were selected at a 0.2 times 0.2 degree spacing.  
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Figure 4.11. Data flow in the FFT approach with reduced terrain model reduction 
before gridding. 
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Table 4.6. Comparisons of gravimetric geoids with GPS/levelling results at control points. 
Figures are standard deviation of the misfit in metres. 

Geoid Points 1 to 14 Points 4 to 14 Points 4 to 11 
EGM96 0.59 0.28 0.31
FFT360, grid Faye anomalies 0.45 0.20 0.14
FFT360, grid Bouguer anomalies 0.45 0.17 0.10
FFT360, grid RTM anomalies 0.45 0.19 0.11
FFT60, grid RTM anomalies 0.68 0.59 0.68
Ring integration to ring 1, Faye 0.42 0.14 0.11
Ring integration to ring 2, Faye 0.41 0.26 0.22
Ring integration to ring 3, Faye 0.48 0.35 0.33
Collocation, Faye 0.45 0.23 0.25

 

 

Comparison of the different gravimetric geoids to the geometric geoid at the 

control points is summarized in Table 4.6. The FFT method was applied with a 

Wong-Gore kernel modification to degree 60 (FFT60) and degree 360 (FFT360). The 

results for the two different kernel modifications on the same data set (the RTM 

gridded one) show that the low degree modification perform worse than the EGM96 

model itself, with a 0.68 m standard deviation for the misfit in the control points 

compared to 0.59 m for EGM96. The higher degree modification (FFT360) fits better, 

0.45 m standard deviation. These are the numbers when all the control points are 

included in the comparison. The difference becomes more striking if we exclude the 

three westernmost points in the comparison (see below), now the standard deviation 

of the misfit are 0.28 m, 0.59 m and 0.19 m for EGM96, FFT60 and FFT360 

respectively. So it seems like including the lower degrees of Stokes’ kernel degrade 

the longer wavelengths of the geoid. The results obtained with ring integration shows 

similar trend, i.e., the best fit is obtained with the smaller capsize.  

 

 

 

 

 

 

 

 

 

 



 

Figure 4.12 Residual free air anomalies after gridding of residual Bouguer anomalies and subsequently back substitution of Bouguer effect. This way 
details will be added to the gravity field in areas without gravity data. It is though an open question how well these pseudo-gravity anomalies derived 
from the DEM reflect the real gravity field. The marine tracks are now less visible as compared to figure 4.6 and 4.7 due to the smoothing inherent in 
the gridding process. 



 

Figure 4.13 The residual geoid corresponding to the residual free air anomaly field of figure 4.13. The EGM96 geoid model to degree 360 is subsequently 
added to yield the geoid. 
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Figure 4.14 shows that the three westernmost control points 1, 2 and 3 perform 

quite differently from the remaining points; control points 2 and 3 especially stand 

out. The two control points are located at rather low altitude, ranging from 17 to 200 

metres see also Table 4.7, so the reason for the worse fit is not likely to be due to un-

modelled topographic effects. It could of course be a problem with the geometric 

geoid, either in the levelling or in the GPS data. A third possible explanation could be 

the interpolation over areas with no gravity data. There is a data void close to control 

points number 2 and 3 just northwest of these, see Figure 4.7. If the real and unknown 

gravity field in this data void is considerable lower than the interpolated values then 

the computed gravimetric geoid will become too high in an area surrounding the void. 

It could explain the results for control points 2 and 3, since only these two control 

points have the data void within ring 1. The clearer picture we get when excluding 

these control points could also point in this direction. The argument to exclude the 

control points is not that we get a better fit, but that we get a more pronounced effect 

of e.g. changing the degree of kernel modification or of changing the capsize.  

 

The three easternmost control points, number 12, 13 and 14, are believed to have 

been tied to a tide gauge on the south coast of the island, in contrast to the control 

Figure 4.14. Misfit between gravimetric and geometric geoid at control points. X-axis is 
control point number. The control point number increases with longitude, but the points 
are not equidistant distributed, see also figure 4.13 
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points numbered 4 through to 11, see e.g. Figure 4.13, so there is likely to be an offset 

in the levelling data between the set consisting of control points 4 to 11 and the set 

consisting of points 12 to 14. This is the reason also to include statistics only 

regarding the points 4 to 11 in Table 4.6. 

 

There is no difference between the different gridding approaches at all control 

points, with 0.45 m misfit for each gridding of the Faye anomalies, the RTM reduced 

anomalies and also for when the gridding is performed on Bouguer anomalies. When 

restricting the misfit statistics to the control point numbered 4 through to 11, misfits 

become 0.14 m, 0.11 m and 0.10 m respectively. So, it appears that the inclusion of 

the DEM information in the gridding process improves the solution significantly. But 

there appears little difference as to which of the methods are used to perform the 

gridding, as either gridding on RTM reduced point anomalies or on bouguer point 

anomalies give similar results. 

 

The misfit for the control points 4 to 11 indicates that the best fitting geoids are 

accurate at the 10 cm level. It should be noted that the control points 4 to 11 also 

include high altitude points in a mountainous terrain, the highest control point being 

located at 1075 meter elevation (see Table 4.7). 

 

Table 4.7. Comparisons of geoid undulations at GPS/levelling points, unit is metre. The 
FFT gravimetric geoid is based on Faye anomalies derived from Bouguer anomalies. 
Control 
point 

number 

Lat. Lon. Levelled 
height  

(m) 

Ellipsoid
height  

(m) 

Geom. 
geoid 
undul. 

EGM96 
geoid 
undul. 

EGM96 
geoid 
misfit 

FFT 
geoid 
undul. 

FFT 
geoid 
misfit 

1 -6.0550 105.9174 16.979 1.681 15.298 13.879 -1.419 13.912 -1.386 
2 -6.5610 106.7301 201.326 183.447 17.879 18.617 0.738 18.210 0.331 
3 -6.4909 106.8500 156.834 138.180 18.654 19.004 0.350 18.712 0.058 
4 -6.9143 106.9741 703.450 681.946 21.504 20.527 -0.977 20.620 -0.884 
5 -6.7315 107.0412 1074.975 1053.328 21.647 20.228 -1.419 20.872 -0.775 
6 -6.8085 107.1559 426.769 405.493 21.276 20.794 -0.482 20.674 -0.602 
7 -6.2705 107.1838 33.700 13.675 20.025 19.276 -0.749 19.322 -0.703 
8 -6.3333 107.6733 31.444 10.732 20.712 19.973 -0.739 19.972 -0.740 
9 -6.8598 109.1531 27.375 4.031 23.344 22.712 -0.632 22.648 -0.696 
10 -6.8894 109.6639 27.857 3.602 24.255 23.787 -0.468 23.394 -0.861 
11 -6.9838 110.4095 30.605 4.563 26.042 25.300 -0.742 25.212 -0.830 
12 -8.1776 111.0454 410.682 384.273 26.409 25.365 -1.044 25.287 -1.122 
13 -7.8269 112.0106 93.923 66.129 27.794 27.085 -0.709 26.643 -1.151 
14 -8.1682 113.7017 119.008 85.579 33.429 32.876 -0.553 32.545 -0.884 
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The baseline errors are given in Table 4.8 for both the EGM96 and the best fitting 

refined geoid, FFT360 used in combination with gridding of Bouguer anomalies. The 

results for the ring integration geoid are very similar. There are some quite big values 

in the table with baseline errors up to 1.77 metre for baselines as short as 34 km. 

These large values involve the more dubious control points 1 to 3. These big values 

blur the picture and one conclusion is clear from the table: it is mainly the shorter 

baselines that benefit from the geoid modelling done here. There are 22 baselines 

shorter than 100 km and the refined geoid performs better than the EGM96 for 20 (91 

%) of these with one baseline degraded and one unchanged. For baselines longer than 

100 km only 44 out of 69 (64 %) improved. 

 

Table 4.8 Independent baseline errors in metres 

Stat. 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 
106  
2.16 
1.72 

114 
1.77 
1.44 

151  
0.44 
0.50 

145  
0.0  

0.61 

160  
0.94 
0.78 

142  
0.67 
0.67 

196  
0.68 
0.65 

368  
0.79 
0.69 

423  
0.95 
0.53 

506  
0.68 
0.53 

612  
0.38 
0.26 

700  
0.71 
0.24 

889  
0.87 
0.50 

2 
 

15 
0.39 
0.27 

48 
1.71 
1.22 

39 
2.16 
1.11 

54 
1.22 
0.93 

60 
1.49 
1.03 

107 
1.48 
1.07 

269  
1.37 
1.03 

325  
1.21 
1.19 

408  
1.48 
1.16 

508  
1.78 
1.45 

598  
1.45 
1.48 

788  
1.29 
1.22 

3 
  

49 
1.33 
0.94 

34 
1.77 
0.83 

49 
0.83 
0.66 

44 
1.10 
0.76 

92 
1.09  
0.80 

257  
0.98 
0.75 

313  
0.82 
0.92 

396  
1.09 
0.89 

498  
1.39 
1.18 

587  
1.06 
1.21 

777  
0.90 
0.94 

4 
   

22 
0.44  
0.11 

23 
0.50 
0.28 

75  
0.23 
0.18 

101  
0.24 
0.14 

240  
0.34 
0.19 

296  
0.51 
0.02 

379  
0.24 
0.05 

469  
0.07 
0.24 

564  
0.27 
0.27 

753  
0.42 
0.00 

5 
    

15 
0.94 
0.17 

54 
0.67  
0.07 

83  
0.68 
0.03 

233  
0.79 
0.08 

290  
0.95 
0.09 

372  
0.68 
0.06 

469  
0.38 
0.35 

561  
0.71 
0.38 

750  
0.87 
0.11 

6 
     

60  
0.27 
0.10 

78  
0.26 
0.14 

220  
0.15 
0.09 

277  
0.01 
0.26 

359  
0.26 
0.23 

454  
0.56 
0.52 

546  
0.23 
0.55 

736  
0.07 
0.28 

7 
      

54  
0.01 
0.04 

227  
0.12 
0.01 

282  
0.28 
0.16 

364  
0.01 
0.13 

475  
0.30 
0.42 

559  
0.04 
0.45 

748  
0.20 
0.18 

8 
       

173  
0.11 
0.04 

228  
0.27 
0.12 

310  
0.00 
0.09 

424  
0.31 
0.38 

506  
0.03 
0.41 

694  
0.19 
0.14 

9 
        

56  
0.16 
0.17 

139  
0.11 
0.13 

254  
0.41 
0.43 

332  
0.08 
0.46 

521  
0.08 
0.19 

10 
         

83  
0.27 
0.03 

209  
0.58 
0.26 

279  
0.24 
0.29 

466  
0.08 
0.02 

11 
          

150  
0.30 
0.29 

200  
0.03 
0.32 

385  
0.19 
0.05 

12 
           

113  
0.34 
0.03 

292  
0.49 
0.24 

13 
            

190  
0.16 
0.27 

The 3 figures in each cell are baseline length in kilometers, EGM96 geoid misfit and FFT refined 
geoid misfit respectively. The FFT geoid is based on Faye anomalies derived from gridded Bouguer 
anomalies. Unit is metres. 
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The results for baselines between what is considered the most reliable control 

points, namely the points 4 to 11, are depicted in figure 4.15. It is seen that the refined 

geoid makes a much better fit than the EGM96 geoid, giving a mean error of 0.11 

meter compared to 0.34 meter. A linear regression on the result for the refined geoid 

shows that there is hardly any correlation between baseline length and baseline error.   

 

Both the relative improvement compared to EGM96 and the absolute numbers are 

quite encouraging taking into account the rather big data voids in the area. With an 

improved data coverage it should be possible to produce a geoid that is considerable 

better than 10 cm standard deviation.  

 

Figure 4.15 Baseline error for EGM96 and FFT gravimetric geoids as function of 
baseline length. Only baselines between the points 4 through to 11 are included. The 
mean value of the error is 0.34  m and 0.11 m for EGM96 and the FFT geoid 
respectively. 
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CHAPTER 5 
 

ERROR PROPAGATION STUDY 
 

This chapter is devoted to a study of the error propagation from gravity to geoid 

for two different scenarios. The first scenario is the existing gravity data coverage and 

the second scenario is a simulation of a possible future situation with airborne data 

covering some of the main data voids in the area. The area is shifted somewhat 

compared to the geoid test computation area carried out in Chapter 4. This is done in 

order to cover also less mountainous areas of Southeastern Sumatra, as compared to 

Jawa Island. 

 

5.1 ‘Planar-attenuated logarithmic’ covariance model 
 

The programs GPFIT and GPCOL from the GRAVSOFT packages were used for 

the error propagation study.  The programs  feature a planar covariance  function  (see     

 

 

 
Figure 5.1 The empirical (diamonds) and the analytical covariance function. The 
functions are based on 21,143 gravity observations with a mean of 0.0 mGal and a 
covariance of 311 mGal2. Estimated best fit parameters: D = 10 km and T  = 25 km. 
Correlation length as derived from graph is 17 km. 
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Forsberg, 1987),  which  can be  viewed  as  a flat earth  approximation of the well -

known Tscherning-Rapp spherical covariance model (Tscherning and Rapp, 1974).  

 

This planar logarithmic covariance function is described by three parameters, the 

variance, C0, and two depth parameters, D and T. The parameter D corresponds to the 

double Bjerhammer depth and T is a so-called compensation depth, which makes up 

for the inherent low frequency singularity of the planar logarithmic model.  

 

The actual model is, for this reason, also called the ‘planar-attenuated 

logarithmic’ covariance model (see Forsberg, 1987). The reason to use the 

GPFIT/GPCOL programs instead of the GEOCOL program of Chapter 4 is because 

of the improved computational speed they offer. This advantage in speed is partly due 

to the simpler expressions of the planar covariance functions as compared to the 

spherical models – a modification which does not significantly affect the error 

estimates being sought. 

 

5.2 The empirical covariance function and the actual error analysis 

 

Figure 5.1 shows the empirical covariance function and a planar analytical 

approximation. The variance of the gravity field is 311 mGal2, which is somewhat 

lower than the approximately 800 mGal2 variance seen in Figure 4.3. This difference 

in variance is partly due to the more benign gravity field of Southeastern Sumatra as 

compared to the more mountainous Jawa Island and partly due to the fact that the data 

set used to compute the covariance in Chapter 4 has a mean value of 3.4 mGal. The 

mean was not removed before computing the covariance function.  This will increase 

the computed covariance and variance (C0) somewhat. In contrast, the data set used 

for the error analysis in this chapter has a mean value of (effectively) 0 mGal.  

 

The optimal prediction (formulae 4.18) is not very sensitive towards the actual 

value of the variance (C0) but more dependent on how the covariance decays with 

distance. This is not true for the error estimate where the result is very much 

dependent on the variance, see formulae 4.19. Thus, for the error analysis it is 
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important to consider the adopted value of the variance (C0) together with the shape 

of the covariance function, in this case given by the two depth parameters. The 

covariance function computations were based on terrestrial free air anomalies reduced 

for the EGM96 reference model to degree 360. If altimetric gravity data were 

included in the data set used to compute the covariance function the variance would 

be even lower due to the more benign off-shore gravity field. The resulting error 

estimates would therefore also become smaller. 

 

Apart from the variance (C0) and the shape of the covariance function the decisive 

factors in the error analysis are the geometry of the gravity data coverage and the 

noise assigned to the gravity data. Figure 5.2 below shows the terrestrial data 

coverage and the altimetric gravity data when clipped at 50 km from the coastline 

because it was seen in Chapter 4 that the altimetric gravity data close to the coast 

Figure 5.2. Existing gravity data coverage shown as black dots. The altimetric gravity 
field has been clipped at approximately 50 km from the coastline, see also the 
discussion in chapter 4. Shown as red dots is a possible airborne gravity coverage at 
10 km line spacing. All data were assigned a 2 mGal noise in the error study. 
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were not reliable. A 50 km distance from the coast may even in some cases be too 

little in order to ensure a reliable altimetric gravity field. Marine data has not been 

included in this error study since there is only rather limited coverage and the 

accuracy of the existing marine data is not well known. As it was shown in Chapter 4 

there seems to be a bias problem with some of the marine data. The inclusion of 

marine data will of course lower the estimated error in some areas. This is especially 

true for the Sunda Strait, the strait between Jawa and Sumatra Islands, where there are 

quite a large marine data set. The question is though, how much we should rely on 

these data and what noise level we should assign to them. A noise level of 2 mGal 

was assigned to both the altimetric and the terrestrial data, as this accords to both our 

theoretical expectations and the results of earlier experience. 

 

Only gravity data observations inside the plotted area have been included in the 

computations, so results near the edge will be greatly influenced by the lack of data 

outside the plotted area, here referred to as the edge effect. Conclusions should 

therefore only be drawn for points well (i. e., ~ 110 km) inside the plotted area. The 

inner frame seen in the plots in Figures 5.3 and 5.4 indicate from where the results 

should be given significance. 

 

In addition to the gravity data also one geoid observation is assumed known. The 

geoid observation is located at Bakosurtanal and assigned zero noise. The location is 

not specifically shown in the plots 5.2, 5.3 and 5.4, but can be identified as point 

number 3 in Figure 4.4 (see Chapter 4). This way the error study simulates the 

situation where a datum has been defined or the geoid model has been fitted to one 

known point.       The estimated error field for the situation where only terrestrial and 

altimetric gravity data are included is shown in Figure 5.3. The upper panel shows the 

situation when the altimetric data is trusted for all off shore areas. The lower panel of 

figure 5.3 shows the error field when altimetric data has been clipped at 50 km from 

the coastline. The clipping of altimetric data to 50 km from the coast has not 

surprisingly a big impact on the error field near the coast. The estimated error 

increases in general from around 20 cm to 40 cm in the near coastal region when 

altimetric data closer than 50 km from the coast is excluded. An exception is near the 
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major data void in southern part of Jawa between Eastern longitude 107° and 108° 

where the geoid error field takes considerable higher values. It should be emphasized 

again that the altimetric data should not be relied on close to the coast. The data 

situation depicted  in Figure 5.2 with a 50 km distance to the coast is the basis for the 

further investigations in this chapter. 

  

Figure 5.4 shows the situation when the 50 km near coastal zone and the major 

terrestrial data void is covered with airborne data. The upper panel in figure 5.4 

shows the resulting error field when a 20 km airborne track spacing is assumed, the 

lower plot corresponds to a 10 km airborne track spacing like the data distribution in 

figure 5.2. The inclusion of the coarse airborne gravity survey reduces the geoid error 

estimates to around 20 cm for the central parts of the area. Making the airborne 

coverage denser gives further improvement; the geoid error estimates now reduce to 

around 15 cm for the central parts of the area. 

 

There are of course a lot of open questions in such an error study. For example: is  

the noise assigned to the gravity data reasonable; are there systematic effects like 

gravity datum problems not accounted for; is the 50 km coastal clipping zone too 

narrow or too wide? So the absolute estimated values of the geoid error field should 

be taken with some reservations. On the other hand the estimated geoid error field 

seems not to be too over-optimistic when comparing to the results of Chapter 4. Table 

4.6 indicated a combined GPS/leveling and geoid error somewhere between 10 to 20 

cm for the best performing geoid models (see also the discussion in Chapter 4 related 

to Table 4.6).  
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Figure. 5.3. Error propagation with terrestrial and altimetric data only. Top 
plot shows results with altimetric data clipped at the coastline. Altimetric data 
are clipped at a distance of 50 km from the coastline in the lower plot.  
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Figure 5.4 Error propagation with airborne fill-in data. Both plots have the altimetric 
data clipped at 50 km from the coastline. Upper plot with an airborne track spacing 
of 20 km, lower plot with a track spacing of 10 km as shown in Figure 5.2 
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CHAPTER 6 
 

GEOID IMPROVEMENT BY SPACEBORNE DATA 
 
 

Up to the present time, the Indonesian regional gravimetric geoid has suffered 

from the inaccuracy and poor coverage of the gravity data (see Kahar et.al, 1996 and 

Kasenda & Kearsley, 2002). The INDGED02 regional geoid (see Section 3.1.3) is 

computed from surface gravity dataset (namely INDGRAV database) which is 

formed in 5’ grid gravity anomalies. This is the only gravity database available that 

extends for the whole country and is part of the SEAGP (South East Asia Gravity 

Project) database compiled from inhomogeneous land and marine measurements 

combined with gravity anomalies derived from satellite altimetry over ocean (see 

again Section 3.2.1). Consequently, the accuracy and reliability of the dataset to 

perform regional precise geoid computations for this region is dubious. 

       

With the advent of new global geopotential models based upon satellites launched 

specifically for gravity field studies, the situation of the regional gravity field in this 

area should improve significantly, especially in the long to medium wavelengths. The 

first satellite dedicated to measure the earth’s gravity field is CHAMP (CHAllenging 

Minisatellite Payload), launched in July 2000 (see website: www.gfz-potsdam.de). 

CHAMP will also map the earth’s magnetic field and the choice of orbit is a tradeoff 

between lifetime, magnetic and gravity considerations. The starting orbit altitude is 

454 km. The measurement principle is a combination of a 3-axis accelerometer and 

GPS. The satellites active lifetime is planned for 5 years. 

  

The second mission is GRACE (Gravity Recovery And Climate Experiment), 

which was launched in March 2002. GRACE is a tandem mission consisting of two 

almost identical satellites sharing the same orbit but separated 220 km along the flight 

path. A very precise microwave ranging system tracks the distance between the two 

satellites. This highly precise tracking system in combination with accelerometers and 

GPS positioning constitutes the gravity measuring system. The starting altitude for 

GRACE is 500 km (see also website: www.csr.utexas.edu/grace/). The duration of the 



 79

GRACE mission is stated to be five years. The emphasis in the design of GRACE 

was put on the recovery of temporal variations in the gravity field more than on a 

high spatial resolution.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 6.1 The GOCE gradiometer consist of 3 pairs of accelerometers mounted in a 3 axis 
configuration. Each accelerometer pair is separated by a distance of 50 cm. The 
measurement accuracy of each accelerometer is about 10-12 ms-2 or 1 part in 
10,000,000,000,000 of the earth’s gravity field (Illustration from www.esa.int/esaLP  
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GRACE is able to map gravity variations on a monthly scale and thus be able to 

track masses moving around on the earth’s surface and in its interior with a high 

temporal resolution. It was hoped that the mission will yield new insight into 

dynamics of the earth’s interior, processes involving ice sheets and glaciers and 

processes involving ground water.  

 

     A third dedicated gravity mission is GOCE (Gravity Field and Steady-State Ocean 

Circulation Explorer). GOCE is launched recently (March 2009) after been scheduled 

for launched in late 2007. Over its life of about 20 months, GOCE will map the 

variation of the gravity field at the highest possible spatial resolution.  

 

    The ultimate goal is to map the gravity field with a 1 mGal accuracy at 100 km 

resolution. The geoid should be determined with an accuracy of 1 to 2 cm at the same 

resolution. To achieve such a high resolution the starting altitude is as low as 250 km. 

Due to the harsh environment at low orbit the planned lifetime of the satellite is only 

20 months. There will be two active mission periods of 6 months each with a 

hibernation period in between. The main instrument is a 3-axis gravity gradiometer, 

which measures gravity variations over a distance of 50 cm with an accuracy of 3 mE 

(milliEotvos, 10-12 s-2), see also Figure 6.1.  

 

     The mission will in combination with satellite altimetry allow an accurate global 

mapping of ocean dynamic topography and hence of ocean currents. The GOCE 

mission is the first of a series of missions in the European Space Agency’s Living 

Planet Program (see also  www.esa.int/esaLP/LPGoce.html). 

      

    With the purpose of testing these expected improvements in the gravity data 

situation as well as geoid models for Indonesian region, I analyzed the gravity 

features and the gravimetric geoid from the newly released global coefficient 

potential models derived from the gravimetric satellites CHAMP and GRACE.     
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6.1 The gravity anomalies from Satellite Gravimetry 
  

The gravity anomalies are computed from geopotential coefficients models from 

CHAMP and GRACE satellites by using the formula given in Heiskanen and Moritz, 

(1967) and rewriting the equation (4.10) as, 
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where γ is the mean gravity, Clm and Slm are the series of the geopotential coefficients  

models and Plm is the Legendre function of degree l and order m.   

 

 

6.1.1 The Free-air anomaly from CHAMP 

 

The preliminary geopotential coefficients model Clm and Slm derived from 

CHAMP satellite gravimetry called EIGEN-2b was used to calculate the free-air 

gravity anomaly for the Indonesian region. The calculation was carried out at grid 

intervals of 6’ using formula (6.1). The spherical harmonics expansion was taken up 

to degree and order 120. Despite the low and high anomalies shown around Banda 

Sea and north of Sulawesi (see Figure 6.2a top), the anomaly features in general 

appear less dynamic than would be expected from a medium wavelength model 

whose formal resolution is about 3 degrees. The magnitude varies from 

approximately -80 mGal around Banda Sea to about +90 mGal north of Sulawesi. 

 

The EIGEN-2b geopotential model is derived from CHAMP GPS satellite-to-

satellite and accelerometer data over only the period of six months measured in 2000 

and 2001. Even though higher-degree/order terms are solved in EIGEN-2b, the 

preliminary solution has full power only up to about degree/order 40 due to signal 

attenuation at the satellite's altitude. 
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6.1.2 The Free-air anomaly from GRACE  

 

The first GRACE product was made available to the public in July 2003. The 

geopotential coefficients model is presented in two forms namely the GGM01S and 

the GGM01C. The GGM01S model is the satellite only solution estimated from 111 

days of K-band range-rate, attitude and accelerometer data collected from April to 

November 2002. The model was provided up to degree and order 120. The GGM01C 

model, on the other hand, was estimated based on the GGM01S in combination with 

the TEG4 model, incorporating other satellite information (multi-tracking data), 

surface gravity data and altimetric sea surface heights. This model was provided up to 

degree and order 200. 

 

The second GRACE gravity model (GGM02) was released in October 2004 and is 

available in two forms namely the GGM02S and the GGM02C. The model is based 

on the analysis of 363 days of GRACE in-flight data, spread between April 4, 2002 

and Dec 31, 2003. The GGM02S coefficients model is purely derived from satellite 

data and was provided up to harmonics degree 160, while the GGM02C model was 

constrained with terrestrial gravity information and was provided up to degree 200. 

 

In order to examine the improvement by using the satellite gravimetry data only, 

the free-air anomalies were computed from both the GGM01S and the GGM02S 

models applying formula (6.1) up to degree 120. Compared to the free-air gravity 

anomaly features computed from the Eigen-2b model, the anomaly features computed 

from the GRACE models show a more disturbed gravity field (see Figure 6.2a). The 

high negative anomalies mirror the complex tectonic features such as the subduction 

zone in the Indian Ocean that expands from south west of Sumatera Island to south of 

Java, while the high negative anomalies around Banda Sea correlate with the presence 

of deep trenches. The high positive anomalies over land areas associate with the 

presence of high mountains. Despite the fact that the trend of both gravity features 

from GGM01S and GGM02S appears similar, the fluctuations or variations are 

slightly different. The gravity anomalies computed from GGM01S model vary from 
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about -192 to 175 mGal over the region while the anomalies computed from 

GGM02S model vary from approximately -182 mGal to 173 mGal.   

 

6.2 Comparison to EGM96 and “terrestrial gravity data” 

To evaluate the gravity situation derived from satellite measurements the gravity 

anomalies are compared to those derived from the EGM96 model and from the 

“existing terrestrial data”.   

 

In order to assess the differences between the EGM96 gravity model and the 

satellite gravity models, the computation of the free-air anomalies were carried out up 

to degree and order 120 for all geopotential models. Figure 6.2b shows the 

differences between EGM96 gravity anomaly and the satellite gravity anomalies. The 

difference between EIGEN-2b and EGM96 shows more discrepancies than the 

differences between EGM96 and GGMM01S and GGMM02S.  

 

It is clear that the GRACE models more or less converge toward the EGM96 

model, showing the recent model GGM02S has a good agreement with the EGM96 

model up to degree 120. 
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Figure 6.2a. The anomalous gravity field over Indonesia from different satellite-only 
based geopotential models. From top: the EIGEN2B, the GGM01S and the 
GGM02S model, all to degree and order 120. 
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Figure 6.2b. Differences between satellite-only based geopotential models and the 
EGM96 model. From top: the EIGEN2B minus EGM96, the GGM01S and the 
GGM02S model, all to degree 120, minus EGM96 to degree 120. 
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The existing regional “terrestrial gravity data” (INDGRAV) used in the 

comparison for this region consists of a ‘homogeneous’ dataset of 5’ grid interval. It 

is made up of a combination of land and marine gravity observations as well as 

satellite altimetry derived gravity anomalies over the open ocean areas. The 

distribution of the observations data is uneven, and big data gaps occur in some parts 

of the major islands i.e., Kalimantan, Sulawesi and Irianjaya. The “terrestrial” free-air 

anomaly feature based on INDGRAV data is shown in Figure 6.3, where areas 

lacking data are indicated by a grey color. The gravity field across the country is quite 

dynamic, and ranges from a minimum of -295 mGal to a maximum of 366 mGal 

 

Numerical comparisons between INDGRAV free-air anomalies and those 

computed from geopotential models (EIGEN-2b, EGM96 and GGM02S) are 

performed at the INDGRAV grid points and the residual anomalies are presented in 

Figure 6.4.  The EIGEN-2b residuals appear to be quite disturbed, ranging from -

288.61 to 327.66 mGal. Given the weaknesses of the CHAMP satellite to pick up the 

short wavelength gravity signal, especially for dynamic areas with prominent deep 

trenches and high mountains like the Indonesian territory, significant biases arise in 

areas characterized by deep trenches or high mountains. The RMS of the Eigen-2 

residual anomalies is 46.8 mGal  compared to 53.5 mGal for the INDGRAV data (see 

Table 6.1).  

 

The EGM96 residual field is much smoother than that for Eigen-2b, having an 

RMS of 38.3 mGal. The residual anomalies from the recent GRACE model GGM02S 

appear to be comparable to those for EGM96 having an RMS of 38.5 mGal (see also 

Figure 6.4).  

 

Table 6.1. Statistics of the INDGRAV database and GM residual anomalies (unit in mGal) 
Grav. Anom. Mean Std.Dev. Minimum  Maximum 
INDGRAV data 21.22 53.5 -295.2 366.9 
Eigen2b residual -0.64 46.8 -288.6 327.7 
EGM96 residual -0.24 38.3 -211.6 335.4 
GGMM02S residual -0.52 38.5 -201.4 315.5 



 

                                                                  Figure 6.3. Free air anomalies based on the INDGRAV database.  
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Figure 6.4. The Free-air Residual Anomalies (INDGRAV minus global models). From 
top EIGEN2B, EGM96 and GGM02S. 
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6.3 The Geoid height from CHAMP and GRACE 

 

The gravimetric geoid heights are computed from the EIGEN-2b, EGM96 and 

GGM02 coefficients by using equation (4.9). The formula can be re-written as, 
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where R is the earth’s mean radius. The N values are calculated at grid points with 

interval of 0.1˚ over the region. In order to obtain the optimum N values from 

EIGEN-2b the computation was carried out with harmonics expansion up to degree 

120, while the computation using EGM96 was done up to degree 360. The GRACE 

models used in the computations are the satellite only model GGM02S up to degree 

120 and the combination with terrestrial model GGM02C up to degree 160. The 

processing is carried out using the GRAVSOFT software package and also RINT 

software package as an independent check of the computation. 

 

Figure 6.5 Distribution of Control Points ( ΔΔ  ))..     
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Within the region there are 74 GPS points that coincide with the leveling 

benchmarks scattered in four main islands, i.e., 34 points in Sumatera, 14 in Jawa, 2 

in Kalimantan and 17 in Sulawesi. The N values at these respective points are then 

interpolated from the geoid computed at grid points mentioned above. The 

distribution of the control points can be seen in Figure 6.5.    

 

6.4 The Geoid height comparison 

    

To evaluate the accuracy of the gravimetric geoid height, the gravimetric geoid 

(Ngrav) values are compared with the geometric geoid height (Ngeo) at GPS/Leveling 

common points. The geometric geoid height is obtained by subtracting the GPS 

ellipsoidal height with the orthometric height from leveling measurements at 

respective points. The mean differences of the geoid height (ΔΝ ) and the standard 

deviation (σ) of the comparisons are written as, 
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where n  is numbers of control points.  

 

    

The comparison results presented in Table 6.2 shows a poor fit between the 

EIGEN-2b geoid and the geometric geoid. In addition to a bias of 2.3 m, a significant 

misfit of more than 7 m occurs at three control points in western Java and three in 

northern Sulawesi Island. This large misfit is most likely due to the poor resolution of 

the gravity field in the Eigen-2 model as a result of signal attenuation at the satellites 

altitude.  
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The GRACE geoid fits the geometric geoid better than does CHAMP’s.  The 

mean and standard deviation of the GGM02S’s geoid misfit are 1.54 m and 1.48 m 

respectively. The same numbers for GGM02C are 1.18 m and 1.08 m. 

Unsurprisingly, the EGM96 geoid has the best fit with the geometric geoid. The 

difference has mean value of 0.77 m with a standard deviation of 0.85 m. 

 

       

Table 6.2 The Statistics of the Geoid Comparison at 74 points (unit is meter). 
ΔN Mean Std.Dev. Minimum Maximum 

Ngeo   - NEIGEN-2b 2.30 2.61 2.73 9.09 
Ngeo   - NEGM96  0.77 0.85 -1.44 2.42 
Ngeo   - NGGM02S *) 1.54 1.48 -1.69 5.96 
Ngeo   - NGGM02C**) 1.18 1.08 -0.89 3.87 
*) The geo-potential model used is the GGMM02S computed up to degree/order 120 

**) The geo-potential model used is the GGMM02C computed up to degree/order   
160 
   
 
 
 
6.4.1 Comparison per-island partition 
 
 

Most of the 74 control points mentioned above are located in four main islands 

such as Sumatera 34 points, Jawa 14 points, Kalimantan 2 points and Sulawesi 17 

points. The leveling networks between those islands are not connected. Consequently 

there is datum bias as the orthometric heights are not tied to the same tide gauge 

station. Therefore, direct comparison using 74 points as performed in the previous 

section is considered rather coarse and inconsistent. In order to use consistent 

geometric geoid height, comparison per-island partition is carried out. Since only two 

points are located in Kalimantan, the comparisons are made merely for Sumatera, 

Jawa and Sulawesi islands.  

 

In view of the fact that the EGM96 and GGM02 geoid models are better than the 

EIGEN2b and GGM01, the comparison includes only the EGM96 and the two most 

recent GRACE models. The results are given in Table 6.3a,b,c below. The standard 

deviation of the comparison shows that the EGM96 geoid gives better comparison 
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than the GGM02S and GGM02C geoids in Jawa, Sumatera and Sulawesi islands. The 

GGM02C geoid in most cases is better than the GGM02S geoid, slightly comparable 

with EGM96. This indicates that the better satellite gravity solution combined with 

the surface data will certainly improve the gravimetric geoid.        

 
 
Table 6.3a The Statistic of the Geoid Comparison at 14 points in Jawa  (unit is meter). 

ΔN Mean Std.Dev. Minimum Maximum 
Ngeo   - NEGM96  1.18 0.59 -0.18 2.05 
Ngeo   - NGGM02S 0.59 1.77 -1.69 3.96 
Ngeo   - NGGM02C 0.48 1.05 -0.99 2.12 
 

 
Table 6.3b The Statistic of the Geoid Comparison at 34 points in Sumatera (unit is meter). 

ΔN Mean Std.Dev. Minimum Maximum 
Ngeo   - NEGM96  0.38 0.85 -1.44 2.42 
Ngeo   - NGGM02S 1.40 1.08 -0.32 2.99 
Ngeo   - NGGM02C 1.15 1.02 -0.69 2.76 
 
 
Table 6.3c The Statistic of the Geoid Comparison at 17 points in Sulawesi (unit is meter). 

ΔN Mean Std.Dev. Minimum Maximum 
Ngeo   - NEGM96  0.98 0.80 -0.13 2.14 
Ngeo   - NGGM02S 1.55 1.02 -0.02 3.65 
Ngeo   - NGGM02C 1.36 1.14 -0.32 3.87 
 

 

6.5 Will the new satellite missions meet the requirements for high precision geoid 

models? 

 

As the previous chapters showed the satellite gravity and geoid models are 

improving and now give unprecedented accuracies especially for the longer 

wavelengths. They will therefore provide a very good basis for solving the problem 

about inter-island datum biases. But will they provide the needed geoid accuracy in 

order to be used for e.g. GPS leveling? As Table 6.3 shows the accuracy is at the 

meter level for the satellite models so there is still a long way to go before they will 

meet the typical requirement for leveling work say 5 cm or better. 
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     The upcoming GOCE gravity satellite product will improve the situation 

somewhat but far from enough as the following will show. The Danish National 

Space Center did detailed airborne gravity work in neighboring Malaysia with a flight 

line spacing of 5 km. The aim of this survey was to come up with the best possible 

high resolution geoid model for the area. Figure 6.6 shows the Malaysian geoid for 

part of Borneo (Sabah region just north of Kalimantan) based on the airborne data and 

high-pass filtered to the claimed resolution (i.e. 100km) of the GOCE satellite 

mission (A.V. Olesen, pers. comm.). The area is characterized by a rough terrain with 

a high mount (up to 4000 meter above sea level). Figure 6.6 and Table 6.4 are that 

way an example of how much the actual geoid signal will suffer from omission errors 

in the future GOCE geoid models.  From Table 6.4 below it is seen that one should 

not expect a GOCE geoid much better than around 60 cm for an area like this. 

 

Table 6.4 Sabah high resolution airborne geoid model 

Model Standard deviation 
Sabah geoid high pass filtered to GOCE resolution 0.57 m 
Sabah geoid minus EGM96 to degree 360 1.08 m 

 

Figure 6.6. Sabah airborne geoid high-pass filtered to GOCE resolution 
(Olesen, A.V. personal communication) 
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6.6 The unification of datums in Indonesia using a global geoid as reference 
 
       Efforts to unify the local vertical datums of Indonesia’s three major islands - 

Jawa, Sumatra and Sulawesi were carried out using various global geoids based both 

on GRACE (GGM02S, GGM02C) and the EGM96 geopotential coefficients model.  

The relationship between the local height datum and the global height datum is 

examined through equation (3.1) given in chapter 3 and distortions between local 

height datums in different islands are computed using equation (3.2). The mean 

deviation between leveling heights from its GPS/geoid heights at control points 

located in each of the three islands is considered by analysing the offsets between the 

local and global datum.   

 

      In addition to the three above-mentioned geopotential models, the new earth 

gravitational potential model EGM08 - which was officially released by the US 

National Geospatial-Intelligence Agency (Pavlis et al, 2008) - was also used as the 

global reference surface for height at common GPS/leveling points. Offsets between 

the local and global height datum is re-determined using the same approach described 

in the above section.   

 

Table 6.5a Datum offset in Jawa Island (units in meter) 

Global Datum  μ σ Min. Max. Range 

EGM96 1.18 0.59 - 0.18 2.05 2.23 

GGM02S 0.59 1.77 - 1.69 3.96 4.65 

GGM02C 0.48 1.05 -0.99 2.12 3.11 

EGM08 -0.65 0.45 -1.32 0.31 1.63 

 

Table 6.5b Datum offset in Sumatra Island (units in meter) 

Global Datum  μ σ Min. Max. Range 

EGM96  0.38 0.85 -1.44 2.42  3.86 

GGM02S 1.40 1.08 -0.32 2.99 3.31 

GGM02C 1.15 1.02 -0.69 2.76 3.45 

EGM08 -0.26 0.37 -1.47 0.70 2.17 
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Table 6.5c Datum offset in Sulawesi Island (units in meter) 

Global Datum  μ σ Min. Max. Range 

EGM96   0.98 0.80 -0.13 2.14 2.27 

GGM02S 1.55 1.02 -0.02 3.65 3.67 

GGM02C 1.36 1.14 -0.32 3.87 4.19 

EGM08 -0.25 0.42 -1.17 -0.86 2.03 

     

      Tables 6.5a, 6.5b and 6.5c above give various results of local datum offsets from 

different global datum (geoid models) at the three separate islands. The results show 

that the local height datum of Jawa Island differs by 1.18 meter from the global datum 

of EGM96 geoid, while in Sumatra and Sulawesi Islands the differences are 0.38 

meter and 0.98 meter. When using the EGM08 geoid as the global datum, the offsets 

are relatively smaller at each island. In Jawa Island the offset is reduced to 0.65 

meter, whilst in Sumatra and Sulawesi Islands the offsets are further reduced to 0.26 

and 0.25 m respectively.   

 

      The results also show that the GRACE model of GGM02C gives smaller datum 

offsets in all three islands and better standard deviation in both Jawa and Sumatera 

islands than its GGM02S model, suggesting the GGM02C provides better geoid than 

the GGM02S model for this area. This probably due to the fact that the GGM02S 

model was based only on GRACE satellite gravity and was estimated to degree and 

order 160 without any surface gravity data applied in generating the model. On the 

other hand, the GGM02C is a higher resolution global gravity model to degree and 

order 200 and it is a combination of the GGM02S with terrestrial gravity and mean 

sea surface (Tapley, et al., 2005).  

 

      The range between minimum and maximum values of datum offset at each island 

given by GRACE models are slightly higher than those given by the EGM models. 

This is also reflected in the higher standard deviations (greater than 1 meter for both 

GRACE models in all islands). Despite the fact that the GRACE GGM02C is better 

modeled in lower degrees than the EGM96, the better standard deviations showed by 
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using EGM96 geoid as global datum indicates that the EGM96 geoid is more reliable 

than the GRACE GGM02C geoid for the area. 

 

     When using the EGM08 geoid model as the global height datum, the offset gives 

even better and more consistent standard deviations (i.e., 0.45 meter in Jawa, 0.37 

meter in Sumatra and 0.42 meter in Sulawesi) compares to other models. This shows 

that the EGM08 model provides better geoid for Indonesia than the EGM96 model. 

Also, compare to the regional geoid INDGED02 (i.e., based on EGM96 and local 

gravity data, see Section 3.2.2), the EGM08 model gives better standard deviations of 

datum comparisons in Jawa and Sumatera islands (see again Table 3.5). This implies 

that the EGM08 model alone provide even better geoid than the detailed one where 

surface gravity data of the subset area (see Section 3.2.1) was included.  Nevertheless, 

a higher precision geoid is still needed in order to meet the requirements for precise 

GPS leveling.     

 

      The mean offsets between the local datum and the global height datum varies 

between the islands (see Tables 6.5a, 6.5b, 6.5c). This indicates the inconsistencies 

between the local datums, and thus points to the presence of distortions between local 

height datum in Jawa, Sumatra and Sulawesi. Table 6.6 below shows the size of the 

local height distortions between the three islands. The magnitude of the distortions 

given in this table is rather speculative since systematic errors in leveling and GPS 

measurements - as well as errors in the global geoid - are not taken into account.   

 

      The improved standard deviations in the datum comparisons (see Tables 6.5a, 

6.5b, 6.5c) given by the EGM08 global geoid implies the superiority of this model 

compared to the GRACE and the EGM96 models. For this reason, it is preferable to 

use the EGM08 geoid as the global datum to further examine the distortions of the 

local height datum in Indonesia. As is shown in Table 6.6 below, a distortion of 48 

cm occurs between local height datums in Jawa and Sumatra. Also, distortion of 43 

cm is observed between local height datum in Jawa and Sulawesi whereas the 

estimated distortion between Sumatra and Sulawesi is only 5 cm. 
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   Table 6.6 Local height datums distortion (units in meter) 

Global Reference Jawa – Sumatra Jawa – Sulawesi Sumatra - Sulawesi

EGM96 0.80 0.22 -0.58 

GGM02S -0.81 -0.96 -0.15 

GGM02C -0.67 -0.88 -0.21 

EGM08 0.48 0.43 -0.05 

 

 

    Processes in the ocean such as currents, temperature differences, varying salinity 

and prevailing wind systems will produce the observed distortions of local datum as 

the spirit leveling is tied and adjusted to tide gauges. Figure 6.6 depicts the difference 

between mean sea surface height and the EGM08 geoid (DNSC08 model, Andersen, 

2008).  This difference which is also known as the Mean Dynamic Topography 

(MDT) shows many small scale features which may not necessarily reflect reality but 

should rather be considered noise. Features near the coast especially should be 

considered with some suspicion as the quality of satellite altimetry is questionable 

here.  

 

 

 

Figure 6.6 Deviation of Mean Sea Surface from the EGM08 geoid  across Indonesian   
waters (DNSC08 model, Andersen 2008)     
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Also some larger scale features are seen along the coast, e.g. SE corner of  

Kalimantan and north of Papua. These features could indicate errors in the EGM08 

geoid as the features are not easy to interpret as ocean processes (Andersen, O.B., 

personal comm.). Nevertheless some larger trends are clear, first of all the difference 

in MDT between the Indian Ocean and the South China Sea (and Banda Sea). The 

difference amounts to approximately 40 cm and are thus at the same scale as the 

observed distortions in the local height datum. 

   

      A further analysis of the impact of MDT on tide gauge observations and thereby 

on local height distortion is complicated to pursue as satellite altimetry doesn’t have 

the required precision near the coast. An alternative could be airborne altimetry that 

would connect the local sea level near tide gauge stations to the open sea. 

 
             
6.7 The EGM08  

 

     The EGM08 model, the successor of the EGM96, improves the situation in many 

areas in the world, especially where new surface gravity data has been included 

(Pavlis, et al., 2008). The long wavelength part of the EGM08 is defined by the 

GRACE gravity satellite mission data, which is more accurate, so the medium to long 

wavelength errors present in EGM96 were reduced. In addition to more new surface 

data included in the development of the model, the high resolution digital elevation 

model from the Shuttle Radar Topographic Mission (the SRTM) was also used as the 

source for filling -in those areas lacking in gravity (Kenyon, et al., 2007) This very 

high degree spherical harmonic model to 2160 degrees expansion offers high 

resolution (5’x5’) of global gravity field information with a geoid accuracy of 15 cm 

RMS worldwide. But those areas lacking in surface gravity data will still have 

problems in producing geoid with the stated accuracy specified by the EGM08. This 

lack is certainly the case in many parts of Indonesia.  

 

     The near coastal zone poses a special problem. This is an area where one may 

want the most precise geoid due to the high population and infrastructure density in 

these regions. Importantly, natural hazard management like flood control and tsunami 
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warning systems require a good coastal geoid determination in order to make use of 

fast and cheap GPS leveling instead of tedious and costly spirit leveling.  

Unfortunately there is currently a pronounced lack of data in this zone as is shown in 

this study. There is only little marine data available - partly due to shallow water that 

does not allow for ship-borne measurements - and satellite altimetry derived models 

are in general not reliable near the coast (Andersen and Knudsen, 1998).                  

 

 

6.8 The impact on the local height datum offset of changing W0    

 
      The global vertical datum is defined as the equipotential surface of the earth 

gravity field potential. The constant gravity potential of the geoid (W0 ) can be 

determined from satellite altimetry data on the basis of a global geopotential model 

(GGM). A new W0 constant value has been suggested by the IAG ICP1.2 Working 

Group at the IAG-IUGG joint meeting in Perugia, August 2007.  This new W0 value 

(62 636 856.0 ± 0.5 m2s-2) was proposed to be adopted as a fundamental constant, as 

it can now be determined directly and accurately from observations (Bursa et al., 

2006). The conventional value (62 636 860.850 m2s-2) is related to Somigliana-Pizetti 

normal gravity field generated by GRS’80 ellipsoid.  The impact of using the new W0   

value to find out the offset between the local and the global height datums gives 

direct and indirect effects (Kearsley, 2007). The direct effect Δ(φ,λ), i.e., the separation 

between the global physical and the model reference surfaces at any point on the 

globe, is computed by 

 

 

    Δ(φ,λ) = ΔW0 /γ(φ),                                                                         (6.4) 

 

 

where the  ΔW0  is the difference between the proposed and the current W0 values and  

the γ(φ)  is the computed normal gravity at the respective points (for e.g., tide gauges 

or any vertical control points). The indirect effects are corrections to the local geoid 
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resulting from this change in W0. It can be evaluated by computing the bias in the 

height as 

 

  

   B(φ,λ) = (h – N) (φ,λ) – H(φ,λ),                                     (6.5)  

 

It bias is then mapped into the free air anomaly systematically by ΔNS = B*0.3086. 

Its impact upon the local geoid is computed using ring integration with an optimum 

cap size radius of approximately 25 km. This scheme has been used to find the 

relationship between the fundamental reference surface and the Australian Height 

Datum (Kearsley, ibid). To examine the impact of using the Bursa W0 value in the 

unification of Indonesian height datum, a similar procedure (after Kearsley, ibid) is 

applied to compute the impact of changing the W0 upon the N value. The geoid is 

computed based on the geopotential model EGM08, with no local surface gravity 

measurements included in the geoid computation. The correction which results from 

changing the fundamental constant (ΔW0 = 4.85 m2s-2) is applied. The effect (Δ(φ,λ)) 

of this change is obtained by dividing the ΔW0 value by normal gravity (see eq.6.4) at 

each vertical control points and the result is given in Table 6.7 below. 

 

 

Table 6.7 Corrections applied in changing the W0   

Control 
points 

 

 
 φ 

  
        λ 

h 
GPS 

(meter) 

H 
Leveling 
(meter) 

N 
(EGM08) 
(meter) 

 
 γ(φ)  

 
 Δ(φ,λ)  
(meter) 

  1  4.15300   96.13190    -27.72   2.744    -31.107  978059.76 0.49588 
  2  5.12070   97.13190    -21.22   3.689    -26.008  978073.81 0.49587 
  3  2.73160   98.39170   1007.47 1021.840    -14.583  978044.40 0.49589 
  4  2.74250   98.39900   1007.47 1021.840    -14.503  978044.50 0.49589 
  5  2.76220   98.45930   1379.21 1392.890    -13.928  978044.67 0.49589 
  6  3.14520   98.50750   1291.05 1305.160    -14.365  978048.22 0.49588 
  7  2.19230   98.64180   1301.49 1314.910   -12.827  978040.23 0.49588 
  8  2.22470   98.65630   1408.67 1421.010    -12.528  978040.46 0.49588 
  9  2.25220   98.67780   1464.54 1476.590    -12.218  978040.65 0.49589 
 10  2.25680   98.71170   1392.90 1404.730    -11.919  978040.68 0.49589 
 11  2.26240   98.85930   1401.70 1412.740    -11.156  978040.72 0.49589 
 12  2.24850   98.90210   1393.59 1404.510    -10.946  978040.62 0.49589 
 13  2.22500   98.93930   1308.86 1319.370    -10.791  978040.46 0.49588 
 14  2.02060   98.96230    944.53 955.499    -11.174  978039.10 0.49589 
 15  2.93580   99.04780    422.00 434.271    -12.574  978046.22 0.49588 
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 16  2.09520   99.83390     28.47  36.790     -8.795  978039.58 0.49588 
 17 -0.62030  100.12040     -4.10   3.573     -8.266  978033.28 0.49589 
 18 -0.94390  100.36920      0.80   5.703     -6.368  978034.08 0.49589 
 19 -0.27160  100.36930    909.88 913.516     -3.846  978032.79 0.49589 
 20 -0.94350  100.62210    996.70 998.765     -2.159  978034.08 0.49589 
 21 -0.22390  100.63340    510.38 512.467     -2.277  978032.76 0.49589 
 22  0.09660  100.74720     88.43  90.571     -2.388  978032.69 0.49589 
 23 -1.80900  100.85550     34.40  37.086     -3.220  978037.82 0.49589 
 24  0.33160  100.89210     49.20  52.598     -2.703  978032.85 0.49589 
 25 -0.72770  100.94450    179.41 180.034     -0.715  978033.51 0.49589 
 26  0.34660  101.02520     34.52  36.616     -2.407  978032.87 0.49589 
 27 -2.51400  101.06870     -1.35   3.551     -5.425  978042.61 0.49588 
 28 -2.05440  101.39050    807.96 805.159      2.690  978039.31 0.49589 
 29  1.61920  101.43590     15.17  17.075     -2.092  978036.80 0.49589 
 30 -1.46290  102.12350     53.98  49.421      4.209  978036.04 0.49589 
 31 -0.34920  102.33390     25.08  21.466      3.474  978032.87 0.49589 
 32 -1.20550  103.06580     39.99  32.044      7.632  978034.96 0.49589 
 33 -3.78570  103.53320    122.62 112.536      9.858  978055.18 0.49588 
 34 -4.55320  105.22130     37.75   22.226     15.272  978065.22 0.49587 
 35 -6.05500  105.91740     16.98   1.681     14.289  978090.13 0.49586 
 36 -6.56100  106.73010    201.33 183.447     18.190  978100.09 0.49585 
 37 -6.49090  106.85000    156.83 138.180     18.415  978098.66 0.49586 
 38 -6.91430  106.97410    703.45 681.946     20.343  978107.51 0.49585 
 39 -6.73150  107.04120   1074.97 1053.328     20.460  978103.62 0.49585 
 40 -6.80850  107.15590    426.77 405.493     20.398  978105.25 0.49585 
 41 -6.27050  107.18380     33.70  13.675     18.701  978094.27 0.49586 
 42 -6.33330  107.67330     31.44  10.732     19.880  978095.51 0.49586 
 43 -6.85980  109.15310     27.38   4.031     22.651  978106.34 0.49586 
 47 -6.98380  110.40950     30.61   4.563     25.542  978109.01 0.49585 
 48 -8.17760  111.04540    410.68 384.273     25.909  978137.15 0.49584 
 49 -7.82690  112.01060     93.92  66.129     27.365  978128.44 0.49584 
 50 -8.16820  113.70170    119.01  85.579     32.949  978136.91 0.49584 
 51 -8.14760  115.10560    178.40 142.699     35.052  978136.39 0.49584 
 52 -8.86850  116.08650     39.15   4.205     34.365  978155.40 0.49583 
 53 -8.55210  116.63170     58.55  20.718     38.030  978146.87 0.49583 
 54 -3.56970  118.93650     54.70   1.804     52.612  978052.69 0.49588 
 55 -3.02340  119.30500   1040.54 979.464     60.926  978047.04 0.49588 
 56 -3.43510  119.35000     60.50   2.342     57.693  978051.21 0.49588 
 57 -5.43380  119.43750     55.48   3.251     52.063  978078.98 0.49587 
 58 -4.70860  119.54670     57.02   2.116     54.776  978067.47 0.49587 
 59 -3.69610  119.59880     71.65  14.153     57.092  978054.13 0.49588 
 60 -4.47400  119.60900    150.09  95.578     55.369  978064.10 0.49587 
 61 -3.55520  119.77340    116.29  57.310     58.548  978052.53 0.49588 
 62 -5.63550  119.81690    101.56  49.217     52.048  978082.47 0.49587 
 63 -5.24800  119.85520   1094.17 1038.827     55.407  978075.87 0.49587 
 64 -4.60500  119.97690    163.03 106.703     55.861  978065.96 0.49587 
 65 -5.57290  120.03230     55.70   2.239     53.062  978081.37 0.49587 
 66 -3.90260  120.03390     76.77  19.774     56.304  978056.59 0.49588 
 67 -2.99490  120.19310     65.00   3.454     61.197  978046.77 0.49588 
 68 -5.55060  120.20130     54.90   1.543     53.058  978080.98 0.49587 
 69 -5.15080  120.21970    165.73 110.832     54.453  978074.29 0.49587 
 70 -3.70550  120.41970     60.07   1.586     57.316  978054.24 0.49588 
 71  0.73710  124.33090    384.94 316.745     68.707  978033.53 0.49589 
 72  1.25750  124.93190    758.91 687.882     70.921  978035.16 0.49589 
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      Even though the variation of the effect at all vertical control point is very small 

(less than 1 millimeter) - because of the change in normal gravity is insignificant, the 

impact upon a geoid height themselves of using the proposed new W0 is significant 

(in the order of 49.6 centimeter). Biases relating to the short wavelength geoid 

components also need to be considered when using surface free air gravity anomalies 

in the detailed geoid computation where the height used to compute the gravity 

anomaly is referred to the local datum (cf. the geoid). The impact is then added to the 

N values and the global heights (which refer to the EGM08 geoid using new W0) are 

obtained by subtracting the ellipsoidal height with the amended N values at control 

points. The local height datum offset by changing W0 is then assessed by comparing 

them to the ‘corrected’ global height at all control points. The impact of new W0 upon 

N and offsets of local height datums (dH) at all control points is shown in Table 6.8 

below. 

 

 

Table 6.8 The impact of new W0  upon N 

Control 
points 

 

 
 φ 

  
        λ 

h 
GPS 
(m) 

H 
Leveling 

(m) 

N 
(EGM08) 

(m) 

Amended 
N 

(m) 

dH 
(m) 

  1 4.15300 96.13190 -27.72 2.744 -31.107 -30.611 0.147 
  2 5.12070 97.13190 -21.22 3.689 -26.008 -25.512 0.603 
  3 2.73160 98.39170 1007.47 1021.840 -14.583 -14.087 -0.283 
  4 2.74250 98.39900 1007.47 1021.840 -14.503 -14.007 -0.363 
  5 2.76220 98.45930 1379.21 1392.890 -13.928 -13.432 -0.248 
  6 3.14520 98.50750 1291.05 1305.160 -14.365 -13.869 -0.241 
  7 2.19230 98.64180 1301.49 1314.910 -12.827 -12.331 -1.089 
  8 2.22470 98.65630 1408.67 1421.010 -12.528 -12.032 -0.308 
  9 2.25220 98.67780 1464.54 1476.590 -12.218 -11.722 -0.328 
 10 2.25680 98.71170 1392.90 1404.730 -11.919 -11.423 -0.407 
 11 2.26240 98.85930 1401.70 1412.740 -11.156 -11.652 0.612 
 12 2.24850 98.90210 1393.59 1404.510 -10.946 -10.450 -0.470 
 13 2.22500 98.93930 1308.86 1319.370 -10.791 -10.295 -0.215 
 14 2.02060 98.96230 944.53 955.499 -11.174 -10.678 -0.291 
 15 2.93580 99.04780 422.00 434.271 -12.574 -12.078 -0.193 
 16 2.09520 99.83390 28.47 36.790 -8.795 -8.299 -0.021 
 17 -0.62030 100.12040 -4.10 3.573 -8.266 -7.770 0.097 
 18 -0.94390 100.36920 0.80 5.703 -6.368 -5.872 0.969 
 19 -0.27160 100.36930 909.88 913.516 -3.846 -3.350 -0.286 
 20 -0.94350 100.62210 996.70 998.765 -2.159 -1.663 -0.402 
 21 -0.22390 100.63340 510.38 512.467 -2.277 -1.781 -0.306 
 22 0.09660 100.74720 88.43 90.571 -2.388 -1.892 -0.249 
 23 -1.80900 100.85550 34.40 37.086 -3.220 -2.724 0.038 
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  The mean offsets between local and global datums with new W0 value at each island 

are computed by (eq. 3.1) and the local height datum distortion between separated 

islands is estimated by analyzing the datum offsets. The offset between local and 

global datum defined by this new W0 value at each islands is given in Table 6.9.  

 24 0.33160 100.89210 49.20 52.598 -2.703 -2.207 -1.191 
 25 -0.72770 100.94450 179.41 180.034 -0.715 -0.219 -0.405 
 26 0.34660 101.02520 34.52 36.616 -2.407 -1.911 -0.185 
 27 -2.51400 101.06870 -1.35 3.551 -5.425 -4.929 0.028 
 28 -2.05440 101.39050 807.96 805.159 2.690 3.186 -0.385 
 29 1.61920 101.43590 15.17 17.075 -2.092 -1.596 -0.309 
 30 -1.46290 102.12350 53.98 49.421 4.209 4.705 -0.146 
 31 -0.34920 102.33390 25.08 21.466 3.474 3.970 -0.356 
 32 -1.20550 103.06580 39.99 32.044 7.632 8.128 -0.182 
 33 -3.78570 103.53320 122.62 112.536 9.858 10.354 -0.270 
 34 -4.55320 105.22130 37.75 22.226 15.272 15.768 -0.244 
 35 -6.05500 105.91740 16.98 1.681 14.289 14.785 0.514 
 36 -6.56100 106.73010 201.33 183.447 18.190 18.686 -0.803 
 37 -6.49090 106.85000 156.83 138.180 18.415 18.911 -0.261 
 38 -6.91430 106.97410 703.45 681.946 20.343 20.839 0.665 
 39 -6.73150 107.04120 1074.97 1053.328 20.460 20.956 0.686 
 40 -6.80850 107.15590 426.77 405.493 20.398 20.894 0.383 
 41 -6.27050 107.18380 33.70 13.675 18.701 19.197 0.828 
 42 -6.33330 107.67330 31.44 10.732 19.880 20.376 0.332 
 43 -6.85980 109.15310 27.38 4.031 22.651 23.147 0.202 
 47 -6.98380 110.40950 30.61 4.563 25.542 26.038 0.009 
 48 -8.17760 111.04540 410.68 384.273 25.909 26.405 0.002 
 49 -7.82690 112.01060 93.92 66.129 27.365 27.861 -0.070 
 50 -8.16820 113.70170 119.01 85.579 32.949 33.445 -0.014 
 51 -8.14760 115.10560 178.40 142.699 35.052 35.548 0.153 
 52 -8.86850 116.08650 39.15 4.205 34.365 34.861 0.084 
 53 -8.55210 116.63170 58.55 20.718 38.030 38.526 -0.694 
 54 -3.56970 118.93650 54.70 1.804 52.612 53.108 -0.212 
 55 -3.02340 119.30500 1040.54 979.464 60.926 61.422 -0.346 
 56 -3.43510 119.35000 60.50 2.342 57.693 58.189 -0.031 
 57 -5.43380 119.43750 55.48 3.251 52.063 52.559 -0.330 
 58 -4.70860 119.54670 57.02 2.116 54.776 55.272 -0.368 
 59 -3.69610 119.59880 71.65 14.153 57.092 57.588 -0.091 
 60 -4.47400 119.60900 150.09 95.578 55.369 55.865 -1.353 
 61 -3.55520 119.77340 116.29 57.310 58.548 59.044 -0.064 
 62 -5.63550 119.81690 101.56 49.217 52.048 52.544 -0.201 
 63 -5.24800 119.85520 1094.17 1038.827 55.407 55.903 -0.560 
 64 -4.60500 119.97690 163.03 106.703 55.861 56.357 -0.030 
 65 -5.57290 120.03230 55.70 2.239 53.062 53.558 -0.097 
 66 -3.90260 120.03390 76.77 19.774 56.304 56.799 0.197 
 67 -2.99490 120.19310 65.00 3.454 61.197 61.693 -0.147 
 68 -5.55060 120.20130 54.90 1.543 53.058 53.554 -0.197 
 69 -5.15080 120.21970 165.73 110.832 54.453 54.949 -0.051 
 70 -3.70550 120.41970 60.07 1.586 57.316 57.812 0.672 
 71 0.73710 124.33090 384.94 316.745 68.707 69.203 -1.008 
 72 1.25750 124.93190 758.91 687.882 70.921 71.417 -0.389 
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     The offset defined by the new W0 is slightly change compared to the offsets using 

the old W0 (0.5 centimeter in Jawa, 6 centimeter in Sumatera and 0.8 centimeter in 

Sulawesi). The standard deviations of the comparisons are more or less the same, but 

the range of the offset with respect to the new W0 in Sumatera and Sulawesi islands 

are slightly smaller than their previous values (see Table 6.9, Tables 6.5a, 6.5b and 

6.5c). Therefore, it may be desirable to use the new value as it reflects the actual 

ocean mean surface more effectively than the old GRS80 based one.  

 

Table 6.9 Offsets between local and global datums with new W0 value (units in m)  

Location/island μ σ Min. Max. Range 

Jawa - 0.655 0.45 - 0.803 0.828 1.631 

Sumatra - 0.202 0.39 - 1.191 0.969 2.160 

Sulawesi - 0.242 0.42 - 1.353 0.672 2.025 

 

 

     Figure 6.7 below shows the local datum offsets at individual control points in 

Sumatera, Jawa and Sulawesi islands (as given in Table 6.8). In Sumatera, the 

relatively small offset occurs at control points along the west coast and increases in 

the mid land towards the east coast. The trend indicates a good agreement along the 

west coast, where most of the tide gauges station are located, however it is difficult to 

identify which control points refer to which tide gauge as documentation for the 

adjustment of the leveling networks is not available. The bigger offset in middle part 

of the island towards the east coast is likely due to a different MDT between the west 

and east coast of Sumatera (see Figure 6.6). The mountain range that exists along the 

middle part of the island could also contribute to error in the geoid if the signal is not 

present in the EGM08 model. The spatial distribution of datum offset in Jawa shows a 

tendency to clustering, i.e., higher in the western part than the eastern part. This 

pattern seems to agree with the MDT figure in the northwest and southeast coast of 

Jawa. The more complex pattern in Sulawesi is due to incomplete leveling networks, 

which are concentrated only in the southern part of the island with a small loop in the 

north. The complex coastline and the influence of the Indonesian throughflow along 

the west coast of the island could result from the inaccuracy in the  mean sea level 
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determination at the tide gauges stations to which the local heights have been 

referred.  

     

    As a general observation, these results also show the danger in assuming a single 

constant offset between the datum for an island and the global geoid. The picture is 

likely to be much more complicated if the height datum is defined by more than one 

tide gauge, due to distortions in the definition of Mean Sea Level between the 

different tide gauges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Figure 6.7 Offset between local and global (EGM08) datums with new W0 value.  
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CHAPTER 7 

 

CONCLUSION 
 

 The current height reference system in Indonesia was established by using a 

classical spirit leveling measurements. This technique is a well known approach that 

has been used in most countries for more than a century. Despite being an accurate 

method for determining height differences, spirit leveling is costly and difficult to 

undertake in remote areas. The Indonesian mapping authority has started its vertical 

reference network using precise spirit leveling measurements since the early eighties, 

however up to present time less than 25 % of the land area has been covered. Lack of 

infrastructure such as road access, which is required for terrestrial observations, is one 

of the impediments in completing the job. As a result, the height datum is not 

available in most part of the country such as in two major islands of Kalimantan or 

Irianjaya (west Papua). This will slow down the development of the two potential 

natural resource rich areas.  

A modern society requires the ability to measure elevations relative to mean sea 

level easily, accurately and at the lowest possible cost. The alternative approach to the 

classical terrestrial technique is the spaceborne technique. A combination of 

ellipsoidal height measurements derived from satellite (GPS, GLONASS or 

GALILEO) together with a precise geoid model could give orthometric height with 

accuracies comparable to precise leveling measurements. If the two components were 

errorless, they would produce the same results. The GNSS (Global Navigation 

Satellite System) surveying technique, i.e. to determine height derived from GPS, 

GLONASS or GALILEO satellites will speed up the tedious leveling work. It 

provides a more consistent height datum, faster and cheaper than the traditional 

technique. 

The consistent height datum is not only required in mapping and cadastral 

surveys, but is also needed for navigation and resources management, construction 

works and mineral exploration, coastal boundary definition, assessment of potential 
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flooding areas as well as monitoring sea level rise. The classical height system 

measured by spirit leveling has been inconsistent between different islands. The 

conventional height system, which is referred to the mean sea level deviates from the 

modern GPS based height system, which is referred to the geoid. This is due to the 

fact that the mean sea level, which is determined by tide gauge observations along the 

coast, is dynamic and does not necessarily co-inside with the geoid.  

7.1 Major Conclusions 

The deviation known as the offset between the local and the global or regional 

height datum in different major islands in Indonesia has been investigated by means 

of different geoid models. The Indonesian geoid (INDGED02) has been used as the 

regional height datum to examine the offset between the local and global height 

datums in two separated islands of Jawa and Sumatra undertaken in Chapter 3. The 

investigation has been limited to these two major islands in western part of the 

archipelago due to the availability of the surface gravity anomaly data coverage (see 

Section 3.2.1). The result from the analysis carried out in Chapter 3 suggests that 

local height distortion of about 78 cm appears in the inter-island datum comparisons 

between Sumatra and Jawa. The computation result shows large standard deviation of 

the misfit between the local datum and the global datum comparisons (see in Table 

3.5) which can be partly explained by the small sample size (numbers of control 

points located in Jawa island), but also indicates problem with the underlying gravity 

data and so the INDGED02 geoid (see the gravimetric geoid in Section 3.2.1b). The 

accuracy of the 5’ grid gravity dataset used in the gravimetric geoid computation is 

uncertain due to lack of measured data in the land areas (especially in the mountains) 

and in the coastal regions (see Figure 3.2).         

The launch of satellite gravity GRACE product and the release of the new earth 

gravitational potential EGM08 has provided a valuable data for performing better 

nationwide geoid for Indonesia. The GGM02S, GGM02C and EGM08 models have 

been used in the geoid computation based on global geopotential models only. These 

geoids then serve as global height datum to re-examine the inter-island datum 

comparisons in three major islands. The result of the analysis which was undertaken 
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in Section 6.6 shows different offsets between local and global height datums in each 

island of Jawa, Sumatra and Sulawesi. The offsets and standard deviations of the 

datum comparisons are also depend on the geopotential model used for the geoid 

modeling. The much better standard deviation given by using EGM08 geoid as global 

datum in the datums comparison make it superior among other models (see again 

Tables 6.5a, Table 6.5b, and Table 6.5c in Chapter 6).  Based on the results it is 

concluded that the EGM08 geoid best suits as national geoid for Indonesia at present 

time until a better geoid for this area can be realized.  

     Having analyzed the datum offsets in each island using the EGM08 geoid as 

global datum computed in Section 6.6, the intra-island datum comparison shows 

distortion of 48 centimeter occurs between local height datum in Jawa and Sumatra. 

Distortion of 43 centimeter is observed between local height datum in Jawa and 

Sulawesi whereas the estimated distortion between Sumatra and Sulawesi datums is 

only 5 cm (see Table 6.6). These observed distortions are in line with the feature of 

the mean dynamic topography (MDT) between the Indian Ocean and the South China 

Sea (and Banda Sea) which shows the difference of approximately 40 centimeter (see 

Figure 6.6).  

 

    The datum offsets defined by adopting new W0 are slightly change and the standard 

deviations of the comparisons are more or less the same compared to the offsets using 

the old W0 (see Table 6.9), however the range of the offset with respect to the new W0 

in Sumatera and Sulawesi islands are slightly smaller than their previous values given 

in Tables 6.5a, 6.5b and 6.5c.   

   

      Since the high precision gravimetric geoid plays a key role in datum unification 

and in establishing a consistent GPS based height system, there is a demand for more 

gravity data in this region even after the EGM08 has became available. The recently 

launched GOCE gravity satellite hopefully will improve the situation even further and 

will contribute to a better determination of inter-island height datum offsets in this 

region. 
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The examination of geoid computation techniques carried out in Chapter 4 

showed that a 10 cm geoid was already achievable in major parts of Jawa island. Each 

of the Ring integration, Collocation and FFT techniques were examined together with 

various reduction schemes for the gravity data. The main obstacle to achieve a better 

precision was identified as the lack of gravity data over larger areas. The error 

propagation study presented in Chapter 5 indicates that further improvement could be 

reached by gathering more gravity data over inland data voids (mountainous areas) 

and by covering the near coastal zone with reliable gravity data.  

 

The simulation study indicated 20 cm error with 20 km spaced ‘fill-in airborne 

data’ and approximately 15 cm with 10 km spaced data. The results seem to be rather 

pessimistic when compared to the results obtained in Chapter 4. If the Chapter 5 

results are scaled to the Chapter 4 results, the error estimates will approximately drop 

to half their value, i.e. 10 cm error with 20 km spaced fill-in data and 7 cm error for 

10 km fill-in. The latter numbers are believed to be a more realistic assessment of the 

error field than the un-scaled numbers presented in Chapter 5. Also the inclusion of 

new higher quality and higher resolution elevation models will further improve the 

situation as compared to the assumptions for the error study and to the data situation 

in Chapter 4. 

 

The dedicated satellite gravity missions CHAMP and GRACE improved the 

medium to long wavelength gravity field across the archipelago with seamless data 

coverage. However, differences reaching several hundreds mGal were seen in the 

south of Jawa, in the northern part of Sulawesi and north of Banda Sea when 

compared with the existing data (see Table 6.1 and Figure 6.4). These significant 

differences arise in areas characterized by deep trenches and high mountains. The 

upcoming GOCE gravity satellite product will improve the gravity data situation, but 

it will be far from precise enough in order to meet the requirement for GPS/levelling 

(see Section 6.5.). The GOCE geoid is not likely to be better than 50 to 60 cm in an 

area with such a disturbed gravity field like Indonesia. 
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In order to implement a modern GPS based height system for Indonesia in the 

near future, a higher precision geoid model is required. A five cm or better geoid 

would be desirable. The EGM08 model together with GOCE and new high resolution 

topography models (e.g. SRTM 3 arc second) will provide a good backbone for such 

models, but more gravity data are required in most places. Airborne gravimetry offers 

a fast and relatively cheap way to collect these data. But even with airborne 

gravimetry it will still be a challenge to reach a 5 cm or better geoid nationwide. 

Maybe we would be better off by relaxing the general requirement to say a 5 to 10 cm 

geoid for the nationwide coverage and then in turn focus our effort in areas where we 

need a higher precision geoid, say 2 to 5 cm precision. Regions where the high 

precision is needed will typically be in areas that are more densely populated and 

where there is high economic interest related to infrastructure development. This will 

often coincide with the coastal regions where there also will be an interest in a high 

precision geoid to support coastal management and flood control. 

 

As the conclusion, the realization of a new national vertical datum for Indonesia 

by geoid modeling rather than by geodetic leveling is strongly proposed. It will enable 

measurements of elevations with respect to a consistent vertical datum everywhere 

across the country using the Global Positioning System (GPS) and emerging Global 

Navigation satellite System (GNSS) technologies. To achieve that, it requires a 

strategic planning and implementation as well as improvement of the geoid model. 

 

7.2 Recommendation and future works 

 

My recommendations for future work in order to improve the gravity/geoid 

situation in Indonesia will therefore be a two-step approach: first a nationwide or near 

nationwide coverage with airborne gravimetry that in combination with global 

geopotential models will provide a 5 to 10 cm geoid nationwide. A 5 to 20 km line 

spacing should be sufficient. The airborne coverage must include the near coastal 

offshore zone (out to approximately 50 km from the coastline) where altimetric 

gravity models are weak.  Then as second step, a densification of the gravity coverage 

over areas where a higher precision geoid is needed. This densification could be done 
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by airborne as well as by traditional terrestrial gravimetry. In some areas, like parts of 

Jawa island, the dense coverage is already there. Although some of the existing data 

may have to be validated.  

     

    Thus, as the first step, the (near) nationwide airborne gravity measurements is 

urgent for future work in all major islands in the region, where data voids are huge 

such as in Kalimantan, Sulawesi and Irianjaya islands. Whilst in Sumatra and Jawa 

islands measurements are needed to improve the situation of the existing surface data.  

 

Following are the proposed airborne gravity surveys plan for: 

 

1. Kalimantan island 

 

 
Figure 7.1 Draft survey layout for airborne gravity over Kalimantan. Total flight volume is 
approximately 400 hours airborne.     
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2. Sulawesi island 

 

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7.2 Draft survey layout for airborne gravity measurements  over Sulawesi.   
Total flight volume is approximately 170 hours airborne.   
 
 
3. Irianjaya island 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Draft survey layout for airborne gravity measurements over Irianjaya.  
Total flight volume is approximately 400 hours airborne.   
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4. Sumatra island 

                             

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 7.4 Draft survey layout for airborne gravity measurements over Sumatra.  
Total flight volume is approximately 160 hours airborne. Existing surface data are 
plotted in red dot.   

  

  

5. Jawa island. 

 

 
 
 
 
 
 
 
 
 

 
 
 
          Figure 7.5 Draft survey layout for airborne gravity measurements  over Jawa Island.   
          Total flight volume is approximately 120 hours airborne.   
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