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Abstract We report a calculation of time-dependent quasi-geostrophic core flows for 1940–2010.
Inverting recursively for an ensemble of solutions, we evaluate the main source of uncertainties, namely,
the model errors arising from interactions between unresolved core surface motions and magnetic fields.
Temporal correlations of these uncertainties are accounted for. The covariance matrix for the flow
coefficients is also obtained recursively from the dispersion of an ensemble of solutions. Maps of the flow
at the core surface show, upon a planetary-scale gyre, time-dependent large-scale eddies at midlatitudes,
and vigorous azimuthal jets in the equatorial belt. The stationary part of the flow predominates on all the
spatial scales that we can resolve. We retrieve torsional waves that explain the length-of-day changes at
4 to 9.5 years periods. These waves may be triggered by the nonlinear interaction between the magnetic
field and subdecadal nonzonal motions within the fluid outer core. Both the zonal and the more energetic
nonzonal interannual motions were particularly intense close to the equator (below 10∘ latitude) between
1995 and 2010. We revise down the amplitude of the decade fluctuations of the planetary-scale circulation
and find that electromagnetic core-mantle coupling is not the main mechanism for angular momentum
exchanges on decadal time scales if mantle conductance is 3 × 108 S or lower.

1. Introduction
1.1. On the Resolution of Core Motions
Some consensus has emerged about the possibility of estimating core surface flows u from the secular vari-
ation (defined as the time variation of the magnetic field and henceforth abbreviated to SV) and about their
geometry for the most recent epochs. This picture is obtained by inverting for u using the radial component
of induction equation at the core surface,

𝜕Br

𝜕t
= −∇H ⋅

(
uBr

)
. (1)

(Br is the radial magnetic field, ∇H⋅ is the horizontal divergence operator). Here magnetic diffusion has been
neglected. While stressing the significance of magnetic diffusion as a source for SV, Holme and Olsen [2006]
concluded that it does not contribute a larger fraction of the high-degree SV than of the low-degree SV. A
recent study based on geodynamo modeling supports this statement [Aubert, 2014a]. Meanwhile, the SV
associated with the unresolved part of the radial magnetic field has been diagnosed as the main source of
uncertainty in single-epoch analyses of equation (1) [Eymin and Hulot, 2005; Pais and Jault, 2008; Baerenzung
et al., 2014]. Consequently, our ability to reconstruct core flows is reduced.

There is nevertheless growing evidence of the equatorial symmetry (ES) of large-scale core surface flows (but
see Whaler and Beggan [2015] for an alternative view). Gillet et al. [2011] find an increase of the percentage of
ES flow as better SV data are available. Baerenzung et al. [2014] observe from satellite SV models that without
imposing any topological constraints, more than 80% of the kinetic energy of core surface motions for the
single epoch 2005.0 is stored into their ES component [see also Wardinski et al., 2008]. Furthermore, Aubert
et al. [2013] have recently shown that the eccentric gyre proposed by Pais and Jault [2008] can also emerge
from three-dimensional geodynamo simulations as a columnar structure that persists over centuries. With this
in mind, flows have been continued within the core assuming quasi-geostrophy [Pais and Jault, 2008; Aubert,
2013]. Our knowledge of time variations of the flow is less advanced, partly because time series of satellite
data are relatively short.
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Early calculations of time-dependent flow models were largely conducted in order to estimate the time
changes of core angular momentum [e.g., Jackson, 1997; Pais and Hulot, 2000]. Domination of the steady
component of the large length-scale flow in the kinetic energy budget was suggested by Bloxham [1988].
Conversely, emergence of large-scale vortices on 50 year time scales [Amit and Olson, 2006] as well as sudden
local accelerations over a few months have been reported [Olsen and Mandea, 2008]. Interpretations of core
flow variations have, however, been hampered because most previous studies assumed that the magnetic
field entering the forward problem was perfectly known and relied on ad hoc regularizations of the core sur-
face velocity. A first attempt at the estimation of model uncertainties (on which we try to improve here) gave
confidence in the detection of fast torsional waves [Gillet et al., 2010] (see also Asari and Lesur [2011] for a
description of these waves from 2000 to 2010). Here, we attempt to go further using more consistent forms
of prior information concerning the core flow.

1.2. Deterministic Versus Stochastic Modeling
One attractive solution to prescribing prior information is to use a dynamical model, i.e., resorting to geo-
magnetic data assimilation [Fournier et al., 2010]. Relying on the dynamics of a 3-D numerical geodynamo
simulation, Fournier et al. [2011] and Aubert and Fournier [2011] made inferences about the core surface flow.
Dynamics entered their linear estimation in the form of covariances between the velocity and the magnetic
field, the interior and the surface, all at a single epoch. Aubert [2013] remarked thereafter that linear estima-
tion may have limited applicability because it works well only if the initial guess is not too far from the final
solution. Hence, he resorted to a classical frozen-flux inversion of the core surface flow and used the first and
second statistical moments obtained from geodynamo simulations to build prior information about the core
surface flow and to determine the error covariance matrix, including contributions from model uncertainties
that arise as a consequence of truncations. Along the same lines, Aubert [2014a, 2014b] has recently presented
images of core flows using statistics provided by the magnetic field model COV-OBS [Gillet et al., 2013], which is
also our source of data here. Remarkably, these calculations do not require ad hoc penalization of small-scale
flows, which is an awkward feature of classical core surface flow estimation. On the other hand, the important
issue of temporal correlations in unresolved scales is not addressed. Furthermore, the present generation of
three-dimensional geodynamo simulations probably lacks part of the short time scale variability observed in
geomagnetic series [Aubert, 2014a].

As an alternative, we propose here that a stochastic framework can be employed, following a strategy similar
to that used during the derivation of the COV-OBS magnetic field model [Gillet et al., 2013]. The radial magnetic
field at the core surface Br(t) was then considered to be a realization of a stationary stochastic (i.e., random)
process 𝜉(t). Knowledge about the spectral density of Br(t) (in the frequency interval ∼

[
10−2, 1

]
year−1) was

translated into prior information about the time correlation properties of the process 𝜉 sampled by Br via a
correlation function of the form:

𝜌(t, t′) =
(

1 +
√

3
|t − t′|
𝜏0

)
exp
(
−
√

3
|t − t′|
𝜏0

)
, (2)

where 𝜏0 is a characteristic time. The process 𝜉 with correlation function (2) is the solution of the stochastic
differential equation [Yaglom, 1962, equations (2.153) and (2.155’)]

d
d𝜉
dt

+
2
√

3
𝜏0

d𝜉 + 3
𝜏2

0

𝜉dt = d𝜁 (t) , (3)

where 𝜁 (t) is the Brownian motion (or Wiener) process. Note that equation (3) corrects the equation (12) of
Gillet et al. [2013], which is wrong and corresponds to a process that is not stationary (the mistake in writing this
equation did not affect the results presented by Gillet et al. [2013] because the expression for their correlation
function (2) was correct).

Here we incorporate preexisting knowledge about the time evolution of the core surface velocity field u via a
time correlation function and consider the time series of the flow coefficients to be realizations of a stochastic
process. Our specific choice of process for u, which is defined by the stochastic differential equation

d𝜉 + 𝜉 dt
𝜏u

= d𝜁 (t) , (4)
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follows from our selection of (3) as the process for Br , assuming the same differentiability properties for u and
𝜕Br∕𝜕t. This choice of prior stochastic process implies that the flow coefficient series are continuous, albeit
nondifferentiable (their increments during a time interval of length 𝜏 are defined but are not proportional to
𝜏 as 𝜏 is decreased within the range of time scales that we consider). Realizations of the process (4) have a
simple exponential time correlation function of the form

𝜌(t, t′) = exp
(
− |t − t′|

𝜏u

)
, (5)

where 𝜏u is the characteristic time scale for flow changes. The crucial point here is that the choice of prior for
u impacts the calculation of SV model errors arising due to unresolved small scales.

1.3. Ensemble Calculation of SV Model Errors
SV model errors arise when estimating core surface flows because the radial magnetic field that enters the
right-hand side of (1) is an uncertain parameter [Jackson, 1995]. These SV model errors should be carefully
distinguished from the SV observation errors that are provided by COV-OBS in our case. The foremost exam-
ple of this difficulty is our ignorance of the small-scale core surface magnetic field Br with harmonic degree
above 14. Workers have traditionally circumvented this problem by searching for flows u presenting rapidly
converging spectra [e.g., Hulot et al., 1992], for which the interaction with the small-scale magnetic field is arti-
ficially reduced. This strategy was tempting as long as only the very largest scales of the secular variation were
known (up to degree about 8 from ground observations). However, magnetic field models obtained from
satellite data now display resolved SV up to degree 14 [e.g., Olsen et al., 2010; Lesur et al., 2010; Finlay et al.,
2012]. This observation has made it necessary to relax the large-scale flow hypothesis, placing the SV model
error problem foremost. Eymin and Hulot [2005] stressed this point and dealt with the problem in the frame-
work of regularized single-epoch core surface flow inversions, tuning the trade-off parameter such that the
SV residuals have similar amplitude to the estimated SV modeling errors. Pais and Jault [2008] later recursively
estimated a diagonal approximation (i.e., for a single epoch) of the SV model error covariance matrix, with ele-
ments being a function of the harmonic degree only, adding this to the observation error covariance matrix
to obtain the required covariance matrix [see also Aubert, 2013]. Alternatively, Baerenzung et al. [2014] rep-
resented the subgrid processes in the induction equation (1) as a function of the large-scale fields. However,
none of these procedures account for time correlations of model uncertainties, which turns out to be essen-
tial if one wishes to resolve flow time variations. Consideration of such temporal correlations is a crucial issue
because of the high coherence, on decadal time scales, of both the flow and the unresolved magnetic field
that enter the induction equation (1). Neglecting the temporal correlation of SV model errors should actually
result in an underweighting of the information in geomagnetic data concerning the rapid flow changes and
may lead to a biased solution for the core flow.

Here we adopt a new ensemble estimation of SV model errors, taking due account of their time correlation.
Gillet et al. [2009] made a first attempt at an ensemble estimation of time-dependent surface core flows from
a magnetic field model and its covariance. They generated an ensemble

{
Br

p(t)
}

of core surface magnetic
fields (including its unresolved component at small length scales), substituted these for Br in equation (1), and
estimated an ensemble of flow solutions {up(t)} from SV data associated with observation errors only. The
most probable solution was then calculated as the ensemble average of flows ⟨u⟩. Considering each realiza-
tion of the unresolved field as perfectly known when inverting equation (1), SV model errors were estimated
a posteriori once and for all. This assumption keeps the inverse problem linear, thus avoiding an iterative esti-
mate of SV model errors as in Pais and Jault [2008]. However, there was a major drawback in the approach
of Gillet et al. [2009]: substituting ⟨u⟩ for u in equation (1) systematically underpredicted the SV monitored in
ground observatories even though each flow member up of the ensemble adequately predicted the observed
SV. The cause of this deficiency was that the SV error covariance used during the estimation of the flow con-
tained only the contribution from observation errors. The correct way to calculate ensemble statistics is to
generate an ensemble of forward models and to build in a consistent fashion the error covariance matrix by
adding both the SV model error and observational error covariances [Evensen, 2009]. In agreement with this
statement, Baerenzung et al. [2014] remark in their synthetic tests that omitting SV model error covariances,
as in the study of Gillet et al. [2009], causes a degradation in performance compared to the iterative scheme
initiated by Pais and Jault [2008]. Note that SV model error covariance matrix has to be calculated recursively
because it involves the quantity u that is estimated. Furthermore, in order to properly account for time corre-
lation in the SV model error, we must estimate the flow over the entire time interval in a single batch. For the
SV observation error covariance matrix, we rely on the COV-OBS magnetic field model.
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Section 2 is devoted to methodology and constitutes the heart of the present work. We develop a
time-dependent ensemble approach to calculate a covariance matrix for the SV model errors, following the
conclusions of the above discussion. We describe how this transforms the kinematic inversion of core flows
into a nonlinear problem. We furthermore extend the ensemble method to the calculation of the covari-
ance matrix for the uncertainties in the model parameters. It is at this stage that prior knowledge about
time-correlations is incorporated. In section 3 we analyze the predictions of the resulting flow for geophysi-
cal observations, namely, length-of-day and SV changes at observatories. Then, the geometry and the time
dependence of the flow are discussed (section 4), together with their uncertainties. This section ends with
considerations about torsional waves, electromagnetic core-mantle coupling, and a focus on the dynam-
ics in the equatorial region. We conclude this paper (section 5) with discussions of possible methodological
improvements and perspectives concerning core physics.

2. Method

We first set out the notations employed throughout this paper (section 2.1) before formulating the
quasi-geostrophic (QG) topological constraints on the flow that we use (section 2.2). Next in sections 2.3 and
2.4 we present how we implement a recursive ensemble method to obtain information about both the vari-
ances of the parameters describing the core motions and the temporal cross covariances of SV model errors.
The use of the QG assumption, motivated in section 1.1, offers a significant shrinkage of the parameter space
that greatly reduces the numerical cost. Limiting the spatial complexity enables us to investigate nonzero
time correlations and dense covariance matrices. The results we obtain concerning the dynamics should be
considered within this QG approximation, which could in principle be replaced by any other hypothesis. The
method derived to account for time-correlated SV errors is, however, general; and the conclusions about the
use of cross-covariances are independent of the topological framework. We also present in Appendix A a
tutorial example that illustrates the impact of considering temporal cross covariances.

2.1. Notations
We expand all quantities (Br , 𝜕Br∕𝜕t, and the poloidal and toroidal scalars S and T describing the surface flow
u = ∇ × (Tr) + ∇H(rS), where r is the position vector) in spherical harmonics:

⎧⎪⎪⎨⎪⎪⎩
S =

Lx∑
𝓁=1

𝓁∑
m=−𝓁

s𝓁mY𝓁m(𝜃, 𝜙), with s𝓁,−m = s𝓁m

T =
Lx∑
𝓁=1

𝓁∑
m=−𝓁

t𝓁mY𝓁m(𝜃, 𝜙), with t𝓁,−m = t𝓁m

. (6)

((𝜃, 𝜙) are spherical coordinates, Y𝓁m are Schmidt quasi-normalized functions, and x is the complex conjugate
of x). The expansions of the magnetic field and its time derivative are truncated, respectively, at degrees Lb (for
Br) and Ly (for 𝜕Br∕𝜕t). Contrary to Jackson [1997] and Gillet et al. [2009], we do not expand in time in terms of
a B-spline basis and consider instead the spherical harmonic coefficients of the time variable fields as discrete
time parameter sets

{
tn

}
n∈[1,N] regularly sampling [t1 … tN] = [1940… 2010] every 𝛿t = (tN − t1)∕(N − 1) =

1 year (N = 71). At each epoch tn, we store Br , 𝜕Br∕𝜕t, and core flow spherical harmonic coefficients in vectors
b(tn), y(tn), and x(tn), respectively. From these we build vectors Y =

[
y(t1)… y(tN)

]T
, B =

[
b(t1)…b(tN)

]T
,

and X =
[
x(t1)… x(tN)

]T
, which are linked through the forward problem:

Y = (B)X + E , (7)

with E =
[
e(t1)… e(tN)

]
the SV error vector and  the operator

(B) =

⎡⎢⎢⎢⎢⎣
H(b(t1)) 0 … 0

0 H(b(t2)) ⋱ ⋮
⋮ ⋱ ⋱ 0
0 … 0 H(b(tN))

⎤⎥⎥⎥⎥⎦
. (8)

H(b(tn)) results from the transformation of the snapshot equation (1) at epoch tn in matrix form.
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2.2. Formulation of the Quasi-Geostrophic Topological Constraint
We assume quasi-geostrophy and incompressibility in the outer core volume, which results in the columnar
flow constraint at the core surface [Amit and Olson, 2004; Amit and Pais, 2013],

∇H ⋅
(

u cos2 𝜃
)
= 0 , (9)

together with the equatorial symmetry constraint [Pais and Jault, 2008, equation (27)]. In contrast with our
previous attempts at calculating core flows [Pais and Jault, 2008; Gillet et al., 2009], we do not impose no
penetration across the cylindrical surface tangent to the solid inner core. We note below that our method
makes it easy to incorporate this constraint at a later stage if desired.

The above hypotheses yield a set of linear constraints that can be formally written as

∀n, Q x(tn) = 0 . (10)

Following Jackson [1997], we use the matrix G obtained from the QR decomposition of Q in order to project
the vector of unknowns onto a reduced basis:

x(t) = Gw(t) . (11)

The solution W =
[
w(t1)…w(tN)

]
for which we invert is composed of vectors whose size, Lx(Lx + 1)∕2 for Lx

even, is reduced by a factor about 4 compared to the size 2Lx(Lx + 2) of the original unknown vectors.

2.3. Ensemble Core Flow Estimation
We use an ensemble approach, following the example of previous studies in oceanic and atmospheric dynam-
ics [Evensen, 2003], to recursively estimate stationary second-order statistics for the flow coefficients and the
model errors. We derive an ensemble of P solutions (typically here P = 20) to the forward problem (7) under
the constraint (10) from the ensemble of replications {Bp,Yp}p∈[1,P] drawn from COV-OBS. Preexisting knowl-
edge about w is represented by the covariance matrix Cw, while SV error covariances are described by Ce.
Then, for each replication {Bp,Yp}, the least squares solution Wp minimizes the cost function

Jp(W) =
[
Yp −(Bp)W

]T
C−1

e

[
Yp −(Bp)W

]
+ WT C−1

w W . (12)

Here(B) is the forward operator of equation (8) rotated into the reduced basis using (11). Rather than define
and fix the two matrices Ce and Cw prior to the inversion, here we update these at each iteration using the cur-
rent ensemble of flow solutions {Wp}p∈[1,P]. Thus, the minimization of the functional (12) becomes a nonlinear
problem, and we calculate the ensemble of models recursively, with at each iteration k:

Wp,k+1 =
[(Bp)T

(
Ck

e

)−1 (Bp) +
(

Ck
w

)−1
]−1 (Bp)T

(
Ck

e

)−1
Yp . (13)

We keep the same ensemble of replications (Bp,Yp) from one iteration to the next.

Concerning the construction of Ck
w, we estimate the a priori covariances between the coefficients wi(tn) and

wi′ (tn′ ) at iteration k + 1 from time and ensemble averages of the variances of the coefficients of the flow
models {Wp}p∈[1,P], as calculated at iteration k. In addition, for the required temporal correlation function, we
simply adopt the exponential function (5). Combining these gives

E
(

wi(tn)wi′ (tn′ )
)
= 𝛿ii′

⟨
1
N

N∑
n=1

wi(tn)2

⟩
exp

(
−
|tn − tn′ |
𝜏u

)
. (14)

Here the notation ⟨X⟩means ensemble averaging:

⟨X⟩ = 1
P

P∑
p=1

Xp . (15)
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The choice of a common value for all coefficients of the characteristic flow time scale 𝜏u is made for the sake
of simplicity. Spatial cross covariances (except those associated with the QG assumption) are ignored. To sum-
marize, equation (14) prescribes the elements of the flow model covariance matrix Ck

w that is used as prior
information at iteration k+1. In order to initialize the calculation, C0

w is built from a flat core-mantle boundary
(CMB) spatial power spectrum (∀m ∈ [−𝓁,𝓁], E(t𝓁m)2 = 102∕𝓁(𝓁 + 1)) and the time autocorrelation function
(5). The final flow solutions are found to be insensitive to small changes of C0

w.

Use of equation (14) means that we build the a priori probability distribution of the flow from the expected
values obtained from the existing ensemble of flow models. This approximation is made to reduce the numer-
ical cost; indeed, one should in principle also account for the posterior uncertainties associated with each flow
realization [see Baerenzung et al., 2014]. Tests on problems of small dimensions demonstrate that with this
simplification we only slightly underestimate the posterior uncertainties on the flow model and the related
SV model errors.

We have no prior knowledge of the covariance matrices that enter the cost function (12) to be minimized. The
iterative process yields (i) the flow model, (ii) the SV model errors (as described in section 2.4), and (iii) the flow
covariances. We seek to exhibit possible solutions within this framework. On the other hand, the inversion
process is inherently nonlinear, and we do not claim unicity of the flow solution.

2.4. Accounting for Time-Correlated SV Model Errors
The SV model error covariance matrix Ck

e is also estimated recursively using an ensemble approach. Recall that
the error vector E in equation (7) contains both the SV observation errors Eo and the SV model errors Em that
arise from unresolved interactions between the core flow and the magnetic field. SV model errors Em result
from the unresolved flow 𝛿W interacting with the entire (resolved or not) magnetic field, plus the resolved
flow interacting with the unresolved field 𝛿B. We omit model errors at the first iteration. We calculate the
resolved flow and magnetic field as the ensemble averages of the flow solutions, ⟨W⟩ (calculated at iteration
k), and of the COV-OBS field models, ⟨B⟩, respectively.

An ensemble of Q = 40 realizations of 𝛿B is obtained from the product of normally distributed random vec-
tors with the Choleski decomposition of the covariance matrix Cb = E

(
𝛿B𝛿BT

)
. For𝓁 ≤ 14, we simply take the

COV-OBS error covariance matrix as Cb. Note that these are potentially underestimated at degrees𝓁 ∼ 14 due
to the signature of unmodeled lithospheric field at large length scales [see Jackson, 1990; Thébault and Verveli-
dou, 2015]. For 𝓁 > 14, Cb is constructed from the correlation function (2) proposed in Gillet et al. [2013], using
correlation times and variances extrapolated with power laws from those obtained in satellite field models for
𝓁 ≤ 12. We truncate the unresolved field at Lb = 30 since increasing Lb further does not significantly affect the
results. The ensemble of Q realizations is calculated independently for the P replications Bp that are used in
(13). The dispersion within the ensemble of flow solutions defines the unresolved flow, i.e., 𝛿Wp = Wp − ⟨W⟩.
It should be accounted for when estimating the covariances of SV model errors because these depend on
the flow (the reason that our problem is nonlinear, see Pais and Jault [2008]). We thus estimate PQ = 800
realizations of the SV errors from all possible pairs (𝛿Wp, 𝛿Bq):

𝛿Ypq =  (𝛿Bq
) (⟨W⟩ + 𝛿Wp

)
+ (⟨B⟩) 𝛿Wp , (16)

from which we build the matrix

Sm
e = 1

PQ − 1

P∑
p=1

Q∑
q=1

(
𝛿Ypq − ⟨𝛿Y⟩) (𝛿Ypq − ⟨𝛿Y⟩)T

, (17)

using the ensemble average ⟨𝛿Y⟩ = 1
PQ

P∑
p=1

Q∑
q=1

𝛿Ypq. We have found it important that the realizations of 𝛿B

that enter equation (16) are independent of the P realizations used in (13). This yields an unbiased estimate
of 𝛿Y (i.e., in practice ∀i, ||⟨𝛿Yi⟩|| ≪ ||𝛿Yi

||) and thus of Sm
e . Otherwise, SV model errors tend to contribute con-

structively to the observed SV (they are positively correlated with the SV data), and variances in (17) tend to
be dramatically underestimated.

The matrix Sm
e is positive semidefinite but unfortunately most of its eigenvectors correspond to null

eigenvalues because the size PQ of the ensemble is smaller than the number of rows Ry =NLy(Ly + 2).
We have

∀(p, q), V ⋅
(
𝛿Ypq − ⟨𝛿Y⟩) = 0 =⇒ VT Sm

e V = 0 , (18)

GILLET ET AL. TIME DEPENDENT CORE SURFACE FLOWS 6



Journal of Geophysical Research: Solid Earth 10.1002/2014JB011786

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60

co
rr

el
at

io
n

lag (y)

Figure 1. Time correlations of the empirical SV model errors
determined for the coefficients dgm

n ∕dt: for the axial dipole
(magenta) and averages over all spherical harmonic orders of
degrees 1 (blue, except for the axial dipole), 3 (green), 5 (red), and 7
(cyan). In thick (respectively thin circle) lines the correlations after
(respectively before) localization, as implemented using the
function 𝜌gc(𝜏) from Gaspari and Cohn [1999] (in black).

where V is any nonzero column vector. As
a result, Sm

e is not a valid covariance matrix
and is not invertible. It would require PQ ≫

Ry in order to have a converged estimate
of all cross covariances in Sm

e ; their accu-
racy is limited by the size of the ensemble.
To avoid considering spurious cross covari-
ances that would bias the measure of the
SV model errors, we have to modify Sm

e .
First, spatial correlations, in the spherical har-
monic domain, of the flow model uncer-
tainties are neglected in order to avoid
overestimates of these quantities, and we
consider only temporal correlations. Tests
on a smaller problem show that ignoring
these spatial correlations does not signifi-
cantly affect the time changes of the output
flow models. Second, we guard against artifi-
cial correlations between SV model errors at
distant epochs by using a covariance local-
ization approach [Gaspari and Cohn, 1999].
This consists in taking the Hadamard prod-
uct (element-by-element multiplication) of
Sm

e and L,

Cm
e = L∘Sm

e , (19)

where L is a covariance matrix constructed from a correlation function 𝜌loc. The matrix Cm
e is a valid covariance

matrix because the Hadamard product of a positive definite matrix (such as L) and of a positive semidefinite
matrix with all its diagonal elements strictly positive (such as Sm

e ) is positive definite (Schur’s theorem; see Horn
[1990]). This heuristic approach has been extensively used in data assimilation studies of the dynamics in the
atmosphere and the ocean, to filter the background covariance matrix as a function of distance [Hamill et al.,
2001]. Instead, we use it here to filter the SV model error covariance matrix as a function of time separation.

As in oceanic applications, L is constructed from a correlation function𝜌gc defined by equation (4.10) in Gaspari
and Cohn [1999], which involves a cutoff period 𝜏loc. As illustrated in Figure 1, this allows time differentiability
properties compatible with the SV spectrum (see the smooth behavior of 𝜌gc at zero lag). Furthermore, being
defined on a compact support prevents overestimation of cross covariances at large lag. The cutoff period
should be slightly larger than empirical estimates of the correlation length [Oke et al., 2007]. We find through
the analysis of Sm

e that the SV model error typically have a decay time between 10 and 20 years (depending on
the SV coefficients). We therefore adopt a cutoff period 𝜏loc = 30 years. Figure 1 illustrates the impact of the
localization process on the ensemble estimate of time correlations. The time correlation functions at zero lag
is less sharp than the Laplacian function obtained for a stochastic process such as that defined by equation
(4): this corresponds to a case intermediate between the two tutorial examples illustrated in Appendix A. Note
that the most extreme localization would involve keeping only the diagonal elements of Sm

e , i.e., 𝜌loc(𝜏) = 𝛿(𝜏),
which we also test for comparison purposes.

Finally, the combined SV data error covariance matrix is then Ce = Co
e + Cm

e . Covariances Co
e for Eo are derived

from the error covariance matrix Cspl for the COV-OBS spline model coefficients [Gillet et al., 2013]: if D(t) is
the operator relating the SV coefficients at epoch t to the spline coefficients, then the matrix Co

e is built from
N×N blocs Co

e nn′
= E
(

eo(tn)eo(tn′ )
T) = D(tn)CsplD(tn′ )T that contain the covariances for the observation errors

between all SV spherical harmonic coefficients at epochs tn and tn′ .

Note that Gillet et al. [2009, 2011] assumed Ce = Co
e. Our procedure to obtain Ce also differs from the iterative

method of Pais and Jault [2008] inasmuch as they needed only one realization (B1,Y1) to estimate how the
diagonal elements of Ce vary with the degree. In practice less than 10 iterations suffice to obtain a converged
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Table 1. Statistics of the Derived Flow Models for Several Values of 𝜏u , and Several Localization Functions 𝜌loc
a

Case 𝜌loc(𝜏) 𝜏u (y) 𝜒2 SV f
SV

𝛾 f
𝛾

r𝛾 rf
𝛾

A10 𝜌gc(𝜏) 10 0.213 0.86 1.02 1.72 1.56 0.87 0.77

A100 𝜌gc(𝜏) 100 0.406 0.81 0.86 1.34 1.03 0.86 0.80

A300 𝜌gc(𝜏) 300 0.664 0.75 0.74 1.19 0.86 0.85 0.69

D10 𝛿(𝜏) 10 0.045 0.93 0.75 1.91 0.88 0.92 0.79

D100 𝛿(𝜏) 100 0.110 0.88 0.44 1.49 0.37 0.89 0.75
a𝜌gc stands for the localization function from Gaspari and Cohn [1999], used with a cutoff frequency 𝜏loc = 30 years. r𝛾

is the correlation coefficient between the LOD data and the LOD prediction from the ensemble average solution (similarly,
rf
𝛾

is defined for the series filtered at periods between 4 and 9.5 years). Other symbols are defined in the text (section 3.1).

ensemble of solutions and thus converged covariance matrices Ce and Cw. For all frequencies and length
scales, the rate of change of the average solution, from one iteration to the next, is smaller than the dispersion
within the ensemble of solutions (about 5% of the kinetic energy), and we observe no drift of the solution
through the iterative process. The variances that enter Cw in equation (14), averaged per degree 𝓁 and over
time, change by about 4% from one iteration to the next (similarly, with no drift).

3. Flows Accounting for Rapid Magnetic Field and Length-of-Day Changes

We first discuss in section 3.1 the importance of accounting for time correlated SV model errors in order to
consistently recover geophysical observations, especially on subdecadal time scales. This guides our choice
for the free parameter 𝜏u that enters the model prior covariance matrix. In section 3.2 we analyze more closely
the fit to the SV observations, comparing the flow predictions to time series of spherical harmonic coefficients,
and also, more directly, to observatory series.

3.1. Importance of Time Correlations of Flow Coefficients and SV Model Errors
In order to measure the impact of the methodology choices (for example, the time covariances in Ce,
the choice of 𝜏u), we compare different flow solutions, presenting in Table 1 the following statistics for
the solutions:

1. The ensemble average of the normalized misfits to the COV-OBS field model SV,

𝜒2 =
⟨

1
Ry

[Y −(B)W]T Ce
−1 [Y −(B)W]

⟩
; (20)

This measure contains information from all frequencies when cross covariances, due to temporal error cor-
relation, are considered in Ce (cases “A𝜏u

” with 𝜌loc(𝜏) = 𝜌gc(𝜏)). When instead 𝜌loc(𝜏) = 𝛿(𝜏) (cases “D𝜏u
”),

this measure is mainly sensitive to the longer periods where the SV signal amplitude is the largest and is
indifferent to the high-frequency SV. As a consequence, 𝜒2 can be smaller in cases D𝜏u

even though rapid
changes are not well reproduced (cf. Figure 3).

2. The ensemble average of the ratio between the r.m.s. of the recorded (𝜑o
obs) and predicted (𝜑p

obs) SV series
at ground-based stations, calculated over [ti, te] = [1940, 2010],

SV = 1
Nobs

Nobs∑
obs=1

1
3

∑
𝜑=X,Y,Z

(
∫

te

ti

(𝜑o
obs − 𝜑̂

o
obs)

2dt

)−1⟨
∫

te

ti

(𝜑p
obs − 𝜑̂

p
obs)

2dt

⟩
, (21)

averaged over all three components and over four test observatories (Kakioka, Hermanus, Niemegk, and
Alibag). We use the notation x̂ = 1

te−ti
∫ te

ti
x(t)dt for the time averaging. A similar quantity f

SV is defined for
the signals filtered between 4 and 9.5 years.

3. The ensemble average of the ratio between the r.m.s. values for length-of-day (LOD) geodetic data 𝛾o(t) and
their predictions 𝛾p(t), calculated over [ti, te] = [1940, 2010],

𝛾 =
(
∫

te

ti

(𝛾o − 𝛾̂o)2dt

)−1⟨
∫

te

ti

(𝛾p − 𝛾̂p)2dt

⟩
. (22)

Here 𝛾p(t) is calculated using equation (103) in Jault and Finlay [2015]. We use a definition similar to (22) for
f
𝛾

the ratio for the LOD series filtered at periods between 4 and 9.5 years.
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Figure 2. SV power spectra at the Earth’s surface, time averaged
over 1940–2010 (scale is log10, in units of (nT/yr)2): SV spectrum
from COV-OBS (black) and its associated observation errors (cyan);
ensemble average of the SV spectra for the model predictions (red),
the model prediction errors (green), the SV model errors due to
unresolved scales (dark blue), and the SV model plus observation
errors (magenta).

We find that ignoring temporal covariances
of model errors (cases “D” with 𝜌loc(𝜏) = 𝛿(𝜏))
leads to a loss of information. Table (1) shows
that this omission leads us to either overpre-
dict LOD changes on decadal time scales (see
D10) or underpredict LOD changes on inter
annual time scales (see D100).

We also find that the amplitude of LOD pre-
dictions is a very useful diagnostic in assess-
ing the appropriate flow correlation time 𝜏u.
For 𝜏u = 10 years (or less), the predicted LOD
fluctuations are significantly more intense
than the actual LOD fluctuations (see A10).
On the other hand, it appears impossible to
account for rapid SV fluctuations with 𝜏u =
300 years, or more (see A300). We thus con-
sider the solution obtained for 𝜏u = 100 years
as providing an acceptable compromise, pro-
ducing reasonable amplitudes of the SV and
LOD changes at both decadal and interan-
nual periods. Henceforth, we focus on our
preferred flow ensemble A100, and discuss it
in detail.

Figure 3. Time changes of the SV spherical harmonic coefficients dgm
n ∕dt (in nT/yr). SV from the COV-OBS model truncated at degree n = 10 (thick black line:

average model; grey thin lines: ensemble of realizations including the impact of SV model errors), and SV predictions from the ensemble of flows: accounting for
time correlations of the SV model errors (thick red line: ensemble average; thin pink lines: ensemble of realizations), or neglecting it (thick blue line: ensemble
average; thin blue lines: ensemble of realizations). In both cases for 𝜏u = 100 years. Our preferred flow ensemble corresponds to the red curves.

GILLET ET AL. TIME DEPENDENT CORE SURFACE FLOWS 9
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Figure 4. (top) X , (middle) Y , and (bottom) Z components of the SV observed at the Kakioka (36∘N, 140∘E, left), M’Bour (14∘N, 17∘W, middle), and Niemegk (52∘N,
13∘E, right) observatories (in nT/yr): predictions from our ensemble of flow models (average in red, ensemble in pink), superimposed with SV time series from the
COV-OBS field (in black the ensemble average field model, truncated at degree n = 10, in grey including the impact of SV model errors) and annual differences of
observatory annual means (black symbols). Flow predictions are again for the preferred case of 𝜏u = 100 years and accounting for the time correlation of SV
model errors.

3.2. Fit to SV Observations
In this section we analyze how predictions from our ensemble of flow solutions fit the SV data. We consider
both the misfit to COV-OBS Gauss coefficients and comparisons to annual differences of observatory annual
means. The former are analyzed in terms of time-averaged SV spatial power spectra, presented in Figure 2.
Overall, the SV spectra of the a posteriori and a priori errors calculated through our ensemble scheme superim-
pose. The latter is similar to that found by Pais and Jault [2008] for a snapshot problem. We obtain a posteriori
errors slightly larger (smaller) than the prior errors at long (short) length scales, which translates into a misfit
less than unity (see Table 1).

We focus on degrees 1 and 2 of the SV that show large posterior errors compared to the prior errors. Analyzing
SV coefficients individually, we find anomalously enhanced misfits for ġ0

1, ġ0
2, ḣ1

1. SV predictions for these coef-
ficients are biased toward zero as illustrated by Figure 3 for the axial dipole. Extrema of |ġ0

1| (e.g., from 1960
to 1980) are particularly poorly reproduced (see the red curves in the Figure 3). The difficulty to reproduce
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Figure 5. Spatial power spectra of the core surface flow, time
averaged over 1940–2010 (scale in units of log10, in (km/yr)2):
ensemble average of the spectra for the total flow models (black),
their time-dependent components only (cyan); spectra of the
ensemble average flow model (red) and their time-dependent
component (green).

large values for some low-degree coeffi-
cients (for instance ġ0

1 and ġ0
2 in Figure 3)

explains why SV predictions from our flows
have slightly yet systematically lower ampli-
tude than SV measured at observatories,
especially when the magnitude of the SV
is high (e.g., dY∕dt at Niemegk or dZ∕dt at
Kakioka and M’Bour, in Figure 4). The biases
are less pronounced for recent epochs (cf.
Figures 3 and 4), due to the improved accu-
racy of SV data. In contrast with the slow
changes, the high-frequency fluctuations
are very well reproduced, once we account
for time-correlated SV model errors.

Note that these results are independent of
the imposition of the equatorial symmetry
constraint. If we omit the time correlation
of SV model errors (see the blue curve in
Figure 3) or if we artificially decrease these
errors for ġ0

1, ġ0
2, ḣ1

1, we are able to better fit
these coefficients, which indicates that the
topological constraints are not the origin of

the difficulty. Furthermore, looking at the spatial distribution of residuals at the core-mantle boundary (not
shown), we find no evidence for any particular region displaying preferentially large SV misfit. Despite the
improvements we have introduced for the calculation of the SV model errors, a bias in the distribution of
SV residuals persists. To some extent, this is unavoidable if the prior distributions of flow coefficients are all
centered around 0. The optimization scheme then preferentially selects models with SV predictions biased
towards zero, within the specified error bars (see the tutorial example in Appendix A). Unfortunately, the rela-
tively large amplitude of the SV model errors for the low-degree coefficients exacerbates this effect. In section
5 we discuss possible approaches for handling this issue.

In Figure 4 we compare the SV predicted by our ensemble of flow models with annual differences of observa-
tory annual means in Kakioka, Niemegk, and M’Bour. We observe a larger dispersion of the ensemble at earlier
epochs: as noted by Pais and Jault [2008], the more knowledge we have about the observed SV (at recent
epochs), the smaller SV model errors become. Nevertheless, within this dispersion, the interannual changes
are rather coherent between realizations. Interannual changes can be recovered, despite the relatively large
SV model errors, due to the consideration of time correlations in Ce (see Table 1). Of course, the bias men-
tioned above in the spherical harmonic domain also maps into the predictions at observatory locations (see
Figure 4) albeit to a smaller extent than in the study of Gillet et al. [2009].

4. Time Evolution of the Core Flow

We now present in detail our preferred probabilistic ensemble of core flow models. We first analyze their
resolution within the ensemble as a function of frequency and wave number (section 4.1). Next we describe
the structure of the resolved flow and its time variations (section 4.2). In section 4.3, we discuss the fit to
changes in the LOD and put forward an interpretation of the geostrophic circulation as the superposition of
a slowly varying flow determined through the Taylor’s condition and torsional waves. We revisit in section 4.4
electromagnetic coupling between the core and the mantle. Finally, we focus in section 4.5 on the dynamics
of the equatorial region.

4.1. Resolution of the Calculated Core Flows
The spatial structure in our ensemble of flow models is predominantly steady throughout the studied interval
of 1940–2010. By way of illustration, the correlation coefficient of core surface velocity maps calculated for
pairs of epochs 10 years apart remains very close to 0.93 during [1945, 2005]. Assuming that the correlation
function has the form (5), this corresponds to a correlation time of at least 140 years. Remarkably, the
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Figure 6. Resolved features in the ensemble of flows as a function
of period and spherical harmonic degree, as defined with equation
(24), for the two time intervals: (top) 1940–1975 and (bottom)
1975–2010.

time-averaged flow also includes significant
small-scale constituents, as can be seen from
the time-averaged spatial power spectrum of
the flow:

u(𝓁) =
1

te − ts ∫
te

ts

𝓁(𝓁 + 1)
2𝓁 + 1

𝓁∑
m=−𝓁

(
t𝓁m(t)2 + s𝓁m(t)2

)
dt .

(23)

Similarly, we define u′ (𝓁) to be the spec-
trum for the time-dependent component of
the flow, after the time-averaged part has
been removed. In Figure 5 we display the
ensemble average of the two power spec-
tra, ⟨u⟩ and ⟨u′⟩, together with the power
spectra for the ensemble averages, ⟨u⟩
and ⟨u′⟩. We find the flow coefficients are
resolved within the ensemble up to degree
about 10, above which ⟨u⟩ departs grad-
ually from ⟨u⟩. There is likely some useful
information on the time average flow up to
degree 13. A similar scale of spatial resolution
is obtained for the time-dependent com-
ponent of the flow when comparing ⟨u′⟩
with ⟨u′⟩, even though large length-scales
seem slightly less resolved for the flow
fluctuations than for its time average. The
energy of the time-variable part of the flow
peaks at degree 10, above which there are
larger uncertainties on the flow coefficients.
Thus, the time-variable flow is predominantly
small scale.

In order to obtain a more detailed measure
of the flow resolution as a function of har-
monic degree and frequency f , we introduce
the quantity

u(𝓁, f ) =

⟨
𝓁∑

m=−𝓁
|𝜏𝓁m(f ) − ⟨𝜏𝓁m(f )⟩ |2 + |𝜎𝓁m(f ) − ⟨𝜎𝓁m(f )⟩ |2⟩⟨

𝓁∑
m=−𝓁

|𝜏𝓁m(f )|2 + |𝜎𝓁m(f )|2⟩
, (24)

where the complex coefficients (𝜏𝓁m, 𝜎𝓁m) are the Fourier transforms of the flow coefficients time series
tlm(t), slm(t). This quantity is 1 (respectively 0) when the spread in the flow harmonic coefficients reaches 100%
(respectively 0%) of the model variances. A low value of u is a necessary but not sufficient condition for the
true core flow to be captured.

Distributions of u(𝓁, f ) are shown in Figure 6 for the two intervals 1940–1975 and 1975–2010. We observe
a clear improvement at recent epochs, with well-resolved flows at both shorter periods and smaller length
scales. Indeed, for the most recent time interval, flow variations with a period of about 6 years are well resolved
up to degree 6, with some information provided up to degree 12, whereas slower decadal variations are well
constrained until degree 12, with some information provided up to degree 16. Though resolution is poorer
for older epochs, some interannual changes are constrained even during the first 35 years. Again, we wish
to emphasize that our ability to reliably retrieve interannual flows is a direct consequence of accounting for
time-correlated SV model errors (see Appendix A).
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Figure 7. Maps of the quasi-geostrophic stream function 𝜓 (black isolines) and norm of the velocity (color scale, in
km/yr) at (left) the CMB (Hammer-Aitoff projection centered on the Greenwhich meridian) and in (right) the equatorial
plane. Meridians (parallels) are marked every 60∘ (30∘). The thick grey parallel corresponds to the projection of the
tangent cylinder at the CMB. (top) The time average flow between 1940 and 2010. (bottom) An example of the flow
anomaly with respect to the stationary flow in epoch 2005. In both cases the flow has been truncated at spherical
harmonic degree 14. All figures are for the ensemble average of the flow models. Black capital letters “A” and “C” on
equatorial maps stand, respectively, for the anticyclones and cyclones discussed in the text.

4.2. Planetary Gyre and and Midlatitude Eddies
Under the incompressible QG hypothesis (see section 2.2), the flow in the whole volume can be represented
through a stream function 𝜓(s, 𝜙) [Jault and Finlay, 2015; Canet et al., 2014, equations (14) and (15)]:

u(s, 𝜙, z) = 1
H
∇ ×
(
𝜓1z

)
− z

H3

𝜕𝜓

𝜕𝜙
1z . (25)

(1s,1𝜙, 1z) are the unit vectors in cylindrical polar coordinates. H(s) =
√

c2 − s2 is the half height of a
geostrophic cylinder with c the outer core radius. We give in Appendix B the relation between coefficients
describing the stream function and the toroidal and poloidal coefficients. The fluid flow in the equatorial
plane, the first term on the right-hand side of (25), is parallel to the isolines of 𝜓 , but its intensity is not
proportional to the density of curves.

In Figure 7 (top), we present maps at the CMB and in the equatorial plane of the time average flow showing a
planetary-scale gyre similar to that described in earlier studies [Pais and Jault, 2008; Gillet et al., 2009; Aubert,
2013]. We find that the gyre possesses a detailed structure, in agreement with the findings of Amit and Pais
[2013] for flows based on the incompressible QG hypothesis. The most conspicuous features within the gyre
are two anticyclones centered at (45∘E, 60∘N, S) and (60∘W, 45∘N, S) at the core surface. Large velocities are
observed where the flow is in the azimuthal direction. In particular, the westward flow in the Atlantic hemi-
sphere is split into two branches, one within ±10∘ latitude at the equator and the other at latitudes from 30
to 45∘. These are separated by a region of lower azimuthal velocity.

In addition to the time-averaged gyre structure, we also observe time-dependent features at decadal time
scales. There is a general increase in the westward solid-body rotation from 1940 onward (see Figure 8,
top). Assuming that the system of solid Earth (crust, mantle, and core) is closed, we find that our ensemble
of geostrophic flows, of the form uG(𝜃, t) at the core surface, account rather well for the observed decadal
changes in the length of day (Figure 8, middle). A correlation coefficient r𝛾 close to 0.9 is found between the
data and the predictions at decadal periods (see Table 1).
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Figure 8. (top) Flow coefficient t0
1 (in km/yr) for the ensemble of flow

models (grey) and the ensemble average flow model (black).
Comparison between LOD predictions (in ms) from all members of
the ensemble of flow models (grey), their ensemble average (black)
together with the observed LOD changes (red): (middle) total LOD,
with all individual LOD time-averages set to zero, and (bottom) LOD
band-pass filtered between 4 and 9.5 years.

We also observe transient nonzonal circu-
lations. The flow perturbation in 2005 (see
Figure 7, bottom right) enhances anticy-
clonic eddies centered near (50∘E, 40∘N,
S), (40∘W, 65∘N, S) and (90∘W, 45∘N, S),
and cyclonic eddies around (60∘E, 60∘N,
S), (60∘W, 45∘N, S), and (150∘W, 45∘N, S).
These are reminiscent of the two main
time-dependent structures isolated by Pais
et al. [2014] on time scales about 70 years
and longer. However, the most energetic
time variable flows are nonzonal azimuthal
jets located around 30∘ latitude and in the
equatorial belt (see Figure 7, bottom left). If
the former appears related to the gyre, the
latter are difficult to describe using equato-
rial projections of the stream function. The
dynamics in the equatorial region is further
discussed in section 4.5.

4.3. Taylor’s State in the Earth’s Core
and Excitation of Torsional Waves
Nonzonal flows account for the majority of
the energy of time variable flows, as can be
inferred from the power spectral densities:

Z(f ) =
∑
𝓁

𝓁(𝓁 + 1)
2𝓁 + 1

t𝓁0
and

NZ(f ) =
∑
𝓁

𝓁(𝓁 + 1)
2𝓁 + 1

∑
m≠0

(t𝓁m
+ s𝓁m

)
,

(26)

of respectively zonal and nonzonal motions
(t𝓁m

stands for the power spectral density
of the series t𝓁m(t), with similar definition
for s𝓁m

). Nevertheless, the ratio Z∕NZ

of the zonal to nonzonal kinetic energies
shows distinctive spectral bands centered
on 6–8 years and around 3 years where

zonal motions are relatively more intense (see Figure 9). We shall not attach much importance to the 3 year
spectral band which is not adequately resolved (see Figure 6), but the well-resolved peak at 6–8 years provides
an indication that there may be torsional waves present in the derived core flows.

In Figure 10 we show a time cylindrical radius map of the zonal velocity from 1940 to 2010, for the period
band between 4 and 9.5 years where we find enhanced zonal energy in Figure 9. The contribution of these
flows to LOD changes is displayed in Figure 8 (bottom), which shows the predictions from individual members
of the flow ensemble and from the ensemble mean. The contribution of external fluid envelopes (mainly
the atmosphere and to a lesser extent the ocean) to angular momentum changes is known to dominate for
periods up to about 3 years [Gross et al., 2004]. However, the interannual variability of atmospheric angular
momentum [Paek and Huang, 2012] appears to be too small to account for a prominent signal observed with
a period of around 6 years [Abarca del Rio et al., 2000; Chao et al., 2014]. The zonal core motions that we have
isolated readily provide a explanation for this signal. We corroborate the results of Gillet et al. [2010], which
were limited to the time interval 1955–1975 (note that there is a delay compared to their Figure 2b, due to the
fact that they used a noncausal filter and omitted to shift the time axis). The time variability of the observed
and predicted LOD in the period range [4–9.5] years [see also Chao et al., 2014] is in apparent conflict with
the finding of Holme and De Viron [2013] who decomposed iteratively the LOD data (from 1962 to 2012) into a
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Figure 9. Ratio Z∕NZ between the power spectral densities (PSD) for
the zonal and nonzonal flows as a function of period. In bold black line
the ratio for the ensemble average of flow solutions. In bold grey the
average ratio over the ensemble members (thin grey line: ±1 standard
deviation). Flows are truncated at degree 𝓁 = 14.

decadally varying signal and a 5.9 year
oscillation of almost constant amplitude
(compare their Figure 2 with our Figure 8,
bottom). In our opinion, the relatively
small amplitude of the oscillation (in com-
parison with that of decadal changes)
makes it difficult to decide whether it is
long standing or heavily damped. Figure 8
(bottom) displays all the LOD changes
produced by geostrophic flows in the fre-
quency range [4–9.5] years. They need
not all be attributed to the propagation of
torsional waves. In any case, the remark-
able agreement between our predictions
and the geodetic data encourages us
in the interpretation of the flow model
down to periods about 4 years.

Geostrophic motions appear very clear
over 1995–2010, particularly as the tor-
sional wave approaches the equator, at
latitudes below 40∘, with a node of the

waveform at about 10∘ latitude (see Figure 10, bottom). The amplitude of the motions in this region is signif-
icantly larger than the spread in the flow ensemble (even at earlier epochs), yet the better resolution of the
field model at recent epochs may have increased the sensitivity in the relatively small (in latitudinal extent)
equatorial area. We confirm the slower propagation inferred by Gillet et al. [2010] as the wave gets closer to
the equator and find no evidence for reflection at the equator.

Now the theory of “magnetostrophic dynamos” [see, e.g., Roberts and Wu, 2015], which has been devel-
oped to account for the Earth’s magnetic field, gives us a tool to interpret the ratio Z∕NZ as a function
of frequency. We note above that this ratio remains small and does not vary much for periods larger than
8 years (see Figure 9). Taylor [1963] demonstrated that in the absence of inertia and viscosity we have

Figure 10. Ensemble mean of the geostrophic flow (in km/yr),
band-pass filtered between 4 and 9.5 years, as a function of time. The
black line correspond to 10∘ latitude. (top) The grey lines correspond to
Alfvén velocities C based on a r.m.s. cylindrical magnetic field of 1.9
and 0.6 mT in regions respectively close to the inner core and close to
the equator. Bottom pannel: Y axis increments are proportional to the
surface between s and s + 𝛿s (dY ∝ sin 𝜃d𝜃 ⇒ Y ∝ 1 − cos 𝜃).

∀s,∫Σ(s)
1𝜙 ⋅ ((∇ × B) × B)dΣ = 0 , (27)

with Σ(s) the geostrophic cylinders (see
Roberts and Aurnou [2012] or Jault and
Finlay [2015] for modern accounts of Tay-
lor’s theory). Differentiating in time (27)
and substituting 𝜕B∕𝜕t with its expres-
sion from the induction equation

𝜕B
𝜕t

= ∇ × (u × B) + 𝜂∇2B , (28)

Taylor [1963] obtained a linear relation-
ship between the geostrophic zonal flow
uG and nongeostrophic motions uNG,
which depends on the magnetic field
inside the core (see his equation (4.5); 𝜂 is
the magnetic diffusivity),

1
s3H

𝜕

𝜕s

(
s3HC2 𝜕

𝜕s

(uG

s

))
= −∫Σ(s)

( (B,uNG

)
+ 𝜂 (B))dΣ ,

(29)
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with
C2(s) = 1

4𝜋sH𝜌𝜇 ∫Σ(s)
Bs(s, 𝜙, z)2dΣ . (30)

The quantity C(s) has the dimension of a velocity and is proportional to the r.m.s. value of the cylindrical
radial field Bs averaged over geostrophic cylinder (𝜌 is the density of the outer core, and 𝜇 is the free space
magnetic permeability). Both  and 𝜂 are quadratic functions of the magnetic field,  depends linearly on
the nonzonal velocity, and 𝜂 stems from the diffusion term 𝜂∇2B. In a quasi-geostrophy framework, we can
identify uNG with the nonzonal motions uNZ . Equation (29) then determines a linear relationship between uG

and uNZ that may explain the uniform ratio between their energies at long periods. There is perhaps no need
to seek another mechanism for decadal variations of the geostrophic velocity and for decadal signals in the
length of a day.

Restoring the inertial acceleration 𝜕uG∕𝜕t [Roberts and Aurnou, 2012, equation (24b)], Taylor’s relationship is
transformed into

𝜕2

𝜕t2

(uG

s

)
− 1

s3H
𝜕

𝜕s

(
s3HC2 𝜕

𝜕s

(uG

s

))
= ∫Σ(s)

( (B,uNZ

)
+ 𝜂 (B))dΣ . (31)

The homogeneous part (on the left-hand side) corresponds to the torsional waves equation of Braginsky
[1970], where C can now be interpreted as the torsional wave velocity. Comparing (29) and (31) makes clear
that Taylor’s differential equation (29) is valid on time scales that are long compared to the period of the tor-
sional waves. The nonzonal velocities on the right-hand side of (31) appear as a possible source term for the
torsional waves provided they have the appropriate time scale, as mentioned also by Teed et al. [2014] who
searched for torsional waves in numerical simulations of the geodynamo.

Over the best resolved era (the last 15 years), the outward propagation of geostrophic motions, which can be
interpreted as a torsional wave in most of the outer core, present a node 10∘ away from the equator where uG

remains of small amplitude (Figure 10, bottom). The mechanism responsible for the special behavior close to
the equator remains unclear. Latitudes below 10∘ involve geostrophic motions only up to 50 km cylindrical
depth from the equator. These geostrophic motions, which become important after 1995, carry a tiny fraction
(of the order of 1%) of the outer core angular momentum. We may lack resolution to detect them further back
in time, and their existence at older epochs cannot be ruled out solely on the basis of the good fit to LOD
variations from 1950 onward.

4.4. On Electromagnetic Core-Mantle Coupling
Putting aside the fast torsional waves governed by (31), we read equation (29) as an indication that uG and uNZ

have similar time scales. This equation, however, does not directly constrain the solid body rotation part of the
core flow, for which 𝜕(uG∕s)∕𝜕s = 0. The time evolution of this rotation is instead governed by the coupling
mechanisms acting at the outer core boundaries.

The torque Γo(t) acting between the core and the mantle is linearly related to the time derivative of the
observed LOD. In a series of papers, Holme [1998a, 1998b] found that core surface flow models exist that
explain geomagnetic data between 1900 and 1980 and can also account for decadal changes inΓo(t) through
electromagnetic coupling if the conductance of the mantle

G = ∫
c+𝛿

c
𝜅mdr (32)

is 108 S or greater (𝛿 is the thickness of the conducting layer; for the figures given below, the conductivity of the
mantle, as a function of radius, is chosen as 𝜅m(r) = 3000(c∕r)30 S/m). We test here whether this result holds
for our ensemble of flow models, while accounting for their uncertainties. Assuming that these are correct,
we can follow a direct approach rather than the inverse approach of Holme [1998a]. We associate each mem-
ber up of the ensemble of core flows with a time series Γp(t) of the electromagnetic torque acting at the CMB
(see Appendix C). We find that the mantle conductance G has to be about 7×108 S to make the typical ampli-
tude of Γp(t) match the torque values inferred from LOD changes at decadal periods (about 1018 N m peak
to peak), with a correlation coefficient of 0.36 between observations and the ensemble average predictions.
It seems difficult to reconcile the time variation of our flow model with an electromagnetic explanation
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Figure 11. Cross correlation (nonnormalized) between the filtered LOD
geodetic observations and predictions from the flow models, for all
ensemble members (grey) and for their mean (black). Positive delays
correspond to observations ahead of predictions.

for the core-mantle coupling if the man-
tle conductance is less than 3 × 108 S.
The difference with the results of Holme
[1998b] comes from the longer character-
istic times of our large-scale flows, which
are responsible for most of the electro-
magnetic torque (when ignoring time
correlations of the SV model errors, in case
D10, we find G ∼ 4 × 108 S for the mag-
nitude of the predicted torque to match
that ofΓo). We also calculate the torque at
interannual periods. The correlation coef-
ficient between the observed torque and
the ensemble average predictions is 0.56.
A large conductance G ∼3 × 109 S is re-
quired to account for the amplitude of the
observed torque, at these periods.

The phase of the predicted series fits rela-
tively well that of the geodetic series over
both period ranges. However, the con-
ductances required to make electromag-

netic coupling a viable mechanism at, respectively, 6 and 25 year periods are strongly at variance. This does
not come as a surprise since the solid body rotation t0

1 accounts for a significant portion of both the electro-
magnetic torque and the LOD changes. Assuming that fluctuations of t0

1 were linearly related to the variation
of angular momentum at periods from 6 to 60 years, they could not also be linearly related also to the evolu-
tion of its time derivative (and hence ofΓo) over the same period range. The high value of G that is required for
electromagnetic core-mantle coupling at either period would certainly hinder the propagation of torsional
waves across the core [Dumberry and Mound, 2008; Gillet et al., 2010].

Finally, we have also calculated the cross correlation between observed and predicted LOD changes from our
ensemble of core flows (Figure 11). We find that the correlation is maximum for a delay between observed
and predicted values of 𝜏 = 0.26±0.29 year. The obtained value is the ensemble average of time lags, and the
error is estimated as the standard deviation within the ensemble of time lags. The positive value of the delay
means observations are, in average, ahead of predictions. Since diffusion in the mantle may cause a negative
delay, we estimate that the lag most probably lays between −0.3 and 0 year (within 2 standard deviations) ;
its estimation may help constrain the electrical conductivity of the lowermost mantle.

4.5. Dynamics of the Equatorial Region
We have observed in sections 4.2 and 4.3 a remarkable morphology of the azimuthal velocity in the equa-
torial belt at various time scales: the time-averaged velocity, the decadal flow changes, and the interannual
geostrophic motions all show a minimum in amplitude at about 10∘ latitude (see Figures 7 and 10, bottom).
Decadal, nonzonal (i.e., nonaxisymmetric), azimuthal jets in the equatorial region do not seem directly related
to u𝜙 at higher latitudes, even though they are linked to u𝜃 at latitudes around 10∘ through mass conservation
(see for instance around longitudes 60∘W, 70∘E, or 130∘E in Figure 7, bottom left). These low-latitude features
and their time evolution are consistently replicated within the flow ensemble (see Figure 12, top).

At interannual periods, nonzonal azimuthal motions have a minimum in amplitude at 10∘ latitude, as illus-
trated with the latitudinal profiles of the r.m.s. of u𝜙 in Figure 13. Longitudinal profiles of u𝜙 at the equator
present localized structures, with particularly intense flows around longitude 85∘W at recent epochs (see
Figure 12, bottom). Their peak-to-peak amplitude is much larger than that found for the geostrophic waves
discussed in section 4.3. Even though the largest of these jets below 10∘ can be traced back only to the
mid-1990s, be they either axisymmetric (zonal) or else nonzonal (see Figures 10 and 12, bottom), we cannot
exclude that such active low-latitude dynamics was present at earlier times, on account of the improved res-
olution of magnetic field models constructed from satellite observations. To our knowledge, the intriguing
velocity minimum at 10∘ latitude has not been reported from geodynamo simulations. In our opinion, further
theoretical and numerical studies of this particular region are called for.
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Figure 12. Nonzonal azimuthal flow u𝜙 − uG at the equator (truncated at spherical harmonic degree 14; in km/yr): in grey the ensemble of realizations, in black
the ensemble average. (left) Time series at two different longitudes. (right) Azimuthal profiles at two different epochs. (top) Flow anomaly with respect to the
stationary flow. (bottom) Flow anomaly band-pass filtered between 4 and 9.5 years. In each plot, the two ensembles of profiles are shifted with respect to one
another. The red vertical lines in Figure 12(left) (respectively right) refer to the epochs (respectively the longitudes) presented in Figure 12(right) (respectively left).

5. Discussion
5.1. Core Flow Time Changes
We have presented an attempt to consistently reconstruct time changes of core motions. These are primarily
associated with disturbances of the westward eccentric gyre identified by Pais and Jault [2008]. We obtain
a weaker temporal variability compared to previous studies [e.g., Amit and Olson, 2006]. Indeed, we find the
gyre to be largely steady over 1940–2010.

Our model does not perfectly account for the low-frequency changes of the dipole term g0
1 and of a few other

low-degree coefficients. This seems to be a result of the relatively large SV model errors, associated with our
flow, affecting the slow variations of these coefficients. This indicates that it may be necessary to model core
motions as a perturbation centered on a nonzero background flow (the equivalent of the climatic mean for the
oceans dynamics). We must acknowledge, however, that there may be contributions to these slow, large-scale,
field changes that are neglected in our quasi-geostrophic frozen-flux model. For example, one consequence
of quasi-geostrophy is that the longitudinal average of the meridional flow is zero. A contrasting view has
been offered by Buffett [2014] who calculated waves at the top of the core assuming that it is stably stratified.
He found that the zonal flow is coupled to an axisymmetric meridional flow that causes the dipole magnetic
field to fluctuate with a period of about 60 years. On the other hand, our quasi-geostrophic flows are able to
reproduce much of the dipole decay observed in recent decades, when the impact of SV modeling errors is
less pronounced, through nonzonal meridional flows acting on the longitudinally asymmetric core field.
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Figure 13. As a function of colatitude, root-mean-square of the
interannual (band-pass filtered between 4 and 9.5 years) azimuthal

flow. For the zonal velocity (black):
√

1
(tb−ta)

∫ tb
ta

uG(𝜃, t)2dt. For the

nonzonal velocity (red):√
1

(tb−ta)
∫ tb

ta

1
2𝜋

∮ (u𝜙(𝜃, 𝜙, t) − uG(𝜃, t))2d𝜙dt. Two time intervals

are considered: [ta, tb] = 1965–1975 (thin lines) and 2000–2010
(thick lines). All profiles are for the ensemble average flow
truncated at spherical harmonic degree 14.

5.2. Limits on the Time Resolution
of Core Flow Models
Information on the time variability of SV
model errors amounts to a time-dependent
constraint on core flow calculations. Our
investigations show that consistently
accounting for time-correlated SV model
errors has very encouraging consequences
regarding the rapid flow changes that may
be inferred from satellite magnetic data. We
found that the dispersion within our ensem-
ble of flow solutions at subdecadal periods
was significantly reduced at recent epochs,
indicating that a more detailed picture of the
rapid core flow changes is emerging from
the availability of continuous satellite data.

Our confidence in the estimated flow
changes is supported by their ability to
reproduce LOD variations at both decadal
and interannual periods. Consistent model-
ing of interannual and decadal LOD changes
was possible here for the first time thanks
to our modeling of time variable SV model
errors. In previous core flow reconstructions
investigating this issue [Wardinski, 2004;
Gillet et al., 2010], there was no constraint
on the flow changes between epochs (i.e.,

𝜏u → 0) and no time-correlated SV model error was considered (𝜌loc = 𝛿). As a result, decadal LOD changes
were found to be significantly overestimated.

We identify the approximately 6 years periodic LOD signal with torsional waves in the outer core. Our anal-
ysis is compatible with a modulation of their amplitude inside the time interval covered by our study, with
particularly intense velocities at latitudes below 40∘ after 1995. These torsional waves may be excited by
the interaction of nonzonal motions with the magnetic field inside the core. Both the geostrophic flow and
the nonzonal azimuthal velocity present a minimum in amplitude at 10∘ latitude. The understanding of the
interaction between zonal and nonzonal motions in the equatorial region requires further theoretical and
numerical investigations.

Torsional waves are not the main source of the intense and rapidly changing SV patterns recently identified
near the equator from the analysis of satellite measurements during the past 15 years [Olsen and Mandea,
2007; Chulliat and Maus, 2014]. Rather, enhanced nonzonal flow at low latitudes, particularly around 90∘W as
well as 60∘ and 120∘E, appear to be responsible.

5.3. Possible Additions to the Procedure
Determining the posterior core flow probability density given the information contained in the SV data, as
attempted here, not only provides an estimate of the uncertainty on the core motions but also provides
an opportunity to construct flow models subject to extra constraints. Indeed, this can be formalized as an
optimization problem of the form {

X = ⟨X⟩ + 𝛿X
0 = GX

, (33)

with E
(
𝛿X𝛿XT

)
given by the posterior covariance matrix for the flow model errors.

A first instance of an extra constraint is 𝜕(uG∕s)
𝜕s

= 0 at s = c, which is the boundary condition for torsional waves
under the insulating mantle hypothesis [see Schaeffer et al., 2012; Jault and Finlay, 2015]. Similarly, one could
produce flow solutions satisfying the nonpenetration condition us = 0 at the cylindrical surface tangent to
the inner core.
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We have estimated the modeling error Em from the unresolved magnetic field 𝛿B. Alternatively, one could
also consider estimating directly Em, using “augmented state” data assimilation schemes [see, for instance,
Evensen, 2003]. In this framework, time covariances of SV model errors can be accounted for by advecting Em

with a stochastic equation that is consistent with their correlation functions, as presented in Figure 1.

The stochastic approach employed throughout this study can be modified with the incorporation of deter-
ministic elements involving either 3-D geodynamo simulations [Aubert, 2014a] or QG models (such as that
of Canet et al. [2009]). For instance, the information about time covariances governed by a stochastic process
could be combined with spatial covariances inferred from geodynamo simulations. Another improvement
may be to estimate simultaneously the velocity and magnetic fields (as in Lesur et al. [2015]) using sequential
data assimilation.

The flow model presented here, together with its associated covariance matrix, is readily available from the
address http://isterre.fr/recherche/equipes/geodynamo/themes-de-recherche/article/analyse-de-donnees-
geomagnetiques?lang=fr.

Appendix A: Use of Cross Covariances in Problems With Time-Correlated Errors:
A Tutorial Example

Let us first focus on the case of a process sampled by two observations y1 and y2, associated with errors z1 and
z2 (considered as random variables of variance E

(
z2

1

)
= E
(

z2
2

)
= 𝜎2

z , with E(… ) the statistical expectation).
What are the consequences of z1 and z2 being correlated? Noting E

(
z1z2

)
= r𝜎2

z (r the correlation coefficient),
the covariance matrix of the vector z = [z1, z2]T ,

Czz = E
(

zzT
)
= 𝜎2

z

[
1 r
r 1

]
, (A1)

has two eigenvectors, {
ea = (z2 − z1)∕

√
2

eb = (z2 + z1)∕
√

2
. (A2)

Their associated variances are {
𝜎2

a = E
(

eaeT
a

)
= 𝜎2

z (1 − r)
𝜎2

b = E
(

ebeT
b

)
= 𝜎2

z (1 + r)
. (A3)

In the case of correlated noise (r ≠ 0), we see that the process is sampled with variance of the error larger
(respectively smaller) than 𝜎2

z in the direction y2 + y1 (respectively y2 − y1). In other words, by allowing cross
covariances, we decrease by a factor of (1 − r) the variance of the error on the difference y2 − y1 and increase
by a factor of (1 + r) the variance of the error on the average (y2 + y1)∕2.

We now further illustrate this idea with a one-dimensional toy model. Consider a true series𝜑t(t), polluted by
a noise 𝜁 (t), generating an observed series 𝜑o = 𝜑t + 𝜁 . All series are sampled at discrete epochs entering
the vector t, producing the vectors yo, yt , and z for, respectively, the observed series, the true series, and
the noise. We calculate a regression (or fit, or analysis) ya, sampled at the same epochs t by considering the
information about the statistics of y and z contained in the covariance matrices Czz = E

(
zzT
)

of the noise and

Cyy = E
(

ytyt T
)

of the sampled series. This can be set up as an inverse problem, where ya is obtained as the
best linear unbiased estimate, or BLUE [e.g., Rasmussen and Williams, 2006]

ya = Cyy

[
Cyy + Czz

]−1
yo . (A4)

We present in Figure A1 below two examples where yt results from a process defined by equation (4), with the
correlation time 𝜏u replaced by 𝜏y =100 (dimensionless units). In case A, the noise z also results from a process
defined by equation (4), with 𝜏u replaced by 𝜏z = 10. In case B, the noise z results instead from a process
defined by equation (3), with 𝜏0 replaced by 𝜏z = 10. We set the variances 𝜎2

y = 4 and 𝜎2
z = 0.25. Both the true

series and the noise present similar differentiability properties in case A, whereas the noise is smoother than
the true series in case B. In both cases we obtain two estimates of ya using equation (A4): one with the correct
matrix Czz and another one where we forgo the time correlation of the noise (z is treated as a white noise, i.e.,
Czz is diagonal).
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Figure A1. Tutorial examples in cases (top) A and (bottom) B: true
series (black), noise (green), data (red), BLUE with correlated errors
(blue), and BLUE with uncorrelated errors (cyan)—see text of
Appendix A for details.

The results from several analyses are pre-
sented in Figure A1. We see that omit-
ting cross covariances in the statistics of
the noise leads to an analyzed estimate
ya much smoother than the true series
but biased at some epochs (as a result
of the time-correlated noise). On the con-
trary, when considering cross covariances of
the time-correlated noise, we are able to
retrieve part of the high-frequency content
of the true series; furthermore, the analy-
sis is biased toward zero in comparison with
the noisy observations (but not always when
compared with the true series). We finally
see that the high-frequency content is bet-
ter retrieved in case B than in case A. We
attribute this to the fact that both the noise
and the series display sharp time changes in
case A, while in case B the noise is assumed
to be smoother.

Appendix B: Calculation of the
Stream Function𝝍

Within the incompressible QG approxima-
tion (see section 2.2 and equation (25)), the
horizontal flow at the CMB is related to the
stream function 𝜓(𝜃, 𝜙) through

uh(𝜃, 𝜙) =
−1

c2 cos2 𝜃
r × ∇h𝜓 . (B1)

From (B1) the expression for the horizontal
divergence gives

∇h ⋅ uh = −
∑
𝓁

𝓁∑
m=−𝓁

𝓁(𝓁 + 1)
c

s𝓁mY𝓁m = 2
c3 cos3 𝜃

𝜕𝜓

𝜕𝜙
, (B2)

while the zonal velocity is

uG =
∑
𝓁

t𝓁0

dP𝓁0

d𝜃
= − 1

c2 cos2 𝜃

d𝜓G

d𝜃
. (B3)

Writing
𝜓(𝜃, 𝜙) =

∑
𝓁,m

𝜓𝓁mY𝓁m(𝜃, 𝜙) , (B4)

we use (A2) and relate the nonzonal coefficients 𝜓𝓁m to the poloidal coefficients s𝓁m,

∀m ≠ 0,
∑
𝓁

𝜓𝓁mY𝓁m = c2 cos3 𝜃
∑
𝓁

𝓁(𝓁 + 1)
2m

is𝓁mY𝓁m. (B5)

From (B3) and the recurrence rules for Legendre polynomials, we obtain the following relation between the
zonal coefficients 𝜓𝓁0 and the toroidal coefficients t𝓁0:

𝜓𝓁0 = c2

(
(𝓁 − 1)(𝓁 − 2)

(2𝓁 − 1)(2𝓁 − 3)
t𝓁−2,0 +

2𝓁2 + 2𝓁 − 3
(2𝓁 − 1)(2𝓁 + 3)

t𝓁0 +
(𝓁 + 3)(𝓁 + 2)

(2𝓁 + 5)(2𝓁 + 3)
t𝓁+2,0

)
. (B6)
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Appendix C: Estimation of the Electromagnetic Torque

Following the theory of Roberts [1972], the calculation relies on the linearization of both the induction
equation and the expression for the axial magnetic torque acting on the solid mantle:

Γ = 1z ⋅ ∫ r × (j × B)dV, (C1)

where the magnetic field B is obtained by downward extrapolation of the field known at the Earth’s surface
without considering any induction effect in the mantle. The electrical currents j are obtained from the surface
electric field EH at the CMB and hence from the field uBr by continuity of EH across the CMB. Consistently with
equation (1) for the poloidal field, we neglect here the diffusion of toroidal magnetic field from the core.
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