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S U M M A R Y
We demonstrate that first differences of polar orbiting satellite magnetic data in the along-track
direction can be used to obtain high resolution models of the lithospheric field. Along-track
differences approximate the north–south magnetic field gradients for non-polar latitudes.
In a test case, using 2 yr of low altitude data from the CHAMP satellite, we show that
use of along-track differences of vector field data results in an enhanced recovery of the
small scale lithospheric field, compared to the use of the vector field data themselves. We
show that the along-track technique performs especially well in the estimation of near zonal
spherical harmonic coefficients. Moreover, lithospheric field models determined using along-
track differences are found to be less sensitive to the presence of unmodelled external field
contributions and problems associated with the polar gap are ameliorated. Experiments in
modelling the Earth’s lithospheric magnetic field with along-track differences are presented
here as a proof of concept. We anticipate that use of such along-track differences in combination
with east–west field differences, as are now provided by the Swarm satellite constellation, will
be important in building the next generation of lithospheric field models.

Key words: Inverse theory; Magnetic anomalies: modelling and interpretation; Satellite
magnetics.

1 I N T RO D U C T I O N

Satellites in low-Earth orbit provide the most effective means of
determining on a global scale the magnetic field arising from the
magnetization of the lithosphere. In particular, the CHAMP satel-
lite, cf. Reigber et al. (2005), provided high-precision magnetic
field observations, with a wide time–space coverage, at low altitude
and during solar minimum, which has led to detailed and precise
magnetic field models of the Earth’s lithosphere. Such models are
the magnetic field (MF) model series, for example MF71 (Maus
et al. 2008), and the comprehensive model (CM) series, for example
CM5 (Sabaka et al. 2014), the CHAMP, Ørsted and SAC-C model
series of Earth’s magnetic field (CHAOS), for example CHAOS-4
(Olsen et al. 2014), and the GFZ reference internal magnetic model
(GRIMM) series (e.g. Lesur et al. 2013). Detailed discussion of
recent progress in lithospheric field modelling using satellites can
also be found in the reviews by Thébault et al. (2010) and Olsen &
Stolle (2012).

Data from the Swarm satellites (Friis-Christensen et al. 2006),
launched in 2013 November, will in the upcoming years provide
an opportunity to study on a global scale lithospheric field features
with increased resolution compared to the present CHAMP-based

1
www.geomag.us/models/MF7/MF7.html.

models. This is possible thanks to the pair of Swarm satellites that
are flying side-by-side, providing estimates of the east–west gradient
of the magnetic field. There have been several studies investigat-
ing the use of magnetic field gradient data within well understood
synthetic simulations. Thébault et al. (2013) have documented the
advantages of using east–west field gradients in a regional mod-
elling scheme in order to better detect small scale lithospheric field
signatures. Sabaka et al. (2013) show how, within their comprehen-
sive modelling framework co-estimating a large number of sources,
sums and differences of satellite data can be used to aid both small
scale lithospheric field retrieval and source separation. On the other
hand, studying the case of ideal gradients, Kotsiaros & Olsen (2014)
have emphasized that while east–west gradients provide informa-
tion on the sectoral and tesseral spherical harmonic components,
north–south gradients provide complementary information on the
zonal and near-zonal modelling terms.

Here, we present a study with real data (CHAMP measurements
obtained during the final 2 yr of that mission) and propose a way
to approximate north–south gradients by forming the first differ-
ences of the vector data along each track of the satellite orbit.
We emphasize that due to the Earth’s rotation, and because the
north–south gradients are not approximated instantaneously, along-
track differences contain a mixture of north–south and east–west
gradient signals. Along-track differences of satellite magnetic data
have previously been used in studies of planetary magnetism in
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order to enhance the resolution of the lithospheric field, for example
Connerney et al. (2005) has derived maps of the Martian magnetic
field by binning and processing along-track differences. On the other
hand, we are not aware of any study where real along-track satellite
magnetic data have been used to derive a full potential magnetic
field model in spherical harmonic form. Here, we use along-track
differences from CHAMP to derive models of the Earth’s litho-
spheric magnetic field and compare these with models estimated
using the standard approach involving vector field data themselves.
In Sections 2 and 3, we present our selection and processing of the
CHAMP data, and the adopted field modelling scheme, respectively.
In Section 4, we present results including investigations of various
spacings (samplings) of along-track differences, comparisons be-
tween similar models derived with along-track and standard vector
field data, as well as detailed comparisons with the MF7 and CM5
models derived using alternative modelling methods. CM5 is a very
recent field model derived from CHAMP, Ørsted and SAC-C satel-
lite and observatory hourly means data from 2000 August to 2013
January. Compared to its predecessor (i.e. CM4), a new treatment
for attitude error in satellite vector measurements was deployed and
a 3-D conductivity model considered for induction due to solar-quiet
current system is included. More importantly in the present context,
CM5 uses CHAMP along-track differences for the estimation of the
high degree (n ≥ 60) lithospheric field. For more details on CM5
see Sabaka et al. (2014). The relative importance of unmodelled
external field fluctuations for models derived using along-track and
standard vector data is also studied and experiments related to the
polar gap problem are reported in Section 4. Finally, in Section 5,
we conclude with a summary of our findings and remark on pos-
sible future exploitations of along-track differences, focusing our
attention on possibilities regarding the Swarm mission.

2 DATA S E L E C T I O N

We adopt similar data selection criteria to those employed for deter-
mining the CHAOS model series, for example Olsen et al. (2006,
2014). In particular, we select CHAMP vector data only between
2008 September and 2010 September, a period characterized by so-
lar minimum conditions. This results in a relatively large amount of
quiet-time data and minimizes the contamination of the lithospheric
field determination by plasma irregularities in the ionosphere and
magnetosphere, notable at times of higher solar activity (Lühr et al.
2003). Furthermore, the chosen time interval is towards the end of
the CHAMP mission when the satellite altitude was at its lowest,
that is below 300 km, thus providing data that are more sensitive
to the small scale lithospheric field. In order to to reduce contribu-
tions from ionospheric currents, only data from dark regions, when
the sun is 10◦ below horizon, were used. All data are selected ac-
cording to quiet geomagnetic conditions. First, it was required that
| dDst

dt | ≤ 2 nT
hr at all latitudes. At quasi-dipole (QD) latitudes (Rich-

mond 1995) equatorwards of ±55◦, Kp ≤ 2o has to be fulfilled,
whereas polewards of ±55◦ it is required that the merging magnetic
field, Em, at the magnetopause is less than 0.8 mV

m . To avoid the
disturbing effect of the field-aligned currents, three component vec-
tor field data have been taken only at QD latitudes equatorwards of
±55◦. At higher latitudes, we used solely the radial field component,
Br, which led to better field models than with the more common
approach of using scalar field intensity data. However, using the
along-track differences, tests with scalar field intensity data at high
latitudes resulted in almost identical field models.

In an effort to keep things as simple as possible and to focus
on modelling the lithospheric field, CHAOS-4 model (Olsen et al.
2014) predictions for both the core field Bcore (up to spherical har-
monic degree N = 15) and the large-scale magnetospheric field
Bmag were subtracted from the CHAMP observations, Bobs, prior to
modelling.

B̃ = Bobs − Bcore − Bmag (1)

= Blith + ε, (2)

where Blith is the true lithospheric signal and ε the remaining con-
tamination errors, primarily due to unmodelled field contributions
for example due to ionospheric currents, field-aligned currents, and
unmodelled induced currents (e.g. Kunagu et al. 2013).

3 M O D E L PA R A M E T R I Z AT I O N
A N D E S T I M AT I O N

We adopt a potential field model, assuming that there are no electri-
cal currents in the data sampling region. Under this assumption, we
can write the modelled vector magnetic field Bmod, at any location
within this region, as the gradient of a scalar magnetic potential
V. For example in the local north, east, centre (NEC) coordinate
system,

Bmod =
⎡
⎣ BNorth

BEast

BCenter

⎤
⎦ =

⎡
⎣ −Bθ

+Bφ

−Br

⎤
⎦ = −∇V, (3)

The potential V satisfies Laplace’s equation so it can be expressed by
a spherical harmonic expansion. We consider only internal sources,
in which case the appropriate expression for V is:

V = a
N∑

n=1

n∑
m=0

(
gm

n cos mφ + hm
n sin mφ

) (a

r

)n+1
Pm

n (cos θ ), (4)

where a = 6371.2 km is the spherical reference radius of Earth’s
surface, (r, θ , φ) are geographic coordinates, Pm

n are the Schmidt
semi-normalized associated Legendre functions, {gm

n , hm
n } are the

Gauss coefficients describing internal sources and N is the maxi-
mum degree and order of the expansion, taken here to be N = 120.

To estimate the model parameters m = {gm
n , hm

n } from the satel-
lite magnetic field data we adopt a least-squares approach. Col-
lecting the data B̃ from all observation locations into a vector d̃
and the associated model predictions Bmod into a vector dmod, this
involves minimizing the sum of the squares of the residual vector
e = d̃ − dmod.

The residuals, e, are however not Gaussian distributed because
our model is incomplete (i.e. there are remaining unmodelled fields).
In this scenario, the standard least-squares estimate does not provide
a reliable model estimate (Walker & Jackson 2000). To better handle
the non-Gaussian residuals, we therefore follow an iteratively re-
weighted least-squares approach (cf. Huber 1964; Constable 1988).
Our implementation is similar to that described by Olsen (2002)
and has previously been used in the derivation of the CHAOS series
of field models (Olsen et al. 2006, 2014). At each iteration, a data
weight matrix, W, is assigned which reflects a Huber distribution
with a Gaussian core and Laplacian tails (the threshold parameter
for this transition is chosen to be 1.5) and we then minimize the cost
function
(
d̃ − dmod

)T
W

(
d̃ − dmod

)
, (5)
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where

dmod = Gm, (6)

where G is the design matrix relating the model parameters m to
the magnetic field predictions dmod. For our experiments, a model
derived from vector data has been computed using (6). At the ith
iteration, the model parameters are determined as

mi = [GT W
i
G]−1[GT W

i
] d̃, (7)

and the resulting residuals e are used to update the data weight
matrix W

i+1
. The number of iterations is based on the convergence

of the estimated model parameters. In our case, convergence is
achieved after four iterations.

When considering along-track differences rather than standard
vector field data we instead minimize the square of the resid-
uals �e = �d̃ − �dmod between along-track differences of data
�d̃ = d̃(r2, t2) − d̃(r1, t1) and the associated along-track differ-
ences of model predictions �dmod = dmod(r2, t2) − dmod(r1, t1).
Here, (r1, t1) is the location and time of the first datum contributing
to the along-track difference and (r2, t2) is the location and time of
the second datum. Note that t2 > t1 since it refers to the next sam-
pled location along the satellite orbit track. In this situation, the cost
function minimized for the along-track difference data becomes

(
�d̃ − �dmod

)T
W

(
�d̃ − �dmod

)
, (8)

where now

�dmod = �Gm, (9)

and �G = G(r2, t2) − G(r1, t1). Similarly to (7), at the ith iteration,
the model parameters are determined from along-track difference
data as

mi = [�GT W
i
�G]−1[�GT W

i
]�d̃. (10)

Neither filtering of the data nor regularization is applied during the
model estimation procedure, in contrast to other recent models of
the high degree lithospheric field (Maus et al. 2008; Lesur et al.
2013; Olsen et al. 2014). This helps highlight the differences be-
tween models constructed using only vector field data and models
constructed using along-track differences of vector field data. How-
ever, we expect to see the impact of noise mapped into our models
at very high degree.

4 R E S U LT S A N D D I S C U S S I O N

If one is to use along-track difference data, a first important question
is what is the optimal choice of sampling rate for computing the dif-
ferences. Distinctions between sampling rates can be identified even
prior to field modelling with along-track difference data. For exam-
ple, in the left-hand panel of Fig. 1 we present as a function of QD
latitude the standard deviation of residuals (i.e. CHAMP observa-
tions minus CHAOS-4 model predictions for the core, lithospheric
and magnetospheric field contributions) of the along-track differ-
ences of the radial field data divided by the along-track distance,
that is �Br/�s. Here, �Br = Br(t2) − Br(t1) with t2 > t1, and �s is
the along-track spherical distance which CHAMP spans in the time
�t = t2 − t1, and this quantity approximates the north–south gra-
dient for non-polar latitudes. The standard deviation is calculated
using all (2 yr) data from the selected CHAMP data set. Subse-
quently, data are picked taking every k-th point, where k = 15, 30,
45 or 60. Results are presented for four different along-track sam-
plings, �t; �t1 = 15 s corresponds to a spacing of approximately
116 km at the Earth’s surface, whereas �t2 = 30 s corresponds to
232 km, �t3 = 45 s to 347 km and �t4 = 60 s to 463 km. For
QD latitudes polewards of ±55◦, sampling �t3 = 45 s presents the
lowest standard deviation. On the other hand, for mid and low QD
latitudes below ±55 the standard deviation of sampling �t4 = 60 s
is slightly lower than that of �t3 = 45 s. In order to examine the
noise levels of along-track difference data in comparison to vector
data, the standard deviation of residuals of along-track differences
of the radial field data �Br (with �t2 = 30 s) and the standard devi-
ation of residuals of radial field data Br are plotted in the right-hand
panel of Fig. 1. Assuming that the noise was randomly distributed,
one would expect higher standard deviation by a factor of

√
2 in the

along-track differences than in the vector data. However, it can be
seen that the standard deviation of along-track differences is con-
siderably reduced at almost all latitudes compared to the standard
deviation of vector data. This is an encouraging result because it in-
dicates that along-track difference data may be superior to standard
vector data and may have advantages for lithospheric field mod-
elling. An interesting point made by a reviewer is that the standard
deviations in the northern (QD latitude between 60◦ and 90◦) and
southern (QD latitude between −60◦ and −90◦) polar regions are
not equal. We do not know the reason for this asymmetry, which
could for example be due to differences in ionospheric conditions
(e.g. the electrical conductivity, flowing ionospheric currents, etc.)
as well as the data distribution in the two polar regions not being
identical.

Figure 1. Left-hand panel: comparison of the standard deviation of along-track gradient �Br
�s residuals (CHAMP data minus CHAOS-4 model predictions)

for four different sampling rates, �t1 = 15 s, �t2 = 30 s, �t3 = 45 s and �t4 = 60 s. Right-hand panel: comparison of standard deviation of residuals of
along-track differences of radial field data �Br (green line) and of residuals of radial field data Br (blue line).

 at :: on D
ecem

ber 18, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/


Use of along-track magnetic field differences 883

Figure 2. Comparison of Mauersberger–Lowes power spectra of litho-
spheric field models derived using four different along-track samplings,
�t1 = 15 s, �t2 = 30 s, �t3 = 45 s and �t4 = 60 s.

Such considerations of the amplitude of the noise inherent in the
along-track differences derived using different sampling rate are
however not the whole story. When building a lithospheric field
model, one must also choose a sampling rate high enough to ad-
equately constrain the high degrees of the field model. Choosing
a lower sampling rate, with longer spacings between the samples,
may therefore not be advantageous, even if the noise level is re-
duced. To investigate the combined influence of these two effects we
next derived four different lithospheric field models using CHAMP
along-track differences with the four different samplings introduced
above. The Mauersberger–Lowes power spectrum (Lowes 1974) is
then used as a tool to identify the sampling that produces the best
field model.

Fig. 2 compares the power spectra of lithospheric field models
derived using samplings of �t1 = 15 s (red line) which results
in 1 014 139 data points, �t2 = 30 s (green line) which re-
sults in 507 070 data points, �t3 = 45 s (magneta line) which
results in 338 047 data points and �t4 = 60 s (yellow line) which

results in 253 535 data points for the interval studies. The spectra of
CM5 (black line) and and MF7 (grey line) also shown for reference.

A first noteworthy result is that we succeeded in deriving stable
lithospheric field models using the along-track difference data. The
models derived using all investigated sampling rates show power
spectra matching MF7 and CM5 relatively well up to approximately
degree n = 75. The best agreement with CM5 and MF7 and a rel-
atively consistent power spectrum above degree n = 80 is achieved
using �t2 = 30 s. We henceforth adopt this as our preferred sam-
pling rate. Note that data filtering has not been applied for deriving
our lithospheric field models and the models have not been regular-
ized even at high degree. In contrast, filtering and line levelling have
been applied during the derivation of MF7 above degree n = 77 and
100, respectively (Maus et al. 2008), whereas CM5 is regularized
above degree n = 85. This may partly account for why our pre-
ferred along-track model shows a positive slope above degree 85
while MF7 and CM5 possess a descending slope at high degree.

The divergence of the power spectrum above degree n = 86 for
�t4 and above degree n = 111 for �t3 is likely due to the sampling
rate becoming too low to properly constrain the spherical harmonic
model. According to Backus et al. (1996), the shortest spatial wave-
length at the Earth’s surface captured by a spherical harmonic of
degree n is 40 000 km/(n + 1/2). For n = 86 this is approximately
462 km, very similar to the along-track spacing of �t4 (463 km).
For higher n > 86 the sampling of �t4 is therefore insufficient. In
contrast, the spacing of along-track differences for �t3, is sufficient
up to spherical harmonic degree approximately n = 111, where
the smallest represented wavelength is approximately 355 km. The
maximum theoretical resolution for �t2 = 30 s on the other hand is
n = 172, well above the truncation level chosen here. Fig. 3 presents
maps of the radial magnetic field at the Earth’s surface determined
using standard vector field data (left-hand panel) and along-track
difference data (right-hand panel), based on the same data set (with
30 s sampling rate) and the same model parametrization. Hereafter,
we refer to the model derived from vector data as the ‘vector model’
and the model derived from along-track differences as the ‘along-
track’ model. These maps were produced using degrees n = 16–90

Figure 3. Maps of radial lithospheric magnetic field calculated at the Earth’s surface from coefficients of degrees n = 16–90 taken from the field model derived
from vector data (left-hand panel) and from the model derived from along-track differences of vector field data with our preferred sampling of �t2 = 30 s
(right-hand panel).
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Figure 4. Comparison of Mauersberger–Lowes power spectra for the vector model (blue) and the along-track model (green) compared with CM5 (black) and
MF7 (grey).

of the respective lithospheric field models. The lithospheric field
resulting from the along-track model is reasonable and shows sim-
ilar structures to the vector model. The along-track model may
even be superior to the vector model with respect to the retrieved
lithospheric field features. For example, fewer spurious features are
observed in the south of Australia where the lithospheric field is
weak. In addition, features in the polar regions and in the northwest
of south America are more clearly defined in the along-track than
the vector model.

In Fig. 4, we present a comparison of power spectra of the vector
model (blue line) and of the along-track model (green line). The
power spectra of CM5 (black), cf. Sabaka et al. (2014) and MF7
(grey), cf. Maus et al. (2008) are again included for reference. It is
evident that the spectrum of the along-track model is closer to that
of CM5 and MF7 than the vector model, especially above degree
n = 85, illustrating the advantage of using along-track data. The
power spectrum of the vector model on the other hand increases
more rapidly, especially above degree 100. We conclude that using
along-track data results in models that are less influenced by noise
at high degree.

Moving beyond a comparison in terms of the power spectra, in
Fig. 5 we analyse the relative phase of the vector and along-track
models compared to MF7 (left-hand panel) and CM5 (right-hand
panel), using the degree correlation ρn, as defined by Langel &
Hinze (1998). For reference, the degree correlation of CM5 with
MF7 is also plotted. We find that the along-track model generally
has a superior correlation with both MF7 and CM5 than the vector
model. In particular, the correlation of the along-track model with
MF7 is noticeably better than with CM5 at high degrees n > 90.
Taken together, the power spectra and the degree correlation seem
to demonstrate the superiority of the along-track model over the
vector model.

Further insight is gained by considering the so-called sensitivity
matrices (cf. Olsen et al. 2006) presented in Fig. 6. These show the
relative difference between each coefficient of the vector model
(left-hand panels) or the along-track model (right-hand panels)
and either MF7 (top panels) or CM5 (bottom panels). The along-
track model is again found to be in better agreement with both
MF7 and CM5, especially for degrees n > 80. In particular, the
sensitivity matrices demonstrate how the along-track model better

Figure 5. Degree correlation of vector (blue) and along-track (green) models with respect to MF7 (left-hand panel) resp. CM5 (right-hand panel) as well as
of CM5 with respect to MF7 (grey).
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Figure 6. Sensitivity matrices (normalized coefficient differences in percent) between MF7 and the vector model (top left-hand panel), resp. along-track model
(top right-hand panel) as well as between CM5 and the vector model (bottom left-hand panel), resp. along-track model (bottom right-hand panel).

determines the zonal and near-zonal coefficients than does the vector
model, especially for the higher degrees. This is in accordance with
fig. 4 of Kotsiaros & Olsen (2014) who pointed out that ideal north–
south gradients enhance the determination of the zonal and near-
zonal coefficients. We can also see that there are certain spherical
harmonic orders, m, for example 45 < m < 55, 60 < m < 70
and 75 < m < 85, where the differences between the vector model
and both CM5 and MF7 are particularly large. These features are
significantly suppressed in the along-track model.

A final comparison between our vector and along-track models
and MF7 and CM5 involves the analysis of maps of the differences
in their predicted radial magnetic fields at the Earth’s surface, as
shown in Fig. 7. These maps allow us to see where in geographical
space these models differ most. The top panel shows the differences
between MF7 and the vector model (left-hand part) and the along-
track model (right-hand part). Similarly, the middle panel shows
the differences between CM5 and the vector model (left-hand part)
and the along-track model (right-hand part). For comparison, the
differences between the vector and the along-track models are also
shown in the bottom panel. These maps were produced using de-

grees n = 16–90 of the respective lithospheric field models. Both
the vector and the along-track models show relatively good agree-
ment with each other as well as with CM5 and MF7 up to degree
n = 90. The largest differences occur in polar regions due to the
unmodelled field perturbations caused, for example, by the polar
electrojets. The differences in the polar regions are only slightly
less for along-track model than for the vector model, indicating that
along-track differences cannot solve all the problems associated
with rapidly varying, small-scale perturbations in this region. We
note that the differences in the polar regions between both our vector
and along-track models and CM5 are larger than those with MF7.
Prominent north–south oriented stripes are notable in the differences
of our models with MF7, these are also seen to a lesser extent in the
differences with CM5. Such features have also been documented
by Olsen et al. (2014) in their comparison between CHAOS-4 with
MF7. We can further see in our case that the north–south stripes are
larger for the along-track model. Although our along-track clearly
performs very well for near zonal (i.e. n ≈ 0) coefficients, it may
have deficiencies in the sectoral (i.e. n ≈ m) coefficients (see also
Fig. 6) which are known to be less well constrained by north–south
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Figure 7. Maps of radial lithospheric magnetic field differences calculated at the Earth’s surface from coefficients of degrees n = 16–90 between MF7 (top
panels) resp. CM5 (middle panels) and the vector model (left-hand panels) resp. the along-track model (right-hand panels), as well as between the vector and
the along-track model (bottom panel).
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Figure 8. Ratio of spectra between the vector model (blue) resp. along-track
model (green) estimated without external correction and the vector model
(blue) resp. along-track model (green) estimated with external correction.

field gradients (Kotsiaros & Olsen 2014). Such deficiencies in the
determination of sectoral coefficients can be avoided if one also
has access to east–west field gradients as will be the case with
Swarm.

One reason it is advantageous to use along-track differences
rather the vector data is that taking along-track differences will
remove that large-scale external field that has not changed between
the two contributing sample times (30 s in our case). For example,
the field produced by the ring current is to a first approximation
uniform in the vicinity of the Earth, and the time between samples
is short compared to the predominate timescales of ring current
activity, so we might expect unmodelled ring current fluctuations to
be attenuated when considering along-track differences. To investi-
gate this issue further, we computed two lithospheric field models,
with the same data sampling rate and model parametrization, but
without applying the CHAOS-4 magnetospheric field corrections to

the data, that is using B̃ = Bobs − Bcore instead of eq. (2). In Fig. 8,
we present the ratio of power spectra,

Rs = Rnoext
n

Rn
, (11)

where Rnoext
n is for a model derived using the data without exter-

nal field corrections, while Rn is, as before, for a model derived
from data with external field corrections applied. If an equally good
model could be obtained without correction of the external field, we
would expect Rs = 1 for all degrees. We find that using vector data,
Rs 	 1, especially above degree n = 60 indicating that the exter-
nal field correction is essential. However, for the along-track data,
we find Rs ≈ 1 even at high degree. This very encouraging result
highlights the benefits obtained by using along-track differences
because they are relatively insensitive to unmodelled large scale
external (magnetospheric) field fluctuations. Note that the gradient
approach proposed here considers data only during quiet geomag-
netic conditions. However, this finding may also open the possibility
of internal field modelling using data during intermediate-disturbed
conditions that are usually deemed unsuitable.

A final advantage of using along-track difference data regards the
problem of polar gaps. Polar orbiting satellites leave non-sampled
regions of half-angle |90 − i| around the geographic poles, where
i is the inclination of the orbit. If not dealt with, this causes a
deterioration in the estimation of particularly the zonal (m = 0)
coefficients, resulting in ringing in physical space at the geographic
poles. Above, we handled this problem by adding synthetic data val-
ues of Br within the polar gap from an a priori model, CHAOS-4.
This technique has been used in previous high degree lithospheric
field models (e.g. Maus et al. 2008; Lesur et al. 2013; Olsen et al.
2014). We have also derived vector and along-track models without
filling the polar gap with synthetic data values. The resulting sen-
sitivity matrices for these models with respect to MF7 are shown
in Fig. 9 with the vector model shown in the left-hand panel and
along-track model in the right-hand panel. As expected, in the vector
model the zonal coefficients are poorly determined with large dif-
ferences compared to MF7 starting already from degree 20. Due to

Figure 9. Sensitivity matrices (normalized coefficient differences in percent) between MF7 and the vector model (left-hand panel), resp. along-track model
(right-hand panel) without filling the polar gap with synthetic data values of Br.
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the inclined satellite orbit, along-track differences in polar regions
approximate a mixture of north–south with a substantial contribu-
tion of east–west gradients which are sensitive to sectoral (n = m)
and tesseral (m 
= 0 and m 
= n) coefficients (rather than to zonal and
near-zonal coefficients). Therefore, similarly to the vector model,
deficiencies in the zonal coefficients associated with the polar gap
could conceivably also appear in the along-track model. However,
in fact we find the problem is much less severe in the along-track
model, where obvious deficiencies appear first above degree 80.
An explanation for the improved tolerance of along-track differ-
ence data to the polar gap is provided by considering the Green’s
function for the Neumann boundary value problem. Specifically,

Bj (r) =
∫

S′
G j (r, r′)Br (r′) dS′, ( j = r, θ, φ) (12)

describes how a vector field observation Bj at location r can be
represented as a weighted integral of the radial field Br at an internal
reference surface S′. The weights are provided by Green’s functions
Gj that describe the effective sensitivity of the observation to the
field on the reference surface. Following Gubbins & Roberts (1983),
the Green’s functions

Gr = b2

4π

(1 − b2)

f 3
, (13)

Gh = b

4π

[
1 − 2bμ + 3b2

f 3
+ μ

f ( f + b − μ)
− 1

1 − μ

]

× (1 − μ2)1/2 (14)

describe how measurements of the vertical, Br, resp. horizontal,
Bθ and Bφ , field components of an observation at r = r0 (e.g. at
satellite altitude) depend on the radial field at the Earth’s surface.
Above, we have used b = a/r0, f = (1 − 2μb − b2)1/2, whereas
with α the angle between the point of observation, (θ , φ), and
the point under consideration on the Earth’s surface, (θ ′, φ′), and
μ = cos α = sin θsin θ ′cos (φ − φ′) + cos θcos θ ′. To obtain Gh,
without the loss of generality, the observation site was placed at
θ = 0, φ = 0 which results in μ = cos θ ′.

Similar Green’s functions for the horizontal gradients of the ver-
tical component Br are obtained as follows:

Grθ =
(

1

r

∂Gr

∂θ

)
r=r0

=
(

1

r

∂Gr

∂μ

)
r=r0

∂μ

∂θ
, (15)

Grφ =
(

1

r sin θ

∂Gr

∂φ

)
r=r0

=
(

1

r

∂Gr

∂μ

)
r=r0

1

sin θ

∂μ

∂φ
. (16)

Again, without loss of generality, we can place the observation site
at θ = 0, φ = 0 which leads to

Grθ = ∂h Gr cos φ′, (17)

Grφ = ∂h Gr sin φ′. (18)

with

∂h Gr =
(

1

r

∂Gr

∂μ

)
r=r0

= 3b3(1 − b2)

4πr0 f 5
(1 − μ2)1/2. (19)

Fig. 10 presents the functions Gr and Gh for the vertical and hori-
zontal components respectively, as well as the function ∂hGr rele-
vant for horizontal gradients of the vertical component, plotted at
r0 = a + 400 km as a function of the angular distance θ ′ away
from the observation point. θ ′ = 0 here corresponds to the point on
the Earth’s surface immediately beneath the observation site. The

Figure 10. Normalized Green’s functions Gr and Gh for the vertical and
horizontal field components, respectively, as well as the function ∂hGr rele-
vant for horizontal gradients of the vertical component for r0 = a + 400 km
as a function of the angular distance θ ′ from the observation location. θ ′ = 0
corresponds to the point on the Earth’s surface immediately beneath the
observation site.

polar gap region for CHAMP is indicated in grey. For example, if
an observation was at the highest latitude for CHAMP (i.e. 87.3◦),
then θ ′ = 2.7◦ in this plot would correspond to the North Pole.
For plotting purposes, the Green’s functions have been normalized
with respect to their maximum amplitude to 1. Fig. 10 illustrates
the sensitivity of different types of observations at satellite altitude
to the internal source field, on Earth’s surface. In particular, the
radial vector field measurements are primarily sensitive to the field
directly beneath the measurement site, which leads to a polar gap
problem when they are used alone. The horizontal components Bθ ,
Bφ and the horizontal gradients of Br however predominantly sam-
ple the field at an angular distance away from the observation site
(approximately 2.5◦ and 1.8◦, respectively). Using measurements
of Bθ and Bφ would therefore ameliorate the polar gap problem,
but unfortunately these components are disturbed by high-latitude
ionospheric currents and they are consequently not normally used
in polar regions. On the other hand, we have shown above that hori-
zontal gradients of Br are less affected by such currents and Fig. 10
illustrated that they also tolerate gaps in the orbit tracks including
the polar gap.

5 C O N C LU S I O N S A N D O U T L O O K

We have constructed high resolution lithospheric field models using
first differences of CHAMP vector field data along each satellite
orbit track. Compared to a model derived from the same data set
and using the same model parametrization, but constructed only
using vector field data, we find that the along-track model better
reconstructs both the amplitude and the phase of the high degree
field. Near-zonal spherical harmonic coefficients were especially
well recovered. Furthermore, in order to derive a precise high-degree
lithospheric field model using along-track differences, a correction
or an explicit co-estimation of the magnetospheric field contribution
is not so critical as is the case when using vector field data. This
is due to along-track differences being less sensitive to large-scale
external field fluctuations varying on time scales longer than the
sampling rate.
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The proof of concept presented in this work involved deriving
non-regularized lithospheric field models with a focus on investigat-
ing the possible benefits of using along-track differences rather than
aiming to derive superior models to the existing ones. In addition
to the relatively simple field modelling experiments reported here,
along-track differences have also now been used in sophisticated,
state-of-the-art field modelling scheme involving full co-estimation
of sources (Sabaka et al. 2014). The findings of Sabaka et al. (2014)
provide further support for the conclusions reached above concern-
ing the advantages of using along-track data to determine the high
degree lithospheric field. Given that the required modifications to
existing modelling schemes are minor, the case for using along-
track differences, especially in combination with east–west field
differences, is compelling.

The recently launched Swarm mission will allow a unique space–
time characterization of both sources within the Earth and also
the ionospheric–magnetospheric current systems. It consists of two
low-altitude satellites, which allow cross-track magnetic gradients
to be estimated, and a third satellite at higher altitude which monitors
the field at different local times. The data products of the Swarm
mission are described by Olsen et al. (2013). As an extension of
the work presented here, we plan to use Swarm data to derive
estimates of east–west gradients and combine them with north–
south gradients approximated by along-track differences. These two
gradients carry complementary information, for example see fig. 2
of Kotsiaros & Olsen (2012), and their combination holds great
promise for an improved determination of not only the lithospheric
field but also the high degree secular variation.
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