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S U M M A R Y
We present a new technique for modelling the global lithospheric magnetic field at Earth’s
surface based on the estimation of equivalent potential field sources. As a demonstration we
show an application to magnetic field measurements made by the CHAMP satellite during
the period 2009–2010 when it was at its lowest altitude and solar activity was quiet. All three
components of the vector field data are utilized at all available latitudes. Estimates of core and
large-scale magnetospheric sources are removed from the measurements using the CHAOS-4
model. Quiet-time and night-side data selection criteria are also employed to minimize the
influence of the ionospheric field. The model for the remaining lithospheric magnetic field
consists of magnetic equivalent potential field sources (monopoles) arranged in an icosahedron
grid at a depth of 100 km below the surface. The corresponding model parameters are estimated
using an iteratively reweighted least-squares algorithm that includes model regularization
(either quadratic or maximum entropy) and Huber weighting. Data error covariance matrices
are implemented, accounting for the dependence of data variances on quasi-dipole latitude.
The resulting equivalent source lithospheric field models show a degree correlation to MF7
greater than 0.7 out to spherical harmonic degree 100. Compared to the quadratic regularization
approach, the entropy regularized model possesses notably lower power above degree 70 and
a lower number of degrees of freedom despite fitting the observations to a very similar level.
Advantages of our equivalent source method include its local nature, the possibility for regional
grid refinement and the production of local power spectra, the ability to implement constraints
and regularization depending on geographical position, and the ease of transforming the
equivalent source values into spherical harmonics.

Key words: Inverse theory; Magnetic anomalies: modelling and interpretation; Magnetic
field; Satellite magnetics.

1 I N T RO D U C T I O N

The magnetic investigation of the lithosphere, covering the Earth’s
crust and upper mantle, is of great importance for many aspects of
Earth science, for example, plate tectonics (Molnar 1988), ocean
ridge spreading, lithospheric thickness (Langel 1998) and histori-
cal meteorite impacts (Plado et al. 2000). Since the era of space
missions, lithospheric magnetic field modelling techniques are also
applicable to the investigation of other objects of our solar sys-
tem, including Mars, Mercury and the Moon (Ness 1979; Conner-
ney et al. 1999; Langlais et al. 2004; Whaler & Purucker 2005;
Purucker & Nicholas 2010). Furthermore, lithospheric field maps
play a significant role in the orientation of subsurface drilling de-
vices (Inglis 1987).

In a source-free region, the geomagnetic field potential may
be represented by harmonic functions, which are solutions of the
Laplace equation. The most widely used functions for global geo-
magnetic field modelling are spherical harmonics (SH). However,
several studies (e.g. O’Brien & Parker 1994; Chambodut et al.

2005) have concluded that local lithospheric features may not be
well represented by an SH representation since the correspond-
ing model parameters are global basis functions that depend on
the entire data set and its associated noise. When modelling the
lithospheric magnetic field, local basis functions may arguably be
more suitable, for instance (depleted) harmonic splines (Langel &
Whaler 1996), wavelet functions (Maisinger et al. 2004; Mayer &
Maier 2006), spherical triangle tessellations (Stockmann et al. 2009)
and equivalent dipole sources (e.g. Covington 1993; Langlais et al.
2004). Another possibility is to use spectral, but domain-limited
basis functions, for example spherical caps (Haines 1985; Thébault
2006, 2008) or spherical Slepians (Beggan et al. 2013). The current
study builds on the method introduced by O’Brien & Parker (1994),
applying equivalent monopole sources to represent the lithospheric
field. Advantages of this method include its ease of application to
data from various altitudes, the possibility to carry out both global
and local modelling, as well as the ease of transformation into a
spherical harmonic form (see Section 2.2). The latter is extremely
useful for comparisons to state-of-the-art spherical harmonic
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models of the global lithospheric field such as the MF7 serial model
(Maus et al. 2008; Maus 2010), the CHAOS-4 model (Olsen et al.
2014) and CM5 (Sabaka et al. 2015), the latest version in the Com-
prehensive Model series. The use of local basis functions has the
further advantage that when data noise is concentrated in specific
regions (e.g. the polar regions), only model parameters in the vicin-
ity are affected, while all model parameters are adversely affected
if global basis functions such as spherical harmonics are used.

In Section 2, we present our formulation of the equivalent source
method. The technique is then applied to a test case involving
CHAMP data from January 2009 to September 2010. CHAMP data
are currently the basis for the best available model of the lithospheric
field (Maus et al. 2008; Maus 2010; Lesur et al. 2013; Sabaka et al.
2015). The CHAMP data and their processing are described in
Section 3. Our model estimation procedure, involving iteratively
reweighted least-squares (IRLS; Constable 1988; Olsen 2002) is
described in Section 4. The approach involves over-parameterizing
the number of monopoles and applying model regularization to
control the model complexity. Following Stockmann et al. (2009),
we test both conventional quadratic regularization (QR) and maxi-
mum entropy regularization (ER) techniques (Gull & Skilling 1999;
Jackson et al. 2007). The former derives models of minimal source
amplitudes, while the maximum entropy regularization models are
characterized by minimal complexity for a given misfit to the obser-
vations. Results and their discussion are presented in Section 5 and
we conclude in Section 6 with some perspectives regarding future
applications of the method.

2 M O D E L L I N G T E C H N I Q U E

We describe the geomagnetic field in a geocentric reference frame by
the spherical coordinates r = (r, θ, φ), where r denotes the radial
distance from the centre of the Earth, θ denotes the geocentric
co-latitude and φ denotes the eastern longitude. Currents in the
ionosphere are neglected and the quasi-stationary approximation is
adopted, such that the magnetic vector field B above the Earth’s
surface is described by a scalar potential B = −∇�(r, θ, φ) where
∇2�(r, θ , φ) = 0. The solution of Laplace’s equation can then
be written as a spherical harmonic expansion. The corresponding
solution for internal geomagnetic sources is usually expressed as

�(r) = a
∞∑

n=0

(
a

r

)n+1 n∑
m=0

[
gm

n cos(mφ) + hm
n sin(mφ)

]
Pm

n (cos θ ),

(1)

where a = 6371.2 km is the reference radius given by the mean
radius of the Earth, Pm

n (cos θ ) are the Schmidt semi-normalized
associated Legendre functions and [gm

n , hm
n ] are the time-dependent

Gauss coefficients of order m and degree n (Blakely 1996).
In this study, we have removed estimates of the core field and

large-scale magnetospheric sources derived from the CHAOS-4
model from the magnetic field observations, hence we are only
concerned with the static lithospheric field component.

2.1 Equivalent source formulation

Having N measurement locations ri = [ri , θi , φi ] (for i = 1, . . . ,
N), the magnetic scalar potential can be modelled as a linear com-
bination of K globally distributed equivalent potential field sources
(monopoles) located at sk = [rk, θk, φk] and with source strength qk

(for k = 1, . . . , K) measured in nT. Following O’Brien & Parker

(1994) and Blakely (1996), the corresponding potential can be
expressed as

�̂(ri ) =
K∑

k=1

qk
r 2

k

rik

=
K∑

k=1

rkqk

∞∑
n=0

(
rk

ri

)n+1

Pn(cos μik), with K < N (2)

where rik = |ri − sk | and μik are the distance and angle between the
position vectors of measurement i and source k, respectively,

rik =
√

r 2
i + r 2

k − 2rirk cos(μik)

cos(μik) = cos(θi ) cos(θk) + sin(θi ) sin(θk) cos(φi − φk). (3)

Applying the decomposition formula for Pn(cos μik) to eq. (2)
(Torge 2001) and employing Schmidt-semi-normalization of the
surface spherical harmonics (Blakely 1996), the potential due to
monopole sources is

�(ri ) =
K∑

k=1

rkqk

∞∑
n=0

(
rk

ri

)n+1

×
n∑

m=0

Pm
n (cos θi )Pm

n (cos θk) cos(mφi − mφk). (4)

Comparing the spherical harmonic and equivalent source poten-
tial expansion (eqs 1 and 4, respectively) enables the conventional
spherical harmonic Gauss coefficients to be obtained directly from
the equivalent source coefficients qk,

gm
n =

K∑
k=1

(rk

a

)n+2
qk Pm

n (cos θk) cos(mφk) (5)

hm
n =

K∑
k=1

(rk

a

)n+2
qk Pm

n (cos θk) sin(mφk). (6)

Note that eqs (5) and (6) provide a means of estimating a local
power spectrum by considering the monopoles only within a region
of interest, implicitly assuming those elsewhere are zero and renor-
malizing the power spectra accounting only for the area considered.

The Mauersberger–Lowes spherical harmonic power spectrum
R(n) due to internal sources, which is the squared magnitude of the
magnetic field averaged over a spherical surface of radius r, is given
by (Lowes 1974)

R(n) = (n + 1)
(a

r

)(2n+4) n∑
m=0

[(
gm

n

)2 + (
hm

n

)2
]
. (7)

All power spectrum illustrations below are given for r = a.
The comparison of two different lithospheric field models, with

different sets of Gauss coefficients, [gm
n , hm

n ] and [g
′m
n , h

′m
n ], respec-

tively, can be visualized using the degree correlation (Langel (1998),
eq. 4.23)

ρ(n) =
∑n

m=0

(
gm

n g
′m
n + hm

n h
′m
n

)
√∑n

m=0

[
(gm

n )2 + (hm
n )2

]∑n
m=0

[(
g′m

n

)2 + (
h ′m

n

)2
] . (8)

Whenever ρ ≥ 0.7, models are usually considered to be well cor-
related (Arkani-Hamed et al. 1994; Sabaka & Olsen 2006). Com-
pared to the power spectra representation, degree correlations give
no information on the magnetic field magnitudes but rather on the
respective phase differences (Olsen et al. 2006).
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Figure 1. Icosahedron grid with refinement level L = 2. The corresponding
sources are placed at the vertices and triangle midpoints. This study applies
L = 5 corresponding to 30 722 source locations.

Another way of illustrating the model differences is by looking at
the relative difference between each coefficient in a degree versus
order matrix, S. For the difference between gm

n and g
′m
n we have

S(n, m) = 100 · gm
n − g

′m
n√

1
(2n+1)

∑n
m=0

[(
g′′m

n

)2 + (
h ′′m

n

)2
] , (9)

and similarly for the corresponding hm
n coefficients. The coefficient

differences are normalized with respect to the mean spectral ampli-
tude of a reference model, with [g

′′m
n , h

′′m
n ] being the corresponding

Gauss coefficients (Olsen et al. 2005, eq. 5.3). Note that the factor
100 in eq. (9) indicates that the normalized coefficient differences
are given in per cent.

We have chosen to use magnetic monopoles as equivalent sources
due to their simplicity and mathematical convenience. Like dipoles,
they are a solution to Laplace’s equation and produce a poten-
tial field (e.g. Toyoshima et al. 2008). However, according to
Maxwell’s equations we have ∇ · B = 0, which means that indi-
vidual monopoles do not exist. Here we use monopoles only as a
mathematical tool for representing the lithospheric magnetic field
models and impose an additional constraint (see Section 4.5) to
ensure that the divergence-free constraint is satisfied.

2.2 Distribution of sources

In this study, we apply an icosahedral grid (Baumgardner & Fred-
erickson 1985) with monopoles placed at both vertices and triangle
midpoints. The corresponding grid size is defined by the source
depth and grid refinement level L. A grid of refinement level L = 0
consists of 20 identical equilateral triangular faces and 12 vertices
on a unit sphere. Each vertex is thereby surrounded by either five
or six faces. Increasing the refinement level by 1, every face is
further subdivided into four triangles, see Fig. 1. In this study, we
use L = 5, consisting of K = 30 722 locations at the vertices and
midpoints, all projected on a sphere of radius a − 100 km so the
distance between the satellite data and the monopoles is greater than

Table 1. Median angular distance and arc length between
two adjacent sources for different icosahedron grid refine-
ment levels L. The arc length is given at the Earth’s surface.
Both vertices and midpoints are taken into account in K.

L K Angular distance (deg) Arc length (km)

3 1922 3.52 391
4 7683 1.75 195
5 30722 0.98 109
6 122882 0.49 54
7 491522 0.24 27

the separation between the monopoles. We have chosen to include
the centre points as a means of grid refinement without resorting to
a higher refinement level, which would result in a large increase in
the number of sources and hence the calculation time.

Table 1 lists the median angular separation between two adja-
cent sources for different grid refinement levels. The values are
calculated from the average distance between sources and their five
nearest neighbours. The applied grid refinement level corresponds
to a median grid spacing of 0.98◦, equivalent to an arc length of
109 km at the Earth’s surface. Synthetic tests demonstrated that for
the regularized models presented here, the surface field results were
not affected by the equivalent source locations.

The chosen source depth of a − 100 km is based on a synthetic
test where the magnetic field signatures at Earth’s surface produced
by monopoles with a horizontal spacing of 1◦ (very close to the
applied angular distance of 0.98◦) were found to be negligible.

3 DATA , P R E - P RO C E S S I N G A N D
E R RO R B U D G E T

CHAMP 30 s three-component vector field data between 2009 Jan-
uary 1 and 2010 September 2 are used in this study. During that
period the satellite was at its lowest altitude (below 300 km) and
solar activity was also rather quiet, making the data particularly
suitable for lithospheric magnetic field studies. Estimates of core
and large-scale magnetospheric sources are removed from the mea-
surements using the geomagnetic field model CHAOS-4, and we
use the same data selection as employed in CHAOS-4 (Olsen et al.
2006, 2014). Important to mention here are the quiet-time condi-
tions (Kp-index ≤20 for quasi-dipole (QD) latitudes equatorward of
±55◦ and the merging electric field at the magnetopause Em ≤ 0.8
mV m−1 for QD latitudes poleward of ±55◦) and dark region data
(sun at least 10◦ below the horizon) selection criteria, which aim to
minimize the influence of the ionospheric field. Further, the con-
tribution from disturbances of the magnetospheric ring current is
minimized by only selecting data with hourly RC-index variations
smaller than 2 nT hr−1 (Olsen et al. 2014).

Our implementation of IRLS assumes independent and Huber
distributed (i.e. Gaussian distributed in the centre, Laplacian dis-
tributed in the tails) residuals. We additionally remove gross outliers
with absolute residual values >100 nT from the data set in an effort
to avoid mapping strongly correlated noise from badly disturbed
tracks into the lithospheric magnetic field models.

Regarding the data error budget, we implement data uncertainties
depending on the QD latitude (Richmond 1995; Emmert et al. 2010)
independently for the three vector field components, Br, Bθ and
Bφ , as shown in Fig. 2. The uncertainties (standard deviations)
σ p (where p = r, θ or φ) are derived using the robust algorithm
of Driessen & Rombouts (2007) applied to residuals (obtained by
subtracting from the data predictions from the CHAOS-4 model,
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Figure 2. Latitude-dependent standard deviation values σ p (where p = r, θ or φ). Values are derived for each QD latitude band of 2◦ (the Northern Hemisphere
is indicated by positive QD latitude values) using the robust procedure of Driessen & Rombouts (2007).

including its core, crustal and external parts) in 2◦ latitudinal bands.
The QD coordinate system is suitable for describing processes due
to unmodelled ionospheric sources, which we assume dominate the
residuals, especially at polar latitudes.

The CHAMP satellite tracks are defined by a near polar orbit
with an inclination of 87.3◦. Thus, there are no data within 2.7◦ of
the poles, which introduces instabilities in the determination of high
degree spherical harmonic zonal coefficients. In order to counteract
this ‘polar gap’ effect, 12 257 synthetic (noise-free) values of the
radial field component are added in the polar regions between ±0.5◦

and 4◦ at 300 km altitude derived from the CHAOS-4l model up
to SH degree n = 60. The synthetic data represent 2.89 per cent of
the total data set. Except for the polar gap regions, we use all three
measurement components in the model derivation. We have also
carried out tests without adding synthetic data in the polar gap and
find very similar results at non-polar gap locations, see Section 5.
This illustrates one advantage of the local nature of our equivalent
source method.

4 M O D E L E S T I M AT I O N

In this section, we describe our scheme for estimating equivalent
source models of the lithospheric field from satellite data. Based
on a regularized IRLS approach, the scheme involves iteratively
minimizing a penalty function measuring both the misfit to the
observations and also the complexity of the model.

In Section 4.1, we present our mathematical formulation of the
inverse problem. The IRLS numerical scheme used to obtain so-
lutions is set out in Section 4.2. Section 4.3 gives the details in
the case that model complexity is measured using a traditional
quadratic norm, and Section 4.4 gives the corresponding details
when an entropy-based measure of model complexity is instead
employed. The method of enforcing the divergence-free condition,
a necessary feature of any scheme based on monopoles, is described
in Section 4.5. The diagnostic measures of model resolution we em-

ploy are given in Section 4.6, and finally a short summary of our
lithospheric field model estimation scheme is given in Section 4.7.

4.1 Formulation of the inverse problem

The magnetic field B due to the equivalent monopole sources mea-
sured at a given location i is calculated using the negative gradient
of eq. (2),

B(ri ) = −∇�̂(ri )

= −
K∑

k=1

qk∇ r 2
k

rik
. (10)

The data for a particular field component p, where p can be r, θ , or
φ, is the projection of B onto the direction given by the unit vector
êp ,

Bi,p = −
K∑

k=1

qk

[
êi,p · ∇p

r 2
k

rik

]

=
K∑

k=1

qk gik,p, (11)

where gik, p are the individual elements of the Green’s matrix repre-
senting the directional derivatives of the kth source evaluated in the
direction p and at the location ri .1 The corresponding full expres-
sions are given in the Appendix.

1
The Green’s matrix elements for equivalent sources are derived in
O’Brien & Parker (1994). However, it appears that the corresponding eqs
(C2) and (C3) contain a typographical error. In formula (C3) we have
changed the signs in front of rs to be negative. In eq. (C2), the formulae
for Bθ (r) and Bφ(r) have been multiplied by −2 and 2, respectively. In
the formula of Br(r), the factor 2 was removed both in the numerator and
denominator.
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Applying the above scheme to all measurements, the forward
problem described by eq. (11) may be written as

B = Gq (12)

where B = [Br , Bθ , Bφ] is a column vector containing model pre-
dictions for all 3N vector components at the N locations of magnetic
field measurements, G = [G

r
, G

θ
, G

φ
] represents the correspond-

ing 3N × K Green’s matrix and q is the model vector of all K source
strengths qk.

The inverse problem then consists of finding a model q that
minimizes the error vector e between the observed data d and the
model predictions B,

d = B + e

= Gq + e (13)

4.2 Regularized IRLS solution

Determination of the lithospheric field at Earth’s surface from noisy
data collected at satellite altitude is an ill-posed and non-unique in-
verse problem. We find solutions to this problem using an IRLS
algorithm (e.g. Walker & Jackson 2000) including model regu-
larization. This involves minimizing both the differences between
model predictions and measurements (a misfit norm) and also a
measure of the model complexity R (regularization norm). The
objective function � we minimize is of the form

�(q) = (d − Gq)T W(d − Gq) + λR(q) (14)

where

W = C−1/2H C−1/2. (15)

The data weight matrix W consists of two parts: (i) a diagonal

inverse data error covariance matrix C−1 = sin θ

σ 2 that accounts for the

expected data error variances σ 2 (see Section 3) and provides equal
area weighting; (ii) a Huber weighting matrix H that depends on the
residuals between the model predictions and the observations (e.g.
Constable 1988). The regularization parameter λ (nT−2) quantifies
the trade-off between the misfit and regularization norm (e.g. Menke
2012). Large λ values result in models of low complexity but with
large residuals, while the opposite is the case for small λ values.

A Newton-type iterative scheme is used to minimize the objective
function of eq. (14), such that the model prediction at the j + 1
iteration is given by

q j+1 = (2GT W
j
G + λ∇∇R(q j ))

−1

× (2GT W
j
d + λ∇∇R(q j )q j − λ∇R(q j )). (16)

A new solution is thus derived from the model q j and the Huber
weights H

j
(that appear in W

j
) from the previous iteration. We iter-

ate eq. (16) until the convergence criterion ‖q j − q j+1‖/‖q j+1‖ <

0.01 is met.
The Huber weights in the diagonal matrix H

j
= [hr, j , hθ, j , hφ, j ]

(e.g. Huber 1964; Constable 1988) are obtained from the residuals
e p, j from the jth iteration, with p = r, θ or φ, normalized by
the expected latitude-dependent standard deviation values σ p from
Fig. 2. Considering the ith vector field observation, the Huber weight
for a given component p is

h p, j (i) =
{

1 if εp, j (i) ≤ 1.5,

1.5/εp, j (i) if εp, j (i) > 1.5
(17)

where

ε p, j = |ep, j/σ p|. (18)

This results in residuals much larger than expected being down-
weighted in the least-squares scheme. The changes in ε p, j with
iteration j are due to changes in the model misfit ep, j , and not to
changes in σ p .

4.3 Quadratic regularization

We consider a very simple form of quadratic regularization, defined
by the Euclidean length of the model solution, RQR(q) = qT q. Min-
imizing the objective function with respect to q then results in the
following simplified version of eq. (16)

qQR
j+1 = (GT W

j
G + λI)−1GT W

j
d. (19)

The corresponding solution has the smallest possible sum of squares
of the monopole values, for a chosen level of misfit. This criterion,
however, may not always be geologically useful, in particular be-
cause there are several very large amplitude local magnetic field
anomalies, for example, the West African Craton anomaly and the
Bangui anomaly. Allowing a model to possess high amplitude local
anomalies, while at the same time retaining a simple morphology,
is possible by regularizing the model entropy rather than its squared
amplitude. This is the subject of the next section. The investigated
quadratic regularization models, with their different λ values, share
the same starting point, a well-converged, but unregularized (λ = 0),
solution.

4.4 Maximum entropy regularization

In order to account for the large amplitudes of local lithospheric
field anomalies, we investigate the effect of regularizing the model
information complexity rather than its amplitude. The entropy reg-
ularization method applied here was previously described in detail
by Jackson et al. (2007) and Stockmann et al. (2009). We note
that maximum entropy regularization is naturally implemented in
the physical domain, rather than in spectral model space; it can
therefore be very easily implemented by considering the entropy of
different arrangements of the equivalent sources.

Gull & Skilling (1999) define the entropy S of a model q, which
can consist of both negative and positive values, as

S(q, ω) =
K∑

k=1

[
ψk − 2ω − qk ln

(ψk + qk

2ω

)]
. (20)

We work with the related negative entropy (negentropy) regulariza-
tion norm (Gillet et al. 2007)

RER(q, ω) = −4ωS(q, ω) (21)

with ω being a default parameter which defines the scale of the en-

tropy function (Maisinger et al. 2004) and ψk =
√

q2
k + 4ω2. The

negentropy RER becomes identical to the quadratic norm for large
values of ω, thus making comparisons between the two regulariza-
tion methods possible. Using RER(q, ω) as the regularization norm,
eq. (16) becomes

qER
j+1 = (2GT W

j
G + λα j )

−1
(

2GT W
j
d + λα j q

ER
j − 4λωβ j

)
(22)
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Figure 3. Power spectra for the investigated quadratically regularized (QR) models with different regularization parameters λ, compared to some recent
lithospheric field models (CM5: Sabaka et al. (2015) and MF7: Maus et al. (2008); Maus (2010)). The model with λ = 928 nT−2, represented by the red line,
is chosen as our preferred model mono-QR. The corresponding lithospheric radial magnetic field at the Earth’s surface is illustrated in the upper part of Fig. 4.

with

α j = diag

(
4ω

ψ1, j
,

4ω

ψ2, j
, . . . ,

4ω

ψK , j

)

β j =
(

ln

(
ψ1, j + q1, j

2ω

)
, ln

(
ψ2, j + q2, j

2ω

)
,

. . . , ln

(
ψK , j + qK , j

2ω

))
. (23)

Converged quadratic regularization models with the same λ were
used as the starting conditions for the investigated maximum en-
tropy models.

4.5 Enforcing the divergence-free condition

Since isolated magnetic monopoles do not exist (∇ · B = 0), we
must also enforce an additional condition that ensures zero net
magnetic flux (O’Brien & Parker 1994)

K∑
k=1

qk = 0. (24)

This requirement can be implemented using a Lagrangian method
by applying the following scheme (Sabaka, private communication,
2011):

qc
j+1 = q∗ − AL(LT q∗)(LT AL)−1

A = (GT W
j
G + λI)−1, (25)

where L is a 1 × K unity row vector and q∗ now represents either a
quadratic (qQR

j+1) or maximum entropy (qER
j+1) unconstrained model

solution from eqs (19) and (22).

4.6 Model resolution and number of degrees of freedom

An important method of quantitatively assessing inversion results
is to compute the model resolution matrix R. This represents the

mapping between the estimated and true model parameters. For
a quadratic regularization, R takes the form (e.g. Bloxham et al.
1989; Menke 2012)

RQR = (GT WG + λI)−1GT WG. (26)

The corresponding linearized approximation for the maximum en-
tropy approach is

RER = (2GT WG + λα)−12GT WG. (27)

A comparison and assessment of the achieved resolution of two
regularized models can thereby be performed. In particular, the
effective number of degrees of freedom may be obtained from the
trace of the respective resolution matrices.

4.7 Summary of model estimation scheme

For convenient reference, we summarize here our model estimation
scheme:

(i) Inputs:
d: the observed vector field magnetic data.
σ p: a priori standard deviations for the data errors (latitude-
dependent for each field component).
λ: the regularization parameter, and ω the entropy default parameter
for ER models.
G: the Green’s matrix connecting the data to the model parameters.

(ii) Initial conditions
Unregularized model (λ = 0): starts from unity Huber weights and
model values q all set to zero.
QR models: start from converged λ = 0 model and corresponding
Huber weights.
ER models: start from converged QR model with same λ and cor-
responding Huber weights.

(iii) Iteration step: model q j+1 from model q j and its associ-
ated Huber weights
Unregularized model: iterate eq. (19) with λ = 0.
QR models: iterate eq. (19), with given and fixed λ.
ER models: iterate eq. (22), with given and fixed λ and ω.
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Table 2. Normalized (by latitude-dependent standard deviation values) and un-normalized Huber-weighted RMS model residual
values between the CHAMP observations and the models MF7 (nmax = 133), CM5 (nmax = 120), CHAOS-4 (nmax = 100), and
a selection of QR models and ER models at satellite altitude. The results for models mono-QR and mono-ER are highlighted

in bold. Here we define �B =
√

�B2
r + �B2

θ + �B2
φ . The suffixes ‘polar’ and ‘non-polar’ represent data of absolute QD

latitudes >55◦ and <55◦, respectively.

MF7 CM5 CHAOS-4 QR models ER models

λ(nT−2) = – – – 4640 928 619 464 928 4640
ω(nT) = – – – – – – – 55 × 10−4 25 × 10−4

Normalized
RMS �Br (−) 1.31 1.34 1.30 1.29 1.29 1.29 1.29 1.29 1.29

RMS �Br polar (−) 1.43 1.45 1.43 1.43 1.43 1.43 1.43 1.43 1.43
RMS �Br non-polar (−) 1.22 1.26 1.21 1.18 1.18 1.18 1.18 1.18 1.18

RMS �Bθ (−) 1.26 1.27 1.26 1.26 1.26 1.26 1.26 1.26 1.26
RMS �Bθ polar (−) 1.38 1.39 1.38 1.38 1.38 1.38 1.38 1.38 1.38

RMS �Bθ non-polar (−) 1.17 1.19 1.17 1.18 1.17 1.17 1.17 1.17 1.18

RMS �Bφ (−) 1.28 1.29 1.27 1.27 1.27 1.27 1.27 1.27 1.27
RMS �Bφ polar (−) 1.43 1.43 1.43 1.42 1.42 1.42 1.42 1.42 1.42

RMS �Bφ non-polar (−) 1.17 1.18 1.16 1.16 1.16 1.16 1.16 1.16 1.16

RMS �B (−) 1.28 1.30 1.28 1.27 1.27 1.27 1.27 1.27 1.27
RMS �B polar (−) 1.41 1.42 1.41 1.41 1.41 1.41 1.41 1.41 1.41

RMS �B non-polar (−) 1.19 1.21 1.18 1.17 1.17 1.17 1.17 1.17 1.17

Un-normalized
RMS �Br (nT) 7.41 7.44 7.39 7.41 7.40 7.40 7.40 7.40 7.41

RMS �Br polar (nT) 11.43 11.44 11.41 11.45 11.44 11.44 11.44 11.44 11.45
RMS �Br non-polar (nT) 1.66 1.71 1.64 1.61 1.61 1.60 1.60 1.60 1.61

RMS �Bθ (nT) 15.81 15.84 15.81 15.81 15.81 15.81 15.81 15.81 15.81
RMS �Bθ polar (nT) 24.52 24.56 24.52 24.51 24.51 24.51 24.51 24.51 24.51

RMS �Bθ non-polar (nT) 2.40 2.42 2.40 2.40 2.40 2.40 2.40 2.40 2.40

RMS �Bφ (nT) 17.29 17.29 17.28 17.26 17.25 17.25 17.25 17.25 17.26
RMS �Bφ polar (nT) 26.91 26.88 26.90 26.86 26.86 26.86 26.86 26.86 26.86

RMS �Bφ non-polar (nT) 2.25 2.27 2.23 2.23 2.23 2.23 2.23 2.23 2.23

RMS �B (nT) 14.19 14.21 14.18 14.17 14.17 14.17 14.17 14.17 14.17
RMS �B polar (nT) 22.05 22.06 22.04 22.02 22.02 22.02 22.02 22.02 22.02

RMS �B non-polar (nT) 2.13 2.16 2.12 2.11 2.11 2.11 2.11 2.11 2.11

Table 3. Similar to Table 2 but with statistics for only part of the African continent (area of the inserted plot
in the left part of Fig. 10). The preferred models mono-QR and mono-ER are highlighted in bold. �B =√

�B2
r + �B2

θ + �B2
φ .

MF7 CM5 CHAOS-4 QR models ER models

λ(nT−2) = – – – 4640 928 619 464 928 4640
ω(nT) = – – – – – – – 55 × 10−4 25 × 10−4

Normalized
RMS �Br (−) 4.05 4.29 4.07 1.20 1.20 1.20 1.20 1.20 1.20
RMS �Bθ (−) 2.10 2.21 2.11 1.11 1.11 1.11 1.11 1.11 1.11
RMS �Bφ (−) 2.52 2.57 2.47 1.15 1.15 1.15 1.15 1.15 1.15
RMS �B (−) 2.85 2.97 2.84 1.15 1.15 1.15 1.15 1.15 1.15

Un-normalized
RMS �Br (nT) 5.32 5.62 5.35 1.57 1.57 1.57 1.57 1.57 1.57
RMS �Bθ (nT) 3.76 3.95 3.79 2.01 2.01 2.01 2.01 2.01 2.01
RMS �Bφ (nT) 4.39 4.48 4.31 2.01 2.01 2.01 2.01 2.01 2.01
RMS �B (nT) 4.42 4.60 4.41 1.88 1.87 1.87 1.87 1.87 1.88

(iv) Implement divergence free condition via eq. (25)
(v) Test convergence criterion

‖q j − q j+1‖/‖q j+1‖

×
{

> 0.01 return to (iii) and start next iteration,

< 0.01 qj+1 is the converged model solution. END.

5 R E S U LT S A N D D I S C U S S I O N

We begin this section by describing the results obtained using the
QR approach. A wide range of regularization parameters were inves-
tigated, and a selection of models from the vicinity of the knee of the
L-curve (Hansen 1998), with regularization parameters λ = 4640,
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Figure 4. Top: lithospheric radial magnetic field corresponding to the preferred quadratic regularization model mono-QR with λ = 928 nT−2 at the Earth’s
surface. Bottom: similar figure for the preferred maximum entropy regularization model mono-ER with λ = 4640 nT−2 and ω = 25 × 10−4 nT. The scale
saturates at 250 nT. Note that both figures are the direct output of the corresponding monopole model rather than an approximation based on a truncated SH
expansion. The corresponding model differences are illustrated in Fig. 8.

928 , 619 and 464 nT−2, were chosen for further analysis. All mod-
els were derived from the same unregularized (λ= 0) starting model,
and they converged within five iterations. The model values q were
then converted into the spherical harmonic Gauss coefficients gm

n

and hm
n using eqs (5) and (6). Fig. 3 illustrates the corresponding

Mauersberger–Lowes power spectra, eq. (7), compared to the state-
of-the-art lithospheric field models CM5 (Sabaka et al. 2015) and
MF7 (Maus et al. 2008; Maus 2010). We observe the expected de-
crease in power at high spherical harmonic degrees with increasing
regularization parameter.

An interesting question is whether our monopole models are
more or less sensitive to the lack of data within the polar gap re-

gions, compared to SH field models which are known to be strongly
affected by this problem above SH degree 60 (Olsen et al. 2014).
We constructed models with and without synthetic data added in
the polar gap regions. Both power spectra and global lithospheric
field maps indicate that the monopole method is not dependent on
having data in the polar gap regions. Differences in the field maps
are only seen in the areas where synthetic data were added, while
the power spectra are almost identical. The lack of sensitivity to the
polar gap problem seems therefore to be an advantage of our models
in comparison to models that are based on spherical harmonics.

Tables 2 and 3 present statistics comparing the fit of the mod-
els to selected CHAMP observations globally and locally (over
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Figure 5. Power spectra for QR models (thin lines) and ER models (thick lines) compared to reference lithospheric field models. Models with the same
regularization parameters are represented with the same colour.

Figure 6. Degree correlation between MF7 and the spherical harmonic degrees of mono-QR, mono-ER and CM5. The monopole-based models reach a typical
correlation limit of ρn = 0.7 (Arkani-Hamed et al. 1994; Sabaka & Olsen 2006) at SH degree n = 100. CM5 correlates well with MF7 up to SH degree
n = 108. The light blue line shows the degree correlation between mono-QR and mono-ER.

part of the African continent), respectively. The corresponding
model residual RMS values are given at satellite altitude and were
derived using the weights implemented in the inversion. The upper
half of the tables normalizes the values by dividing the residu-
als by the measurement error standard deviations of Fig. 2. As
expected, the derived models in general fit the observations bet-

ter than both MF7 and CM5 with the various QR models having
very similar residual values. However, looking at their respective
global lithospheric radial magnetic field maps (not given here), we
observe larger residuals especially in oceanic regions for decreas-
ing regularization parameters. For example, in the Pacific and the
North Atlantic ocean, north–south striping features appear which we
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Figure 7. Normalized coefficient differences between mono-QR and mono-ER.

Figure 8. Lithospheric radial magnetic field difference between the quadratic regularization model mono-QR with λ = 928 nT−2 (5 iterations) and the
maximum entropy regularization model mono-ER with λ = 4640 nT−2 and ω = 25 × 10−4 nT (10 iterations) at the Earth’s surface. Note that the scale saturates
at only 100 nT.

associate with unmodelled magnetospheric field signals still
present in the data set. Taking the power spectra, statisti-
cal comparisons and radial field maps into account, we se-
lect the model with λ = 928 nT−2 to be the preferred

QR model of this study. Henceforth, we refer to this
as model ‘mono-QR’. The corresponding lithospheric radial
magnetic field at the Earth’s surface is presented in the upper part
of Fig. 4.
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Figure 9. Lithospheric radial magnetic field at the Earth’s surface for mono-QR with λ = 928 nT−2, mono-ER with λ = 4640 nT−2 and ω = 25 × 10−4 nT
and the corresponding differences. The illustrated region corresponds to the northwest area of the Indian ocean. Additionally, the individual source locations
are indicated by the black circles in the right panel of the figure.

Figure 10. Left: model prediction for the radial lithospheric magnetic field at the Earth’s surface (on a 0.5◦ × 0.5◦ grid) along an orbital profile at longitude
φ = 17.25◦ crossing the Bangui magnetic anomaly (inserted figure). The result is given for mono-QR (red) and mono-ER (blue) models. Right: histogram
comparing the global statistics of the modelled lithospheric radial magnetic field at the Earth’s surface predicted by mono-QR (red) and mono-ER (blue). The
corresponding surface locations are identical to monopole locations for a grid refinement level L = 7. Standard deviation values are given in the upper part of
the figure.

Next we move on to consider the models derived using the max-
imum entropy regularization (ER) approach. ER models were de-
rived applying the same regularization parameters as in Fig. 3 and
using the respective QR solutions as the starting models. The en-
tropy default parameter ω was initially set to a large value and
then gradually decreased ensuring model convergence at each step.
The presented values of ω are the minimum values for which we
were able to obtain numerical convergence. Fig. 5 shows the power
spectra for both the ER and QR models. As expected, the ER
approach enhances local magnetic field amplitudes, resulting in
slightly larger power at higher spherical harmonic degrees com-
pared to QR models with the same λ. We found it advantageous to
have a starting model with a minimum amount of noise mapped into
the monopole sources. Our preferred ER model is therefore based
on the largest investigated regularization parameter λ = 4640 nT−2

and ω = 25 × 10−4 nT. Henceforth, this model will be referred to as
‘mono-ER’. The lower part of Fig. 4 illustrates the corresponding
radial lithospheric field map at the Earth’s surface. It is notewor-
thy that the oceanic regions are generally of lower amplitude in
mono-ER compared to mono-QR (the mean value of the absolute
radial field magnitude in the oceanic regions is 3.22 nT lower in
mono-ER than in mono-QR), while over large continental anoma-
lies the amplitude in mono-ER can be higher (left panel of Fig. 10
for ∼8◦ north). The global and local differences between mono-QR

and mono-ER are presented in Figs 8 and 9, respectively. The dif-
ferences are globally distributed, with the largest values in the polar
regions, around large local lithospheric field anomalies and in some
specific oceanic regions (e.g. in the mid-Atlantic, north of Brazil
and the Indian ocean). The right panel of Fig. 9 shows an example
of the local differences between mono-QR and mono-ER models
as well as monopole locations projected to the surface of the Earth.
Model differences are generally of larger scale than the distance
between individual sources.

Comparing the statistics for the mono-QR and mono-ER models
(see Tables 2 and 3) we were able to arrive a very similar model
misfit (difference < 0.1 per cent). This is surprising since mono-
ER has much less power at high degree (Fig. 5) with which to fit
observations to the same level as mono-QR.

Fig. 6 presents the degree correlation between MF7 and the mod-
els mono-QR, mono-ER and CM5. The mono-QR and mono-ER
models are well correlated (ρ > 0.7) with MF7 up to SH degree
n = 100, while this value is slightly larger for the correlation be-
tween MF7 and CM5 (n = 108). Fig. 6 also shows that the mono-QR
and mono-ER models are themselves well correlated out to at least
degree 120 (light blue curve).

Another illustration of the differences between models mono-
QR and mono-ER is shown in Fig. 7. After transforming the model
results to the SH domain, the Gauss coefficient differences are here
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Figure 11. Radial field residuals between the CHAMP data and the mono-QR (red) and mono-ER (blue) models. Differences between the models are shown
in black. The y-axis is nonlinear and proportional to 8

π
arctan(y/5) nT in order to emphasize near-zero values.

considered in a degree/order plot. The differences are normalized
by the mean spectral amplitude of the MF7 coefficients according to
eq. (9). The models start to differ notably above SH degree 60, partly
because there is then much less power in the mono-ER compared
with the mono-QR model. However, even at higher degree, the
differences remain relatively small, in the range of 10 per cent. We
attribute the differences between mono-QR and mono-ER shown
here primarily to the applied regularization. Additionally, interesting
vertical stripes are observed especially between degrees 60 and 95
in Fig. 7. These features are due to north–south directed structures
which are especially seen in the oceanic regions of Fig. 4, being
most prominent in model-QR (Fig. 9).

The right part of Fig. 10 presents the global surface radial mag-
netic field distribution of mono-QR and mono-ER by means of a
histogram. The corresponding surface grid locations are identical to
the monopole source locations for a grid refinement level L = 7. It
illustrates that the mono-ER model predicts more field values closer
to zero compared to the QR counterpart, while at the same time the
ER model still allows larger field amplitudes where locally required
by the data. The latter point is best appreciated by considering
the maximum and minimum global radial field values, which are
577 nT and −893 nT for mono-QR and 727 nT and −1078 nT
for mono-ER (note that the long tails of the mono-ER distri-
bution are difficult to see in Fig. 10 due to the scale). In sta-
tistical terminology, the ER approach follows a more Laplacian
distribution, as expected for crustal field anomalies (Walker &
Jackson 2000).

The left part of Fig. 10 shows the surface radial magnetic field
values along a constant longitude crossing the Bangui anomaly.
Despite the similar morphology of the anomalies, the mono-ER
model has smaller field amplitudes in regions with weak magnetic
anomalies and sometimes has larger amplitudes than the mono-QR
model over the large magnetic anomalies.

Fig. 11 illustrates the derived model residuals for mono-QR and
mono-ER with respect to the corresponding QD latitudes. Differ-
ences between the individual model values are shown in black and
emphasize the very similar model predictions as already seen in the
previous figures as well as Tables 2 and 3.

We also derived the model resolution matrices for mono-QR
and mono-ER. From the respective traces we found the number of
degrees of freedom for models mono-QR and mono-ER to be 11635
and 9515, respectively, that is, mono-ER is able to obtain almost the
same fit to the observations as mono-QR but with almost 20 per cent
fewer effective degrees of freedom.

Overall we find that, compared to traditional SH models and the
mono-QR model, the mono-ER model requires a smaller number
of degrees of freedom to achieve the same level of fit to the ob-
servations and possesses Laplacian statistics with a small number
of anomalies of high amplitude and many regions with very weak
anomalies. The latter corresponds well with the lithospheric field
expectations based on satellite, airborne and marine data (Thébault
et al. 2010).

6 C O N C LU S I O N S A N D O U T L O O K

We have presented a new method for modelling the global litho-
spheric magnetic field at the Earth’s surface based on an icosahedral
grid of equivalent monopole sources. We obtained model solutions
by iterative least squares, with Huber weighting of misfit values
and latitude-dependent data uncertainties implemented for all three
vector field components at all latitudes. The approach was tested
using CHAMP satellite data spanning the period 2009–2010.

Both QR and ER approaches based on monopole modelling
were investigated. The former involves minimizing the Euclidean
norm of the model parameters, while the maximum entropy ap-
proach minimizes an information-based measure of complexity.
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The obtained model results have been compared statistically and by
looking at the corresponding radial magnetic field values globally
and locally at the Earth’s surface. The preferred mono-QR and
mono-ER models show very similar misfits, but the ER approach
allows for larger lithospheric magnetic field values locally where
there are strong anomalies, while at the same time favouring weaker
values in oceanic regions in agreement with geological expectations.
Furthermore, the mono-ER model has a much smaller number of
degrees of freedom. The derived models correlate satisfactorily with
MF7 up to SH degree n = 100.

The method does not involve spherical harmonics and is therefore
also suitable for local geomagnetic field investigations with higher
resolution. Nonetheless, whenever needed, the equivalent source
model parameters can easily be transformed into spherical harmon-
ics. Interestingly, eqs (5) to (6) can be used to produce spherical
harmonic models and power spectra specifically for regions of in-
terest, by retaining only the equivalent sources inside that region,
and implicitly setting the amplitude of the remaining sources to zero.
Note that the R-SCHA (Thébault & Vervelidou 2015) and spherical
Slepian function (Beggan et al. 2013) approaches can also be used
to derive local power spectra.

Future applications will make use of Swarm data in combination
with high-resolution aeromagnetic measurements. For the latter,
local refinement of the monopole grid will be implemented in the
modelling approach.

Extending the method to also handle field differences, approxi-
mating gradients, along and across satellite tracks (Kotsiaros et al.
2015; Olsen et al. 2015) should lead to further improvements of the
lithospheric field models, but this will require a more sophisticated
treatment of the data covariance matrix C.
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A P P E N D I X : G R E E N ’ S M AT R I X
C O M P O N E N T S

The Green’s matrix G represents the linear relationship between the
magnetic monopole sources q and the corresponding lithospheric
magnetic field B,

B = Gq

Bi, p = −
K∑

k=1

qk

[
êi,p · ∇p

r 2
k

rik

]

=
K∑

k=1

qk gik,p (A1)

where i and k represent a given lithospheric magnetic field prediction
and the equivalent source index, respectively.

The general formula for a given element p (for p = r, θ or φ) of
the Green’s matrix is

G
p

= gik,p = −êi,p · ∇p
r 2

k

rik
. (A2)

Then
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