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[1] Inferring the core dynamics responsible for the observed geomagnetic secular variation requires knowledge
of the magnetic field at the core-mantle boundary together with its associated model covariances. However,
most currently available field models have been built using regularization conditions, which force the expan-
sions in the spatial and time domains to converge but also hinder the calculation of reliable second-order
statistics. To tackle this issue, we propose a stochastic approach that integrates, through time covariance
functions, some prior information on the time evolution of the geomagnetic field. We consider the time series
of spherical harmonic coefficients as realizations of a continuous and differentiable stochastic process. Our
specific choice of process, such that it is not twice differentiable, mainly relies on two properties of magnetic
observatory records (time spectra, existence of geomagnetic jerks). In addition, the required characteristic times
for the low degree coefficients are obtained from available models of the magnetic field and its secular variation
based on satellite data. We construct the new family COV-OBS of field models spanning the observatory and
satellite era of 1840–2010. These models include the external dipole and permit sharper time changes of the
internal field compared to previous regularized reconstructions. The a posteriori covariance matrix displays
correlations in both space and time, which should be accounted for through the secular variation error model
in core flow inversions and geomagnetic data assimilation studies.
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1. Introduction

[2] Models of the Earth’s magnetic field at the core
surface are the main agent through which geomag-
netic observations are used to infer core dynamics.
In this case, knowledge of the second-order statistics
(covariances) of the field model coefficients is a
prerequisite for attempts to constrain the Earth’s core
dynamics [Fournier et al., 2011]. The uneven
geographical distribution of magnetic observatories
and the time-variable accuracy of magnetic measure-
ments give yet more importance to a reliable covari-
ance information for the epochs anterior to the
advent, in 1999, of continuous, global satellite cover-
age. Unfortunately, the regularization conditions that
have been introduced to ensure convergence in
the presently available core field models are so strong
that they lead to unrealistic covariances. For example,
spatial regularization has commonly been applied
based on a norm measuring the Ohmic heating
within the core [Gubbins and Bloxham, 1985],
but observations of the heat flux out of Earth’s
surface place only weak bounds on this quantity
[Jackson and Livermore, 2009]. In this case, the
comparatively large regularization parameters
adopted by most workers (essentially to smooth their
models in a visually appealing manner) cannot be
rigorously justified [Backus, 1988]. In the absence
of trustworthy covariance information, field models
with null [Kuang et al., 2009] or “estimated”
[Beggan and Whaler, 2009] errors had to be used
in the first attempts at Kalman filtering in geomagne-
tism. The paucity of covariance information is all the
more unfortunate given that the small size of
geomagnetic models, compared to the size of meteo-
rological and oceanographic models, makes it
conceivable to use the full covariance information
in geomagnetic data assimilation schemes.

[3] This state of affairs is well illustrated by the
simple problem of estimating core surface motions
u through the inversion of the radial induction
equation at the core surface [Holme, 2007],

@Br

@t
¼ �r:H uBrð Þ þ �

r
r2 rBrð Þ; (1)

where Br is the radial magnetic field at the core-
mantle boundary, � is the Earth’s core magnetic
diffusivity, and r Ḣ is the horizontal divergence
operator. The lack of reliable covariance information
has made it difficult to generalize the ensemble
method developed by Gillet et al. [2009] for the
satellite era (from 1999 onwards) to the observatory
era that began in 1840. Eymin and Hulot [2005]
and then [Pais and Jault, 2008] identified the

ignorance of the small scale magnetic field (spherical
harmonic degree n≥ 14) at the surface of the core as
the main limitation in the estimation of core surface
flows from satellite data. This effect is accounted
for through modeling errors on the secular variation
(SV) @ Br/@ t. Gillet et al. [2009] subsequently
produced an ensemble of stochastic, time-correlated,
small-scale magnetic field models (extrapolated from
the statistical properties measured at large length
scale) in order to supplement the resolved large-scale
field. From this ensemble of magnetic fields, they
calculated an ensemble of core flows, all able to
explain the observed magnetic field variation.

[4] Generalizing this approach to the observatory era,
which amounts to generating an ensemble of field
models from the estimated mean and covariances of
all the model coefficients (instead of coefficients with
degree n≥ 14 only), seems to be the appropriate way
to account for the lower precision of geomagnetic
data at earlier times and for the uneven geographical
distribution of geomagnetic surface data. We refer to
this approach of using an ensemble of field models,
each generated by a stochastic process, to represent
the knowledge contained in geomagnetic observations
as “stochastic field modeling”. This terminology
was previously introduced by Gubbins [1983] in
the context of building snapshot field models (even
though he was effectively using a regularization
procedure). In our study, stochastic information is
instead used to characterize the variance and temporal
autocorrelation function of time-dependent Gauss
coefficients. An adequate description of their covar-
iances is a fundamental ingredient since, as noted
by Pais and Jault [2008], it is the level of confidence
in the main field (MF, or internal field up to degree
n= 14) coefficients that governs the amplitude of
modeling errors, through the amount of unresolved
magnetic and velocity fields entering the nonlinear
term in (1). As a consequence, the larger the uncer-
tainty in the MF, the larger the SV modeling errors.

[5] Considering the time sequences of magnetic field
coefficients as realizations of differentiable continuous
time processes ’ naturally allows the calculation
of the secular variation @ Br/@ t, which enters the
equation (1). This assumption is consistent with
the encouraging agreement between the SV in recent
satellite-era field models up to at least degree n=10
[Lesur et al., 2010; Olsen et al., 2010; Finlay et al.,
2012]. The large-scale part of the instantaneous SV
can be reasonably constrained from satellite data,
and we can estimate characteristic times for the
spherical harmonic degrees 1 to 10 of the geomag-
netic field [Hulot and Le Mouël, 1994]. We use these
times as a first constraint on the processes ’. Holme
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et al. [2011] and Christensen et al. [2012] have
recently advocated, using models for the secular
acceleration (SA) @ 2Br/@ t

2 of the magnetic field, to
estimate an additional timescale, this one for the
spherical harmonic coefficients of the secular varia-
tion. However, SA estimates are known to depend
on the regularization conditions [e.g., Finlay et al.,
2012], which indicates that the instantaneous SA, in
contrast to the instantaneous SV, is not well defined
given the available observations. In this paper, we
provide further evidence that only integrals of the
SA over finite time intervals can be estimated at pres-
ent. We therefore choose not to use SA models to
constrain the continuous time processes ’ sampled
by the time series of geomagnetic coefficients.
Instead, we construct the required time correlation in-
formation from the spectrum of observatory records.

[6] The processes ’ are, in an ideal scenario,
capable of reproducing the actual physical process
governing the time evolution of the magnetic field
in only a finite range of frequencies. That range is
limited by the time resolution of the internal field
that can be extracted from magnetic measurements,
(approximately 1 year for the largest length scales
[see, e.g., Olsen and Mandea, 2007]. Such
processes ’ can be defined by a finite number of
parameters, and they need not have the same differ-
entiability properties as the natural processes.

[7] Theoretically, the filtering of magnetic signals
coming from the core as they pass through the electri-
cally conducting mantle may also provide us with
information concerning the correlation properties of
the geomagnetic coefficients series at the Earth’s
surface. It can be shown that if the mantle electrical
conductivity depends only on the radius, the mantle
acts as a filter for each spherical harmonic component
of the geomagnetic field, with a smoothing time that
decreases with degree [Backus, 1983; Pinheiro nad
Jackson, 2008]. This smoothing time can be calcu-
lated as a function of a weighted integral of the
conductivity. Recent investigations concerning the
electrical properties of the mantle from satellite data
point to rather low values for the electrical conductiv-
ity, of the order of 2 Sm�1 in the lower mantle [Kuv-
shinov and Olsen, 2006; Velímský, 2010], which cor-
respond to smoothing times of at most a few months.
If these estimates are correct, we can treat the mantle
as transparent to core signals with annual periods and
longer that are considered in this paper.

[8] In section 2, we describe our algorithm for pro-
ducing an ensemble of magnetic field models for
the era 1840–2010. These models account for the
geomagnetic observations and possess statistical

properties (including time correlations) that can be
encapsulated in a covariance matrix. We define
the prior covariance information from the assump-
tion that the Gauss coefficients result from a
stationary process. We find that the process obeying
a particular second-order stochastic differential
equation possesses the required properties. This
also leads us to question whether or not one should
calculate the instantaneous SA. In section 3, we
present our new family of field models, named
COV-OBS, which include the necessary covariance
information, and compare them with previous
models, briefly analyzing the series we obtain for
the external dipole. In section 4, we discuss
perspectives for geomagnetic field modeling, and
possible adaptations of our method to less fre-
quently sampled paleomagnetic observations.

2. Stochastic Magnetic Field Modeling
Using a Prior Probability Distribution
for the Geomagnetic Potential
Gauss Coefficients

[9] The conventional method to calculate time-
dependent geomagnetic field models involves mini-
mizing the spatial and temporal complexity of the
magnetic field at the core surface [Jackson and
Finlay, 2007]. It ensures that the spatial and temporal
power spectra converge toward zero for decreasing
length scales and periods, but it does not give a cor-
rect representation of the error statistics [Backus,
1988]. We adopt instead a Bayesian approach and
specify a (Gaussian) prior probability distribution
for the geomagnetic potential coefficients [Gubbins
and Bloxham, 1985; Backus, 1988; McLeod, 1996].
This involves the a priori mean values of the coeffi-
cients (all chosen to be zero) and the a priori covari-
ance matrix of model coefficients.

[10] In section 2.1, we describe the geomagnetic
data used in our inverse problem. We then discuss
the equations relating the Gauss coefficients to the
observations (section 2.2), before giving the gen-
eral methodology to build our ensemble of field
models (section 2.3). In section 2.4, we present
the information about the time sequences of geo-
magnetic coefficients that we introduce prior to
the calculation of models. Secular variation time-
scales calculated using the SA from magnetic field
models of the satellite era are not part of this infor-
mation since we conclude (section 2.5) that these
can be strongly influenced by modeling choices
and may not be characteristic of the true core field.
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2.1. Geomagnetic Data

[11] The observations used in this study are direct
measurements of the geomagnetic field spanning
the interval from 1840.0 to 2010.0. Except for the
most recent decades, it consists of the dataset used
by Jackson et al. [2000] to produce the gufm1 field
model. During this interval, measurements of abso-
lute intensity are available and data sources include
maritime, survey, ground observatory, and satellite
observations. Here we provide only a brief overview
of the main features of each data set. Statistics sum-
marizing the observations used are found in Table 1.

[12] The land survey and maritime observations used
are those compiled by Jackson et al. [2000] and
Jonkers et al. [2003]. Error estimates for these histor-
ical records were also allocated using the scheme
developed by these authors. Annual means from
ground observatories provide the most important
source of information regarding the secular variation
over the time span of our model. We use first differ-
ences of observatory annual means provided by the
World Data Center for Geomagnetism (Edinburgh)
spanning the period 1840.0 to 2010.0 and comprising
all observatories operating during this interval. These
data have been manually processed to remove gross
outliers and to split observatories where unresolved
base line jumps occur. Since we are constructing a
model spanning the past 170 years, information is
not always available on the manner in which the an-
nual means were computed, and consequently, we do
not filter according to the computation method (e.g.,
all days, quiet days, incomplete, absolute only, etc.,
cf. oamformat.doc file available from BGS). Our an-
nual mean data therefore contains contributions not
only from the core but also from large-scale magne-
tospheric currents, ionospheric currents including
the Sq system, and their induced counterparts
[Gavoret et al., 1986; Yukatake and Cain, 1987;

Schmucker, 1991]. Error estimates were determined
for each component at each observatory from the
scatter about independent one dimensional penalized
spline fits, with a regularization parameter deter-
mined by generalized cross validation [Bloxham
and Jackson, 1992]. We recognize that this method
is not fully satisfactory: we assign a single error
estimate for time series, whereas the accuracy of
magnetic measurements has improved with time.
Note that taking the difference between annual
means introduces correlation between the secular
variation estimates [Haines, 1993] that we have not
taken into account here. These observatory series
and the error estimation scheme are extensions of
the approach used in the construction of the ufm1
[Bloxham and Jackson, 1992] and gufm1 [Jackson
et al., 2000] field models.

[13] We also employ satellite data that provide a
strong constraint on the field morphology at recent
times. We use intensity observations from the POGO
series of satellites (1965–1971) [e.g., Cain and
Sweeney, 1973] and the DE-2 satellite (1981–1983)
[e.g., Langel et al., 1988], as well as both intensity
and three component vector observations from the
Magsat (1980) [Langel and Estes, 1985], �rsted
(since 1999) [Neubert et al., 2001], and CHAMP
(2000–2010) [Reigber et al., 2002] satellites. The
DE-2 data set is that previously employed by Jackson
et al. [2000]. Since we had access to the original data
for the other missions, we decided to re-perform
the processing and data selection in a consistent
manner, with the aim of producing data sets suitable
for co-estimating slow variations in both the core
field and the largest scale, quiet-time, external field.
As far as possible, we employed the quiet-time selec-
tion criteria used in the CHAOS model series [Olsen
et al., 2006]. This involves the magnitude of the time
derivative of theDst index being less than or equal to

Table 1. Summary of the Statistics for the Various Datasets

Name Period X Y Z H F I D Bias Misfit

OAM’sa 1840–2010 12261 12141 11944 – – – – �0.004 0.936
DE-2 1981–1983 – – – – 451 – – �0.239 1.031
POGO 1965–1970 – – – – 7546 – – 0.009 0.828
Magsat 1979–1980 2273 2286 2290 – 279 – – �0.157 0.821
CHAOS-4b 1999–2010 24,619 24,619 24,619 – 3392 – – �0.044 1.024
PNALc 1840–1867 – – – – – – 13,852 0.036 1.414
Surveys 1840–1980 – – 10,290 56,381 27,109 41,686 88,209 �0.012 0.872

X, Y, and Z stands for the three Cartesian components of the magnetic field; H, F, I, and D stand, respectively, for horizontal intensity, total in-
tensity, inclination, and declination. The total number of data of is 366,236 with a global normalized misfit of 0.937.

aOAMs stands for first differences of observatory annual means.
bCHAOS-4 vector data are rotated in the {Bb,B⊥,B3} frame to deal with anisotropic attitude errors [Holme and Bloxham, 1996].
cPNAL stands for Paris national archives and library.
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2.0 nT/h and the Kp index being less than or equal
to 2�. Vector data were only used below 60� geomag-
netic latitude. In addition, �rsted and CHAMP vec-
tor data are only used for times when the sun was
more than 10� below the horizon (plus additional se-
lection criteria for CHAMP) [see Olsen et al., 2006],
while for Magsat, we selected only dawn data.

[14] Sub-sampling of the original datasets was
carried out using a grid of 72 cells in longitude by
36 cells in cosine of co-latitude, refilled each year
with random sampling from cells where more than
one observation is available, in order to obtain a
coverage in space and time as homogeneous as
possible. This coverage is sufficiently dense for
our purposes because we do not attempt to estimate
the crustal field, and because we are interested only
in slow field variations with timescales of years and
longer. Vector data are selected where possible,
with CHAMP data preferred during the most recent
decade. We also apply a correction to account
for the known part of the crustal field—we take this
to be the internal field from the CHAOS-4 model
for spherical harmonic degrees 16 to 80. On the
other hand, no a priori correction for the external
field is applied, enabling satellite data to be used
to constrain both the core field and the large-scale
external field.

[15] The allocation of a prior error budgets to satel-
lite data is unfortunately very difficult due to the
non-stationary, non-Gaussian nature of the un-
modeled noise sources. In the present study, it is
further complicated because we only solve for the
slow variation of the external dipole and do not ac-
count for most of the rapidly changing external
field, as is the case for most recent satellite field
models. Hence, our error estimates are somewhat
larger than those discussed for example in the
CHAOS and GRIMM series of models. In all cases,
we used an error budget varying with geomagnetic
latitude taking its maximum value within 25∘ of the
geomagnetic pole and its minimum value within
45∘ of the geomagnetic equator, with a cosine taper
for the intervening 20∘. For POGO (respectively
Magsat) scalar data, error estimates ranged
between 10 and 15 nT (resepctively 8 and 18 nT).
For Magsat northward, eastward, and downward
vector components, the range is 11 to 18 nT, 9 to
19 nT, and 9 to 15 nT, respectively. For �rsted
(respectively CHAMP), error estimates for the sca-
lar data and the isotropic component of the vector
data were allocated in the range 5.5 to 8.5 nT
(respectively 4 to 10 nT). The pointing error
budget does not vary with latitude and is imple-
mented as described in Finlay et al. [2012].

2.2. Forward Modeling of the Geomagnetic
(Potential) Field

[16] We separate between internal and external field
contributions: B=Bi+Be. Both sources are
described via potentials:Bi,e=�rVi,e. The potential

Vi r; θ;fð Þ ¼ a
XNi

n¼1

a

r

� �nþ1Xn
m¼0

gmn cos mfþ hmn sin mf
� �

Pnm cosθð Þ

(2)

accounts for the internal field, where a= 6371.2 km
is the reference spherical radius of Earth’s surface
and Pnm are associated Legendre functions of
degree n and order m. Only coefficients of the inter-
nal field gmn ; h

m
n

� �
with degrees n ≤Ni= 14 enter our

inverse problem. Coefficients of higher degrees,
which also contribute to the magnetic model that
will eventually be used to constrain the core
dynamics, are controlled entirely by our prior
knowledge (see sections 2.3 and 2.4).

[17] The potential Ve is designed to account primarily
for time changes of the large-scale external field but
also includes the associated secondary field induced
in the core, assuming an electrically insulating
mantle:

Ve r; θ;fð Þ ¼ a
XNe

n¼1

r

a

� �n
1þ n

nþ 1

c

r

� �2nþ1
� 	

Xn
m¼0

qmn cos mfþ smn sin mf
� �

Pnm cosθð Þ:

(3)

It is restricted to the dipole component (i.e., Ne= 1)
that we suppose is aligned with the internal dipole
field. In geomagnetic coordinates, this can be writ-
ten as

q01; q
1
1; s

1
1

� � ¼ eq01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g01

2 þ g11
2 þ h11

2
q g01 ; g

1
1 ; h

1
1

� �
: (4)

Given the internal field, the external field is then
represented by a single unknown scalar eq01 . We
performed tests with a more complex external field
with Ne= 3 and found this does not significantly
change the results obtained by assuming Ne= 1. Note
that we do not account for the nonlinearity that
appears in equation (4): at each iteration, the
direction of the geomagnetic coordinate system is
considered a priori.

[18] At inter-annual periods, electrical currents
induced in the core by the large length-scale external
field contribute to the observed magnetic field
[Velímský and Finlay, 2011]. Approximating the
core as a perfectly conducting sphere, the radial
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component of the primary external field is canceled at
the core-mantle boundary (CMB, r= c=3485.0 km)
by its induced counterpart, which is accounted for in
the second term of Ve in equation (3). Note that
accounting for this simple-induced field does not
introduce any additional unknowns since it is com-
pletely determined by eq01.
[19] The field model coefficients gmn tð Þ , hmn tð Þ , andeq01 tð Þ are expanded in time onto a basis of P = 90
B-splines of order 4, with knots regularly spaced
every 2 years over [ts,te] = [1838,2012] (we add one
extra knot at both the start and endpoints in an effort
to mitigate edges effects). This results in an unknown
vector b of size (Ni(Ni+2) + 1)P=20, 250. The choice
of a 2 year knot spacing is governed by the studied
time interval. Only observatory annual means allow
one to constrain the SV as far back as 1840. As a
consequence, the knot spacing must be larger than 1
year, in order to prevent unconstrained inter-annual
field oscillations, which would not be penalized in
our scheme as they would not alter the fit to annual
differences. The effect of such a value for the knot
spacing, formally described in Appendix 5, is dis-
cussed in section 2.5, and a possible future strategy
to get rid of splines entirely is proposed in section 4.2.

[20] We can write the forward problem in matrix
form as

d ¼ H bð Þ þ e; (5)

where d is the data vector and e the data error vector,
whose statistical properties are characterized by the
covariance matrix Ce =E(ee

T). The vector b contains
the coefficients for the magnetic field model; it is
characterized by an estimate of the a priori mean bb

(or background, in practice taken to be zero for all
internal coefficients) and an a priori covariance
matrix Cb =E(bb

T) describing the expected perturba-
tion about the background. Our specification of the a
priori covariances is described in section 2.4, but it is
worth emphasizing here that our a priori covariance
matrix is no longer of banded form (as was the case
in earlier studies using splines and involving the
simple regularization of time derivatives). H is the
forward operator describing the internal, external,
and induced signals on inter-annual and longer peri-
ods according to the model above.

2.3. Bayesian Solution of the Inverse Problem
and Production of an Ensemble From the A
Posteriori Covariance Matrix

[21] The Bayesian estimate for the solution to the
forward problem (5) with maximum posterior

probability, given the observations and the informa-
tion on the random variables e and b carried by Ce

and Cb, is found by minimizing the following cost
function [see, e.g., Sivia and Skilling, 2006]

J bð Þ ¼ d� H bð Þ½ �TC�1
e d� H bð Þ½ �

þ b� bb
� �T

C�1
b b� bb
� �

(6)

We estimate the posterior mean model �b as the final
converged iteration of a Newton-type algorithm,

biþ1 ¼ bi þ Ciþ1 rH bið ÞTC�1
e d� H bið Þð Þ � C�1

b bi � bb
� �h i

(7)

where the a posteriori covariance matrix

Ciþ1 ¼ rH bið ÞTC�1
e rH bið Þ þ C�1

b

h i�1
(8)

involves the inverse of the Hessian matrix and
rH½ �kj ¼ @Hk bð Þ

@bj
. By generating samples from the

posterior probability density function, defined by �b
and the final iteration C of the covariance matrix
(8), we can provide a useful ensemble representation
of the full Bayesian solution to the inverse problem.
This can be efficiently performed via the Cholesky
decomposition C=UTU by the following steps:

• Let eb be a Gaussian random variable vector with
zero mean and unit variance;

• Then a model b ¼ �bþ UTeb will satisfy (in a sta-
tistical sense) the available geomagnetic data
given their specified error estimates;

• When there is no constraint from the observa-
tions, the ensemble of field models will have sta-
tistics specified by the a priori covariance matrix
Cb.

2.4. Stochastic Process A Priori Covariances
for the Magnetic Field Model Coefficients

[22] We assume that the Gauss coefficients result
from a stationary process, that they have zero mean,
that the covariance between different coefficients is
zero, and that the auto-covariance sequences for all
coefficients with same degree n are identical [Hulot
and Le Mouël, 1994]. We write

C’ tð Þ ¼ E ’ tð Þ’ t þ tð Þ½ � ¼ s2’r tð Þ (9)

the covariance function of a realization ’(t) of such
a process, with the variance s2’ ¼ C’ 0ð Þ and the
correlation function r(t) =C’(t)/C’(0).

[23] The stationarity hypothesis implies that the auto-
covariance sequence is positive semi-definite
[Percival and Walden, 1993, p. 37]. This rules out
auto-covariance functions of the form put forward
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by McLeod [1996]—see his equation (17a) with
Bn< 0. On the other hand, we show in Appendix
B that the often-used squared-exponential covari-
ance function [Hongre et al., 1998; Bouligand
et al., 2005] corresponds to time series much
smoother than the actual time series of geomagnetic
field coefficients. More flexible is the family of the
Matérn correlation functions [e.g., Stein, 1999;
Rasmussen and Williams, 2006] that are defined as

r tð Þ ¼ 21�n

Γ nð Þ
ffiffiffiffiffi
2n

p tj j
tc

� 	n
Kn

ffiffiffiffiffi
2n

p tj j
tc

 �
; (10)

where Kn is the modified Bessel functions of the sec-
ond kind with order ng and tc is a typical correlation
time that is discussed further below. Such correlation
functions for the particular cases n= 1/2 (Laplace
function) and 3/2 (cf. equation (13) below) are
displayed in Figure 1, superimposed with the
squared-exponential function defined in equation
(B2), all functions using the same characteristic time
tc. The high frequency behavior of the spectral den-
sity S(f) for a random process whose correlation func-
tion is defined by (10) is independent of tc and such
that S(f)� | f |� 2n� 1 as fj j≫t�1

c . Matérn correlation
functions (10) define processes that are k-times dif-
ferentiable in the mean-square sense if and only if k
n. For example, from (B1) and the Taylor
expansion of (10) at the origin, we obtain for n> 1

C �’ 0ð Þ2
C’ 0ð Þ2 ¼

n
n� 1ð Þt2c

: (11)

where the dot superscript denotes differentiation with
respect to time. For n!1, the Matérn correlation

function tends to the smooth squared-exponential co-
variance function defined in equation (B2).

[24] The Matérn correlation functions (10) were first
used in turbulence theory because the corresponding
spectral density S(f) asymptotically behaves as a
power function of the frequency [Yaglom, 1987,
vol. 1, p. 139 and vol. 2, p. 50]. Indeed, Von Kármán
[1948] found it appropriate, with n =1/3, to charac-
terize the correlation of the velocity components
observed at two points as a function of their distance,
which is a quantity accessible to measurement.
The fact that (10), with n= 1/3, defines a random
process that is not differentiable was not seen as a
problem since the correlation of velocity components
measured at an asymptotically close pair of points
is not a measurable quantity. Furthermore, this
description holds only for particles whose separation
is at inertial scales, i.e., greater than the viscous scale.
Such a description is thus valid for a finite range of
wave numbers.

[25] The special case n= 3/2 corresponds to a
continuous time autoregressive (AR) process of
order 2 that obeys the stochastic differential
equation

d2’

dt2
� 3

t2c
’ ¼ e tð Þ : (12)

The white Gaussian random forcing term e(t) is a sta-
tionary process with zero mean and Dirac auto-
covariance function. It is thus only in the sense of
distributions that realizations of the stochastic
processes e and d2’/dt2 are defined [see Jazwinski,
1970, chap. 3]. Realizations of d’/dt are then contin-
uous but not differentiable. For this special case, the
expression (10) can be transformed into

r tð Þ ¼ 1þ
ffiffiffi
3

p tj j
tc

� 	
exp �

ffiffiffi
3

p tj j
tc

 �
: (13)

Modeling the time evolution of magnetic field coef-
ficients as a stochastic process defined by (12) is at-
tractive as it does not preclude slope changes in the
SV, or “jerks”. Also, the asymptotic behavior of its
associated spectral density, S(f )/ |f |� 4, fits well
with the spectrum for the geomagnetic observatory
series in the range 5� 102 years [Currie, 1968; De
Santis et al., 2003]. Considering that the large
length-scale magnetic field can be deduced from
ground geomagnetic series, it seems reasonable to
construct prior autocorrelation functions for the
low spherical harmonic coefficients consistent with
the observatory time series. For the sake of parsi-
mony, we consider a similar form of prior to also
describe the statistics at higher degrees.
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Figure 1. Examples of correlation functions mentioned
in this study: squared-exponential in black,Matérn-AR(2)
in red, and Matérn-AR(1) (or Laplace) in blue.
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[26] In our a priori covariance function, we thus
chose to fix n=3/2 in the Matérn function (10) and
to work with AR(2) stochastic processes. For each
coefficient, we must assign a variances2g and a corre-
lation time tc. These are inferred from the analysis of
the MF and SV from the satellite model gufm-sat-E3
[Finlay et al., 2012], although other satellite models
give very similar estimates. For all coefficients of
degree n, the a priori variance is defined from the
coefficients of the satellite field model estimated
in the middle of the satellite decade (to minimize
end-effects):

s2g nð Þ ¼ 1

2nþ 1

Xn
m¼0

gmn tð Þ2 þ hmn tð Þ2
h i

t¼2005:0
: (14)

Using the definition [Hulot and Le Mouël, 1994]

tg nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2g nð Þ=s2_g nð Þ

q
; (15)

with s2_g nð Þ defined as in equation (14), we calcu-
late for all degrees the correlation time tc(n)
directly from the expression (11) together with
equation (9):

tc nð Þ ¼
ffiffiffi
3

p
tg nð Þ : (16)

[27] We show in Figure 2 an example of synthetic
ground-based SV observatory series obtained from
random Gauss coefficients with variances, correla-
tion function, and correlation times given by equa-
tions (14), (13), and (16), respectively. A field model
satisfying such Matérn-AR(2) prior properties is
found to produce SV features visually very similar
to those recorded in geomagnetic observatories at
inter-annual and decadal timescales. Interestingly,
even though the second time derivative is undefined
everywhere, major changes in the magnetic field
trend do not occur all the time. Such processes also
possess a high-frequency content at periods below 1
year (blue curve), which is filtered out when looking
at the usual annual differences of monthly values
(green curve).

[28] Finally, we must estimate an a priori variance
and background for the external coefficienteq01, which
is assumed to be uncorrelated with the internal field
(excluding that part induced by external variations
explicitly described above). To do this, we choose
to use an analysis of the past decade when the inter-
nal/external separation is more robust, even though
it covers only a single solar cycle. A spline fit to the
CHAOS-4 [Olsen et al., 2010] quiet-time eq01 gives
an RMS of about 40 nT2 and a time average

close to 20 nT. This is in agreement with the findings
of Lühr and Maus [2010], who obtained a static
component about 8 nT in the Geocentric-Solar-
Magnetospheric (GSM) frame plus an additional
component of between 2 and 17 nT in the Solar-
Magnetic (SM) frame over the period 2000–2010.
It also compares well with an independent estimate
by Langel and Estes [1985] in 1980 derived from
Magsat data. Our external dipole prior is then a
20 nT background plus a 40 nT2 covariance, with
no time correlation (the temporal smoothness of eq01
is governed, outside the data, by and the knot spacing
and order of the splines).

2.5. On the Significance of Secular
Variation Timescales

[29] In this section, we report synthetic tests investi-
gating the ability of recent time-dependent field
models covering the satellite era [Olsen et al., 2010;
Lesur et al., 2010; Finlay et al., 2012] to describe
the temporal regularity of the geomagnetic field.
We pay special attention to the use of B-splines and
the impact of the temporal regularization. These tests
have important implications for recent discussions of
the timescales associated with changes in the secular
variation [Holme et al., 2011; Christensen et al.,
2012].

[30] Historical field models have typically used cubic
(i.e., order 4) B-splines as temporal basis functions
[Jackson and Finlay, 2007]. Using cubic B-splines
to smooth a time series ’(t) over an interval [t0,t1]

leads one to minimize

Z t1

t0

@2’=@t2
�� ��2dt [see de

Boor, 2001]. But this property was undesirable when
workers became interested in @ 2’/@ t2. As a result,
the most recent models covering the satellite era in-
corporate B-splines of order 6 and instead minimizeZ t1

t0

@3’=@t3
�� ��2dt (plus an extra constraint on the

SA at endpoints). We investigate models of this type
in our tests.

[31] The input for the tests was constructed as
follows. We generated synthetic time series of inter-
nal field coefficients (up to degree 14) over a 10 year
period, such that they satisfy the statistical properties
of the AR(2) process defined by the equations (13)
and (16). All coefficients at a given epoch are uncor-
related (i.e., there is no spatial correlation). These
series were then evaluated to create synthetic obser-
vations of the vertical Z component of the field at sat-
ellite altitude (350 km) in each of 1280 cells of a
global spherical triangle tessellation, giving an
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approximately equal area distribution. Synthetic data
were generated in each cell every 0.2 years.

[32] Using these (noise-free) observations, we then
inverted for an internal field model expanded up to
spherical harmonic degree 14 and parameterized in
time using sixth-order B-splines. The third time
derivative is penalized, and the SA is forced to zero
at endpoints, in order to mimic the regularization
applied in recent field models. A series of models
were constructed using different levels of temporal
regularization (i.e., different choices of damping
parameter). The influence of the knot spacing
was also investigated. For each model setup, we
separately inverted 50 synthetic datasets, each
constructed to have the same statistics.

[33] Since the B-splines that we use in this test have
order larger than 4, the resulting model prediction
time series are C2 continuous. Both their SV and
SA spectra are thus well-defined quantities, as is
the timescale for changes in the secular variation

t _g nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2_g nð Þ=s2€g nð Þ

q
; (17)

with s2€g nð Þ defined similarly to equation (14). We
find the input value of tg is well recovered in the
field models derived from our synthetic data. This
indicates that use of sixth-order B-splines, third
time derivative regularization and second time
derivative end penalties does not much affect tg,
provided this quantity is significantly larger than
the knot spacing. On the other hand, the inferred
values of t _g are found to depend heavily on the
modeling assumptions, in particular on the choice
of damping parameter and the knot spacing.

[34] Figure 3a displays the results for the inferred
timescales t _g, calculated in the middle of the 10 year
model time span and averaging over the 50 synthetic
input datasets. With no damping, as we increase the
knot spacing from 0.5 to 2 years, t _g is shifted toward
higher values, though still lower than that found in
recent satellite field models. t _g is however found to
markedly increase at all degrees as the damping
parameter (measuring the weight given to the third
time derivative temporal regularization) is increased
from zero. As the damping parameter increases, the
inferred t _g becomes very large at high degree. This
is because penalizing the third time derivative tends
to make the SA constant in time and the applied
end penalties then force the SA to be small
throughout, especially at high degree, as discussed
in Finlay et al. [2012]. This is illustrated in
Figure 3b which presents the spatial power spectra
of the SA at the CMB,

SSA nð Þ ¼ nþ 1ð Þ 2nþ 1ð Þ a

c

� �2nþ4
s2€g nð Þ ; (18)

calculated in the middle of the 10 years time span.
In practice, the temporal damping parameter is often
chosen in order to control unphysical model oscilla-
tions associated with unmodeled external fields and
undesirable variations in the data distribution; these
ingredients are absent in our synthetic tests; hence,
we are able to construct models with no applied
regularization and quantify the impact of gradually
increasing the damping parameter on t _g.

[35] The SA power for our unregularized synthetic
models (Figure 3b) is significantly higher than that
possessed by recent satellite-era field models.
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Figure 2. Differentiated observatory series (in nT/year) generated from synthetic spherical harmonic coefficients
defined with a Matérn-AR(2) prior (top: over one century; bottom: zoom over one decade): annual differences of annual
means (black crosses), annual differences of monthly means (green), and monthly differences of monthly means (blue).
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However, most of this large SA power resides at
high frequencies that cannot be captured by such
models due to the strong temporal regularization
applied to handle the high frequency, unmodeled
signals of external origin. The input power at high
frequency in the AR(2) series is strongly filtered
by taking annual differences of monthlymeans. Then
SV changes very similar to that usually observed
are obtained—see the example time series pre-
sented in Figure 2. One conclusion from these tests
is that existing satellite-era field models, with their
implicit temporal regularization and knot spacing,
do not actually capture the instantaneous SA.
Rather they report a weighted time-integrated SA
(which is a well-defined property of an AR(2) pro-
cess) but with the weighting kernel varying both
with spherical harmonic degree and with the cho-
sen damping parameter.

[36] To summarize, these tests suggest that recently
inferred values for t _g of approximately 10 years
may be affected by the filtering inherent in the reg-
ularized spline modeling approach (see Silverman
[1984], for a discussion of the relevant smoothing
kernels). Regularized, spline-based, field modeling
unavoidably produces a filtered picture of the true
core state that depends on (i) the continuity proper-
ties of the basis functions, (ii) the number of func-
tions employed (here the knot spacing), (iii) possible
conditions applied at endpoints, and (iv) the level of
temporal regularization applied. Furthermore, if an
AR(2) process is an appropriate description (i.e., if a
spectral slope of �4 continues to hold for the entire
frequency band under consideration), then the instan-
taneous SA is not a well-defined quantity. As a con-
sequence, we urge caution when quantitatively

interpreting the presently available values for in-
stantaneous t _g directly in terms of core processes
[e.g., Holme et al., 2011; Christensen et al.,
2012]. In section 4.2, we discuss how these diffi-
culties might be better handled in the future, by
adopting a strategy whereby model time depen-
dence is directly controlled by the time correlation
statistics of the a priori model, and the B-spline
basis is avoided altogether.

3. Results andDiscussion of theCOV-OBS
Family of Geomagnetic Field Models

[37] In this section, we present the main features of
our COV-OBS family of magnetic field models. We
begin in section 3.1 by presenting evidence for in-
ter-annual changes originating from the core in the
secular variation recorded at ground-based observa-
tories. Next, we describe in section 3.2 inter-annual
to decadal variations in the external dipole field. Fi-
nally, in section 3.3, we present our main result, the
a posteriori model error covariance matrix associ-
ated with the time series of magnetic field
coefficients.

3.1. Evidence for Inter-Annual Secular
Variation Changes

[38] We compare in this section COV-OBS and
previous geomagnetic field models, all of which are
regularized such that small length scales and fast time
changes are penalized. The comparison is however
restricted by the lack of covariance information for
the previous models. A detailed description of the
models we compare to (or earlier versions of them)

Figure 3. Left panel: timescales tg (top curves, all being almost superimposed) and t _g (bottom curves) as a function
of the spherical harmonic degree n, as defined in equations (15) and (17). Right panel: SA spatial power spectra as
defined in equation (18), for field models projected onto splines with various knot spacing Δt, and calculated for var-
ious damping parameters lT from synthetic data obtained from random AR(2) spherical harmonic coefficients series.
On both plots, the values for the GRIMM-2 model in 2005 are shown for reference (black line with circles).
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can be found in Gillet et al. [2010]; here we only
briefly list their main features:

• gufm1 [Jackson et al., 2000] is a field model span-
ning 1590–1990 derived from historical records,
observatory annual means, and satellite observa-
tions. These include some of the dataset we use
here (cf. section 2.1). The data constraint on the
SV largely comes from first differences of observa-
tory annual means. The model is regularized at the
CMB, in time penalizing second time derivatives,
and in space using the Ohmic heating norm.

• CM-4 [Sabaka et al., 2004] is a comprehensive
model covering 1960–2002, in which the several
sources from the magnetosphere, ionosphere,
crust, and core are co-estimated. The second time
derivative and the surface Laplacian of the SV
are penalized at the CMB.

• C3FM-2 [Wardinski and Lesur, 2012] is a field
model that has been co-estimated together with
a toroidal flowmodel from first differences of ob-
servatory monthly means spanning 1957–2008,
using the frozen-flux induction equation as a weak
constraint [Lesur et al., 2010]. This process brings
in valuable spatial covariances, but it still relies
on damping parameters that control the core

surface velocity and the flow acceleration, which
indirectly penalize the time evolution (SV and
SA) of the magnetic field model.

• GRIMM-2 [Lesur et al., 2010] is a satellite field
model covering 2001.0–2009.5, built with alterna-
tive data selection criteria compared to that of the
CHAOS-4 and gufm-sat models and thus distinct
from the present study. The third time derivative
is penalized at the CMB, and the SA forced to be
zero at both endpoints.

[39] In Figure 4, we present the observed SV changes
at the Kakioka and Sitka ground magnetic observato-
ries, together with the predictions from our ensemble
of field models. Interestingly, an important part of
what would sometimes be considered as a scatter in
the data is well explained by also including a one
parameter external field model. The external field is
discussed in more details in section 3.2. Some long-
period variations of the external field that we have
been unable to recover may have been mapped into
variations of the internal field. The remaining misfit
between our models and the observatory annual
mean data is likely partly due to non-core signal
(besides the dipolar external/induced fields), for
example, due to Sq current systems that have not been
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averaged out [Gavoret et al., 1986; Yukatake and
Cain, 1987; Schmucker, 1991].

[40] The dispersion in the ensemble of predictions
increases toward earlier times due to fewer or less
reliable data (see all components at Kakioka and
especially Z at Sitka): the a priori information then
controls the statistics of the field models. The dis-
persion can also differ greatly between components
(see Y and Z at Sitka). All field models nevertheless
adequately fit the data in a statistical sense: each is
a possible description of the magnetic field varia-
tions, given the data uncertainties and the a priori
model statistics we have specified. Note that since
we used a constant error estimate per observatory
series (see section 2.1), the data quality has been
under-estimated toward the most recent epochs,
for which the dispersion in the ensemble of model
predictions and model parameters might thus be
over-estimated. In future efforts, it may be worth-
while to account for time-dependent errors for
observatory measurements, especially for series
starting before 1960 and the use of proton magnet-
ometers. We now leave the world of observations
and shift attention to time changes of the Gauss
coefficients.

[41] In Figure 5, we compare the evolution of a
number of SV coefficients@gmn =@t for our ensemble
of field models with the previously published models
listed above. As expected, COV-OBS realizations
display sharper changes in some of the SV coefficients
compared to regularized field models, especially at
smaller length scales. Indeed, heavily penalizing
rapid variations (especially for high degrees) in
regularized reconstructions has two consequences.
First, the temporal evolution appears too smooth
and time sequences of some coefficients lie outside
the ensemble range even when data are of relatively
good quality—see the comparison with time changes
of the gufm1 model coefficients, for instance, g510
around 1975, g55 in 1950 and before 1900, g

1
2 around

1935, 1880, etc. Second, in order to correctly fit the
data, regularized models sometimes show more time
variability in some low degree coefficients compared
to the average COV-OBS model. This is observed
for the axial dipole trend of gufm1 before 1930,
or that of CM-4 and C3FM-2 around 1980, al-
though in the case of CM-4, this could also be
due to the differences in the treatment of the exter-
nal field and for C3FM-2 to the alternative tech-
nique used for allocating data errors [see Wardinski
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and Holme, 2011]. The use of different data sets may
also explain part of the differences observed between
the latter two models and the COV-OBS realizations.

[42] In line with the dispersion in model predictions
at ground-based observatories, the dispersion of the
ensemble of coefficients increases going back in time
when the data constraint becomes weaker. Before
1960 and the advent of proton magnetometers, the
dispersion in the ensemble of degree 10 spherical
harmonic coefficients is much larger than the typical
value for the mean model, which means such coeffi-
cients are not resolved. For the last 50 years however,
the dispersion decreases, and we find that part of
the SV changes might be retrieved even at such
degrees (see section 3.3). Although the comparison
of the COV-OBS model with satellite field models
at large to moderate length scales is rather good
(notwithstanding the different ways of processing
the data and different external field models), the
SV at degree 10 is certainly much smoother in
regularized field models. This may indicate that
the SV changes above degree 10 are not adequately
resolved in such models.

[43] Given the extra temporal roughness allowed by
our stochastic approach, one could be worried

about external field leaking into our internal model.
This concern is actually at the origin of the co-
estimation of the external dipole. However, we find
no evidence (see Figure 5) for non-core signals
leaking into our model more than into other models.
A regularized model like gufm1 actually shows
oscillations in the axial dipole that we do not re-
quire in the COV-OBS model. Given the fact those
two models are built from very similar datasets, it
suggests the extra roughness made possible by our
stochastic approach does not lead to more leakage
of the external field into the internal field than is
the case with classical regularization methods.
Also over the interval 2000–2010, the COV-OBS
model does not display any more fluctuations
than other, traditionally regularized, models dedi-
cated to the satellite era, even though we use
satellite data that include the external signal. Note
that during this period, we consider larger data error
estimates than those normally inferred from
dedicated satellite field models (see section 2.1),
which increases the posterior uncertainty on
model coefficients. We emphasize that one should
never consider the mean model alone, but use it
together with the posterior covariance matrix
(or the statistics of the ensemble of models), that

Figure 6. Radial magnetic field Br at the CMB in 1920, for several realization of the COV-OBS model, truncated at
n = 14. The color scale ranges from �1mT (dark blue) to +1mT (dark red), with contours every 0.1mT.
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measure how much one should trust the recovered
coefficients changes.

[44] In Figure 6, we display maps of the core surface
radial field in 1920, for several realizations from our
ensemble of field models, all truncated at n= 14.
Each of these maps represents one possible realiza-
tion of the state of the field (up to degree 14) at that
epoch. All show different numbers and shapes of
the null-flux curves defined by Br= 0. We also pres-
ent (see Figure 7) the standard deviation of Br at the
core surface in 1920 for the ensemble of models trun-
cated at degrees 10 and 12. It is found that the data
constraint is tighter in the northern hemisphere and
below the continents. This conclusion, however,
holds only for the large-scale magnetic field. There
is not such a thing as a pointwise estimate of the un-
certainty for the radial magnetic field as the variance
of the geomagnetic coefficients strongly increases
with the truncation degree (it doubles when changing
the truncation from n= 10 to 12). As a consequence,
we conclude that using the Br=0 curves to attest the
validity (or not) of the frozen-flux approximation,
which has been the focus of numerous papers, is a
difficult exercise, even in the ensemble framework
we have adopted in this study.

3.2. Inter-annual to Decadal Changes in the
Large-Scale External Field

[45] As part of our scheme, we co-estimate time
variations of an external axial dipole arranged in
dipole coordinates. The result for this component is
presented in Figure 8, again using an ensemble of

50 stochastic realizations, shown together with the
mean model. Our results agree well with previous
estimates of this component of the external field
derived using satellite vector data, in particular the
1980.0 estimate of Langel and Estes [1985] derived
from Magsat data and the estimate from the
CHAOS-4 model of Olsen et al. [2010] that spans
the past decade (the CHAOS-4 output is shown only
between 2000 and 2010, considering only quiet times
and taking annual means to aid the comparison).
Figure 8 also presents comparisons with two previous
time-dependent models of the external dipole, on inter-
annual and longer timescales, spanning themid to late
twentieth century by Sabaka et al. [1997] (partly
constrained to be close to the aa index, especially
before 1940) and by McLeod [1996], respectively.
Our model contains features from both the previous
models. It shows peaks at approximately the same
times as the model of Sabaka et al. [1997] but
without the trend of increasingly maxima between
1920 and 1960. Similar to the model by McLeod
[1996], we find shorter period variations with
lower amplitude between 1960 and 1970.

[46] The dispersion in our ensemble of model realiza-
tions decreases markedly toward the present day as
the geographical distribution and quality of observa-
tions improve. In the earliest part of the model, the
variance in the ensemble is comparable with the
40 nT2 assumed in our a priori variance. Furthermore,
it seems we have little sensitivity to the absolute level
of eq01 tð Þ early in the model, with the mean remaining
close to the assumed a priori level of 20 nT. None-
theless, there is some evidence for coherent decadal

Figure 7. Standard deviation, in an ensemble of 100 COV-OBS realizations, of the radial magnetic field at the CMB
in 1920, for models truncated at spherical harmonic degree 10 (top) and 12 (bottom)—contours are every 5 nT on both
plots, but note the change in scale.
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variations in the early part of the model, and
modulations in the amplitude of these oscillations
may provide information on long term changes
in solar activity. Our inability to determine the
long-term absolute level of eq01 tð Þ means that the
internal and external parts of the dipole are
unfortunately not completely separated. Analysis of
the posterior covariance matrix shows significant
correlations between the posterior errors on eq01 and
that in some internal Gauss coefficients. For instance,
we find posterior error correlations up to �0.75
(respectively 0.25) with g01 (respectively h11) at the
most recent epoch, when the data error amplitude
is the smallest. These correlations gradually decrease
toward 1900: as the data constraint becomes weaker,
the posterior covariance matrix defined in equation
(8) becomes more and more influenced by the prior
information, which is empty of correlation betweeneq01 and the internal field coefficients.

[47] The amplitude of the quiet-time external dipole
is known to depend on the solar cycle. Lühr and
Maus [2010] have recently found that the component
of the external dipole in GSM coordinates changed
little in the most recent solar cycle (amplitude
approximately 8.5 nT) while that in SM coordinates
varied between 2 nT and 17 nT. This is consistent
with the variations between 9 nT and 26 nT that we
infer in the past 10 years. Given this dependence on

solar cycle, it is also of interest to compare our
results with indicators of both solar and geomag-
netic activity. Figure 8 therefore also displays
annual means of the international sunspot number,
annual means of the Ap index (a range index that
relies on 13 observatories from mid-latitudes) and
annual means of the aa index (a longer running
range index often showing similar features as Ap
but relying on just two observatories), and annual
means of the Dst index.

[48] The COV-OBS external dipole model clearly
contains the signature of the approximately 11 year
variation in solar activity but shows additional peaks
that are also evident in the Ap and aa indices (and to
some extent inDst), especially in the declining phase
of the solar cycle. The occurrence of two peaks in
geomagnetic activity per solar cycle is a well-known
phenomenon [Bartels, 1963; Yukatake and Cain,
1979; Siebert and Meyer, 1996]. The first peak is
related to the maximum in solar activity, observed
as the maximum of the sunspot number. This occurs
when there is a maximum in the amount of magnetic
flux generated by the solar dynamo that subsequently
emerges through the solar surface giving rise to a
maximum in the magnitude of the interplanetary
magnetic field. The second peak is thought to be
linked to the appearance of recurrent coronal holes
in the descending phase of the solar cycle. These
cause enhanced solar wind speeds and are associated
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with increased geomagnetic sub-storm activity
causing enhanced field aligned currents and
electrojet activity. The interplay between these dif-
ferent sources may be a reason for the inter-annual
variability in observatory monthly means recently
noted by Wardinski and Holme [2011]. Note that
since our model relies on observatory annual means
(averaged over all geomagnetic conditions) from all
latitudes, oureq01 tð Þ series cannot simply be interpreted
as an indicator of ring current activity; in particular,
like Ap, it is also affected by sub-storm activity.

[49] The main advantages of our approach compared
to previous models of long-term variations in the
external dipole are (i) that we consistently co-estimate
the amplitude of external field variations and secular
variation, rather than relying on baselines given by
an independent core field model and (ii) that we do
not rely on other indices as a constraint, in contrast,
for example, to the preferred model of Sabaka et al.
[1997] that implicitly involved the aa index. Consid-
eration of an ensemble of models, a central aspect of
our approach, is also found to be convenient for visu-
alizing the range of possible solutions for the external
dipole that are compatible with the observations.

3.3. The Secular Variation Error
Covariance Matrix, as Required for Studies
of Core Dynamics

[50] In order to use the present results to study the state
of the core, it is necessary to concatenate the COV-
OBS model (mean and covariance) for n≤14 with a
statistical description of the small-scale magnetic field
for n≥15 that cannot presently be directly constrained

by geomagnetic measurements. Using the a priori
covariance matrix, as presented in section 2.4, to deter-
mine the statistics of n≥15 coefficients will ensure that
the treatment of coefficients with degrees respectively
smaller and larger than 14 is consistent.

[51] Models of the SV are used as input “data”
when inverting for the core state. We show in
Figure 9, for several epochs, the ensemble aver-
age of the SV spatial spectra at the CMB (NB:
this is different from the spectra of the ensemble
average),

SSV n; tð Þ ¼ nþ 1ð Þ a

c

� �2nþ4Xn
m¼0

E
@gmn
@t

 �2

þ @hmn
@t

 �2
" #

: (19)

superimposed with the SV spatial spectra for the
standard deviation in the ensemble of models

SdSV n; tð Þ ¼ nþ 1ð Þ a

c

� �2nþ4Xn
m¼0

E
@gmn
@t

� @�gm
n

@t

 �2

þ @hmn
@t

� @�h
m
n

@t

 �2
" #

:

(20)

We can see that SSV does not change much through-
out the full observatory era: our ensemble of SV
models shows rather stationary spectral properties,
contrary to previous regularized models [see Gillet
et al., 2010]. However, there is a clear decrease of
SdSV with time, and Figure 9 illustrates how confi-
dence in our SV models increases as observatory
data become more numerous and of better consis-
tency, including the advent of scalar proton mag-
netometers around 1960. The quality gap on the
introduction of vector satellite data is also obvious.
For instance, we can see from Figure 9 that for the
recent epochs, the SV power at spherical harmonic
degree 10 for the dispersion in the ensemble of

100

101

102

103

104

105

106

107

108

0 2 4 6 8 10 12 14

S
V

 s
pe

ct
ru

m
 (

r=
c)

harm. degree

1865
1900
1935
1970
2005

Figure 9. SV spatial power spectra SSV(n) (solid lines) and SdSV(n) (lines with circles) at the CMB, in (nT/yr)2, as
defined by equations (19) and (20), epochs between 1865 to 2005 every 35 years.
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realizations is about 10% of the power for the en-
semble average of realizations. This suggests about
30% errors on the SV, compared to about 100%
errors in degree 10 coefficients before 1960. We also
note from Figure 9 that the SV is completely gov-
erned by the random process at spherical harmonic
degree 14, which suggests there is no need to in-
crease Ni further in our explicit modeling of the SV.

[52] Variances do not however contain all the
required information, since we find that some non-
diagonal elements of the a posteriori covariance
matrix are significant. The cross-covariances
between SV coefficients,

cmm
0

nn0 t; t
0

� �
¼ E

@gmn
@t

tð Þ � @�gmn
@t

tð Þ
 �

@gm
0

n0

@t
t
0

� �
� @�gm

0

n0

@t
t
0

� � !" #
; (21)

should not be ignored when building the SV errors
model required for reconstructing core flows. From
(21), we define the correlation between coefficients
at a given epoch,

rmm
0

nn0 tð Þ ¼ cmm
0

nn0 t; tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cmmnn tð Þcm0m0

n0 n0
tð Þ

q
; (22)

which we plot in Figure 10 for epochs 1925 (lower
triangular matrix, below diagonal) and 2005 (upper
triangular matrix, above diagonal) .

[53] We observe a particularly strong anti-correlation
(larger than 0.5 in amplitude) between errors in
@gmn =@t and @gmnþ1=@t during the first part of the
twentieth century. We attribute this correlation to
the uneven distribution of magnetic observatories,

which was exacerbated in the first half of the twenti-
eth century. It decreases going back into the
nineteenth century when more maritime data is avail-
able (not shown). The last point is also partly
explained by the fact that with poorer quality data
at earlier epochs, the error statistics tend to be domi-
nated by the prior information, in which all degrees
and orders are independent. This correlation
decreases toward the most recent epochs and disap-
pears during the satellite era. There it is replaced by
a surprising positive correlation between coefficients
@gmn =@t and @gmnþ2=@t . As only orders m≤ 2 are
concerned, we suspect here an effect of the ambiguity
between internal and large length-scale external
sources from instantaneous satellite observations,
which largely averages out when considering only
annuals means from observatories (see section 3.2).
We only weakly find the negative correlations
mentioned by Ultré-Guérard et al. [1998] between
gmn and gmnþ2 coefficients for the period 1980–2000
(see their Figure 5).

4. Perspectives Arising From Stochastic
Geomagnetic Field Modeling

4.1. Different Priors forDifferent Timescales

[54] The correlation function (see equation (13)) that
we use to embody our prior knowledge about the
time variation of the geomagnetic field coefficients
on decadal to centennial timescales corresponds to a
power spectrum S( f )� | f |� 4. On longer time-
scales, we lack detailed magnetic records of duration
long compared to tg(n). Yet we have some knowl-
edge of the power spectrum of paleomagnetic series
[see, e.g., Panovska, 2012, Figure 4.6] and of the
Earth’s dipole moment [Constable and Johnson,
2005], which indicate S(f)� |f|� 2 in the period
range 103� 105 years. The dipole moment power
spectrum calculated from geodynamo simulations
also displays power law exponents of about
� 2 and � 4 for frequencies, respectively, below and
above 400 year�1 [Olson et al., 2012].

[55] The power law f� 4 corresponds to the asymp-
totic behavior, at high frequencies, of the AR(2)
stochastic process that obeys equation (12), whereas
the power law f� 2 corresponds to the AR(1) stochas-
tic process ’ defined by

d’

dt
þ t�1

c ’ ¼ e tð Þ : (23)

The correlation function of such a process is the
Matèrn function defined by (10) with n= 1/2, which
is the Laplace function r(t) = exp(�|t/tc|).
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[56] The apparent continuity and differentiability
properties of the observed magnetic changes
depend on the sampling frequency at which they
are recorded. The AR(2) process (12) used through-
out our study is continuous and differentiable once,
while on the other hand, the AR(1) process defined
by equation (23) is continuous but not differentia-
ble. Although the AR(2) process fits well with the
observation of “jerks” on decadal timescales, the
AR(1) process seems more appropriate for geomag-
netic time series with a coarser resolution and
appears more compatible with the observation of
archeomagnetic jerks [Gallet et al., 2003]. The
virtual axial dipole moment series obtained from both
the paleomagnetic record [Brendel et al., 2007] and
geodynamo simulations [Kuipers et al., 2009] have
also previously been interpreted as realizations of
the AR(1) process (23) with tc’ 2.104 years.

4.2. Regarding the Geomagnetic Secular
Variation as a Continuous Time
Autoregressive Process

[57] A further improvement to the modeling scheme
adopted in the present study may in the future allow
better exploitation of the information contained in
geomagnetic data. By assuming a variance and an
autocorrelation function r(t) for the Gauss coeffi-
cients, it is in fact possible to directly obtain time
sequences of field coefficients from irregularly
sampled magnetic records. Such an approach can
be illustrated by the following idealized scenario
where input data, listed in a vector x, consist of esti-
mates of a particular field coefficient at specific times
and model predictions f for this coefficient are sought
at desired times. The posterior mean solution to this
problem can be written as

f ¼ Cfx Cxx þ Cee½ ��1x (24)

where Cxx denotes the matrix of coefficient covar-
iances between the times when data are available,
Cfx is the matrix of coefficient covariances between
times when data are available and times when the
model is evaluated, and Cee is the covariance matrix
for the data errors [see Rasmussen and Williams,
2006, p. 17]. Interestingly, it is in principle possible
within this framework to account for dating uncer-
tainties, which constitutes a major source of errors
when building geomagnetic field models for the
Holocene [e.g., Korte et al., 2011].

[58] Model time dependence in this context comes
about from linear combinations of covariance
functions, each centered on a data point. Similar
approaches have been extensively studied by the

geodetic community [e.g., Moritz, 1980; Sabaka
et al., 2010], where this approach is known as
least-squares collocation. By adopting this method
for geomagnetic field modeling, one could avoid
the undesirable filtering that results from projection
onto B-splines (see Appendix A). In the present
study, which is a first step toward a more consistent
treatment based on stochastic processes, we retained
the spline basis due to its well developed apparatus
in the context of field modeling.

[59] The magnetic field models COV-OBS (mean
and posterior covariance matrix) are available at
http://www.spacecenter.dk/files/magnetic-models/
COV-OBS/

Appendix A: Covariance Matrix

for Spline Model Coefficients

[60] We describe here how we approximate the pro-
jection of true series ĝ tð Þ onto splines of order J
and knot spacing Δt (the method is given here for a
single series). Given an auto-covariance function
Cĝ tð Þ for the “true” core coefficient series ĝ tð Þ, we
build the covariance matrix for a sample of observa-
tions go ¼ ĝ t1ð Þ . . . ĝ t2ð Þ½ � every dt≪Δt. We denote
Cgo ¼ E gogoTð Þ this matrix, which is of rank K= (t2
t1)/dt+ 1. An ensemble of samples for such “true”
series can be obtained from a random variable vector
with zero mean and unit variance and the Cholesky
decomposition of Cgo (cf. end of section 2.3).

[61] The prediction vector gp= [g(t1) . . . g(t2)] of the
spline fit to go is related to a spline model g = [g1 . . .
gP] through an operator A. This is built from the
expression

g tð Þ ¼
XP
i¼1

Bi tð Þgi (A1)

and depends on the knot spacing Δt and the spline
order J (Bi are B-spline functions): gp=A(J,Δt)g.
The projection onto splines is obtained by minimiz-
ing the cost function

XK
k¼1

gok � gpk
� �2 ¼ go � Ag½ �T go � Ag½ �: (A2)

The best least-squares fit is then given by

g� ¼ ATA
� ��1

ATgo ¼ Hgo; (A3)

and the resulting covariance matrix relevant to the
spline models coefficients {gi}i = 1,P is then
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Cg ¼ E ggT
� � ¼ HCgoH

T : (A4)

Appendix B: Squared-exponential
Gaussian Correlation Functions
[62] Let us denote by C’ the auto-covariance func-
tion of a stationary, real-valued, continuous, and
twice mean-square differentiable process ’(t). We
consider the auto-covariance of the derivative _’ tð Þ
and of the second time derivative €’ tð Þ . We have
[Hulot and Le Mouël, 1994; Stein, 1999, p. 21]

C _’ tð Þ ¼ � d2C’ tð Þ
dt2

; C€’ tð Þ ¼ d4C’ tð Þ
dt4

: (B1)

[63] We now turn to the case of squared-exponential
Gaussian functions, whose correlation function is

r tð Þ ¼ C’ tð Þ
C’ 0ð Þ ¼ exp � 1

2

t
tc

 �2
" #

; (B2)

where tc is a typical correlation time for the
process. Its second and fourth derivatives are

d2r
dt2

tð Þ ¼ r tð Þ
t2c

�1þ t
tc

 �2
" #

; (B3)

d4r
dt4

tð Þ ¼ r tð Þ
t4c

3� 6
t
tc

 �2

þ t
tc

 �4
" #

: (B4)

Combining equations (B1) to (B4), we deduce the
variances for the first and second time derivatives
of a squared-exponential process ’(t),

C _’ 0ð Þ ¼ �C’ 0ð Þ d
2r
dt2

0ð Þ ¼ C’ 0ð Þ
t2c

; (B5)

C€’ 0ð Þ ¼ C’ 0ð Þ d
4r
dt4

0ð Þ ¼ 3C’ 0ð Þ
t4c

; (B6)

from which we obtain the analytical relation

C€’ 0ð Þ ¼ 3C2
_’ 0ð Þ

C’ 0ð Þ : (B7)

[64] We now apply this result to magnetic field
model coefficients:C _g n; tð Þ andC€g n; tð Þ correspond
to the auto-covariance functions for the first and
second time derivative of degree n coefficients.
Using equation (B7) and the notations of section
2.4, we obtain the condition

8n; t2_g nð Þ ¼ 1

3
t2g nð Þ; (B8)

which is inconsistent with the observation of
rapidly changing SV at low spherical harmonic
degrees (also see our interpretation of SA models
in section 2.5).

[65] In addition, Stein [1999] provides further
convincing arguments as to why the function (B2) is
not appropriate for modeling a physical process. For
instance, he remarks that knowing the corresponding
process ’(t) for � e ≤ t≤0 suffices to predict ’(t)
perfectly for 0≤ t≤1, even if e is small. It is not real-
istic to assume that knowing the Earth’s magnetic
field for a short time interval dramatically enhances
our ability to predict the future evolution of the field.
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