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SUMMARY

Monthly means of the magnetic field measurements at ground observatories are a key
data source for studying temporal changes of the core magnetic field. However, when
they are calculated in the usual way, contributions of external (magnetospheric and
ionospheric) origin may remain, which make them less favourable for studying the field
generated by dynamo action in the core. We remove external field predictions, including
a new way of characterising the magnetospheric ring current, from the data and then
calculate revised monthly means using robust methods. The geomagnetic secular vari-
ation (SV) is calculated as the first annual differences of these monthly means, which
also removes the static crustal field. SV time series based on revised monthly means
are much less scattered than those calculated from ordinary monthly means, and their
variances and correlations between components are smaller. On the annual to decadal
timescale, the SV is generated primarily by advection in the fluid outer core. We demon-
strate the utility of the revised monthly means by calculating models of the core surface
advective flow between 1997 and 2013 directly from the SV data. One set of models
assumes flow that is constant over three months; such models exhibit large and rapid
temporal variations. For models of this type, less complex flows achieve the same fit to
the SV derived from revised monthly means than those from ordinary monthly means.
However, those obtained from ordinary monthly means are able to follow excursions in
SV that are likely to be external field contamination rather than core signals. Having
established that we can find models that fit the data adequately, we then assess how
much temporal variability is required. Previous studies have suggested that the flow
is consistent with torsional oscillations (TO), solid body-like oscillations of fluid on
concentric cylinders with axes aligned along the Earth’s rotation axis. TO have been
proposed to explain decadal timescale changes in the length-of-day. We invert for flow
models where the only temporal changes are consistent with TO, but such models have
an unacceptably large data misfit. However, if we relax the TO constraint to allow a
little more temporal variability, we can fit the data as well as with flows assumed con-
stant over three months, demonstrating that rapid SV changes can be reproduced by
rather small flow changes. Although the flow itself changes slowly, its time derivative
can be locally (temporally and spatially) large, in particular when and where core sur-
face secular acceleration peaks. Spherical harmonic expansion coefficients of the flows
are not well resolved, and many of them are strongly correlated. Averaging functions,
a measure of our ability to determine the flow at a given location from the data dis-
tribution available, are poor approximations to the ideal, even when centred on points
of the core surface below areas of high observatory density. Both resolution and aver-
aging functions are noticeably worse for the toroidal flow component, which dominates
the flow, than the poloidal flow component, except around the magnetic equator where
averaging functions for both components are poor.
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2 Whaler et al.

1 INTRODUCTION

The geomagnetic field is generated by and evolves in response to flow of electrically-conducting liquid, predominantly iron,

in the Earth’s outer core. Therefore, temporal changes of the field can be used to obtain some information on that flow. For

example, over the hemisphere centred on the Greenwich meridian, features of the field tend to drift west at a rate of a fraction

of a degree per year, whereas the field over the other hemisphere changes more slowly. These observations can be reproduced

by models of flow at the core-mantle boundary (CMB) with a band of westward motion straddling the equator moving at of

order 10 km/yr in the western hemisphere, and much slower flow without obvious large-scale organisation beneath the Pacific

Ocean. However, inferring the flow from geomagnetic field changes is not straightforward, and involves making and testing

a number of hypotheses as to its nature to reduce or eliminate the inherent non-uniqueness. CMB flow models, particularly

those obtained after making additional dynamical assumptions about the force balance in the core (e.g Le Mouël 1984), have

proved to be a useful tool to probe the dynamics of the dynamo process responsible for maintaining the magnetic field.

The difficulties come in part from our incomplete knowledge of the geomagnetic field so far from where it is observed.

The mantle is a weak electrical conductor, meaning that the field can be approximated as the gradient of a scalar potential

throughout. This allows us to construct models of the field, and its temporal evolution or secular variation (SV), at the base

of the mantle from observations at or near the Earth’s surface. However, geometrical attenuation preferentially attenuates

small-scale features, so they are known with less certainty there. This is accounted for in most modelling strategies by

minimising a measure of spatial roughness of the field (regularising the solution) in addition to a measure of data misfit. The

electrical conductivity jump from the assumed insulating mantle into the conducting liquid iron core means that only the

radial component of the field and its SV is guaranteed to be continuous. Therefore, although we can use all observations of

the field to construct the potential describing it at the CMB, we can only use its radial component to infer core flow.

The relationship between the field, its SV and the flow is given by the induction equation, a combination of Maxwell’s

equations in the appropriate limit:

Ḃ = ∇× (v ×B) + η∇2B (1)

where B is the magnetic field, v the flow, and η = 1
µ0σ

is the magnetic diffusivity, where the core’s electrical conductivity

is σ, and its permeability is assumed to be that of free space, µ0. The first term on the right-hand side represents advection

of the field by the flow, i.e. the flow carries field lines along with it; the second represents diffusion, i.e. the creation and

destruction of field lines. Below the CMB, we cannot estimate the field based on surface measurements as it has sources and

sinks, meaning it can no longer be expressed as the gradient of a scalar potential; for the same reason, we cannot estimate

vertical gradients of the field, even at the CMB, so the diffusive term of equation (1) is unknown. Fortunately, it is possible

to argue that SV arising from diffusion is negligible compared to that from advection, at least on the timescale of decades

and shorter, and for large-scale magnetic fields, and so the second term on the right-hand side of equation (1) can be ignored.

This is known as the frozen-flux hypothesis, since, under this assumption, the field is perfectly frozen into the flow (Roberts

and Scott 1965). Taking the radial component of equation (1) at the CMB, neglecting the final term, gives

Ḃr +∇H .(vBr) = 0, (2)

where ∇H denotes the horizontal parts of the nabla operator. The term involving the (unknown) radial derivative of Br does

not appear in this equation because it multiplies vr, which vanishes at the core surface since it is a material boundary. Hence,

equation (2) relates the known radial components of the magnetic field and its horizontal derivatives, and the radial component

of the SV, to the unknown velocity. Unfortunately, it is a single equation in two unknowns: the horizontal components of

the flow. This leaves an inherent ambiguity when we attempt to determine the flow, which was first recognised by Roberts

and Scott (1965), and characterised by Backus (1968). Subsequently, a number of assumptions have been put forward that

reduce or eliminate this ambiguity, many of which can be tested for consistency with the magnetic field and SV data (as can

the frozen-flux hypothesis). Some of these put constraints on the magnetic field and flow within the core, so are particularly

useful for interrogating the dynamical regime in which the geodynamo operates.

Here we solve a linear inverse problem for the flow based on equation (2), assuming that it is large-scale (enforced

through regularisation). A further complication arises at this point: the smaller-scale components of the flow which we ignore

can interact with small-scale features of the field (which we are unable to resolve from observations at the Earth’s surface)

to generate large-scale SV (Eymin and Hulot 2005). Voorhies and Backus (1985) show that assuming the flow is constant

over a minimum of three epochs is sufficient to resolve its inherent non-uniqueness. The data are monthly estimates of SV

at geomagnetic observatories, so our flows are assumed constant over a period of just three months - much shorter than the

advective timescale appropriate for large-scale flows (Roberts and Scott 1965). We refer to these as snapshots of the flow.

Despite a wide range of inversion strategies – different data types, assumptions made to reduce the inherent non-

uniqueness, regularisation choices, whether the data misfit minimised is based on a two- or one-norm measure – many features

of the flow appear to be robust. However, there has been little formal analysis of this aspect of the models, or their uncertain-

ties and resolution. A recent study by Pais et al. (2015) used principal component analysis and singular value decomposition

to determine the robust global features of the flow. We instead concentrate on the resolution of individual flow coefficients
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Core surface flows from monthly means 3

parametrising our models, and calculate averaging functions that indicate our ability to reconstruct the flow at specified

locations on the CMB; the averaging functions have a strong dependence on the distribution of the surface geomagnetic

observatories providing the SV data. Working with SV data themselves, rather than parametrised models of them, permits

this analysis.

Previous studies have found that a large part of the modelled SV can be explained by a steady flow on which is superim-

posed a set of oscillations of solid body-like flow on cylinders concentric with the rotation axis, known as torsional oscillations

(TO) (Zatman and Bloxham 1997). Cylinders of different radii oscillate at different rates, with periods thought to be typically

of order a decade. TO are expected on dynamical grounds and allow angular momentum to be exchanged between the core

and mantle. The CMB flow corresponding to TO is purely zonal, and symmetric with respect to the equator, and so can be

described by a small number of flow coefficients. We test whether a flow whose only time variations are consistent with TO

is an adequate fit to the SV data by seeking a model covering the whole time span of our study, 1997–2013, by minimising

changes in flow coefficients from epoch to epoch, except those corresponding to TO. We also calculate the minimum amount

of change in the flow between epochs necessary to fit the data by restricting temporal variability in all flow coefficients.

In the next section we describe the model parametrisation, and set up the inverse problem for the flow. The data we use

in the inversion are described in section 3, and the results, including flow coefficient resolution and averaging functions, in

section 4. We discuss the flows, particularly the implications of their temporal variability, in section 5 and then present brief

conclusions.

2 METHOD

Spherical harmonics are the natural basis functions for expressing the global magnetic field, which we assume is of internal

origin. Away from sources, it is a potential field and can be written as the gradient of a scalar potential, V :

B = −∇V (θ, φ, r) (3)

where

V (θ, φ, r) = a

N∑
n=1

n∑
m=0

(a
r

)n+1

(gmn cosmφ+ hmn sinmφ)Pmn (cos θ) (4)

and Pmn (cos θ) are Schmidt quasi-normalized associated Legendre functions of degree n and order m. θ, φ, r are spherical polar

coordinates, i.e. colatitude, longitude and radius, and a is a reference radius, here the Earth’s mean radius. We assume that

terms beyond the truncation level N can be neglected.

To explain changes of the field by advective flow, we decompose the velocity into its toroidal and poloidal parts:

v = ∇× (T r) +∇×∇× (Sr) (5)

where T and S are the toroidal and poloidal scalars, respectively. As the core-mantle boundary (CMB) is a material surface

across which there is no flow, equation (5) simplifies there to

vH = ∇× (T r) +∇H(rS) (6)

and both T and S average to zero over the CMB. Thus, they can also be expressed in spherical harmonics:

T =

Nmax∑
n=1

n∑
m=0

(tmn
c cosmφ+ tmn

s sinmφ)Pmn (cos θ) (7)

S =

Nmax∑
n=1

n∑
m=0

(smn
c cosmφ+ smn

s sinmφ)Pmn (cos θ)

Again, we truncate the spherical harmonic expansions (at degree Nmax), by assuming the flow is large-scale.

Substituting spherical harmonic expansions for the CMB radial field and its SV (obtained from equations (3) and (4)

and their time derivatives with r set to be the core radius), and the flow, into equation (2) and manipulating as described in

e.g. Whaler (1986), we obtain a linear system of equations relating the SV coefficients to the flow coefficients, assuming the

field coefficients are known:

ġ = Et + Gs (8)

where ġ is a vector of SV coefficients (ġmn , ḣ
m
n ), and t and s are vectors of coefficients (tmn

c, tmn
s) and (smn

c, smn
s) respectively.

E and G are matrices whose values depend on the main field coefficients and either Elsasser or Gaunt integrals, respectively

(Whaler 1986).

Many previous studies have been based on inverting equation (8) for the flow coefficients, treating SV coefficients as data.

However, then it is very difficult to evaluate the error budget, as it is not clear how much of the misfit arises from a failure of

the SV coefficients to fit the data from which they were derived. Hence following, for example, Whaler (1986), Waddington
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4 Whaler et al.

et al. (1995) and Beggan et al. (2009), we invert SV data directly for the flow. Our data are the North, East and vertically

downwards orthogonal SV components Ẋ, Ẏ and Ż respectively (related to the spherical polar components by Ẋ = −Ḃθ,
Ẏ = Ḃφ and Ż = −Ḃr) at the locations of geomagnetic observatories used in this study; we organise them into a vector ḋ.

They are linearly related to the coefficients (ġmn , ḣ
m
n ) through a matrix Y of appropriate spherical harmonic derivatives. Hence

they are also linearly related to the flow, giving a system of equations

ḋ = Yġ = YEt + YGs ≡ Am (9)

where m is a vector of the unknown flow coefficients t and s.

Equation (9) forms the basis of our inverse problem. As already noted, a flow that is constant over three epochs (here,

months) is formally unique (Voorhies and Backus 1985), but we also assume it is large-scale to overcome practical issues of

ambiguity. Hence we regularise the inversion, ensuring that the flow spherical harmonic series (7) converge, with an appropriate

value of the regularisation parameter, λv, which controls the relative importance of fitting the data and forcing the flow to be

large-scale. We thus calculate a series of (nepochs− 2) flow snapshot models, where nepochs is the number of months for which

we have data, using

m̂ = (ATCe
−1A + λvCm

−1)−1ATCe
−1ḋ (10)

where now the data vector ḋ is composed of successive triples of observatory orthogonal component first difference data at

three consecutive months, and m̂ is our estimate of m. Ce consists of 3 x 3 data covariance matrices for each vector data triple

arranged along the diagonal, with zeroes elsewhere. Cm is the a priori model covariance matrix regularising the flow, in this

case defined by the Bloxham (1988) ‘strong norm’. We investigated weaker regularisations, but the large damping parameters

required to obtain converged solutions significantly over-fitted the data, and the essential features of the models were similar

to those obtained using the ‘strong norm’. Unconverged models fitting the data changed rapidly between epochs, lacked any

coherent, large-scale structure, and the flows bore no resemblance to those obtained in other studies. We assume the field

at each epoch is known, specified by the CHAOS-4 (Olsen et al. 2014) coefficients to degree and order 14. Various studies

have investigated the effect of uncertainty in the main field on the resulting flow models. Whaler (1986) simply compared the

result with two different main field models. Rygaard-Hjalsted et al. (2000) were the first to use a Monte Carlo Markov Chain

approach, but computational resources at that time limited the applicability of the method; more recently, Baerenzung et al.

(2014) and Baerenzung et al. (2016) used it to obtain a more reliable estimate of the posterior probability distribution. Lesur

et al. (2010) adopted an iterative approach, first estimating a field model from the data, then using it to determine a starting

model for the flow in the traditional fashion, and finally co-estimating the field and flow iteratively from the starting field and

flow models. These studies suggest that the effect of assumptions as to the nature of the flow have at least as large an effect

on the resulting flow model as any uncertainty in the main field. The SV and flow are also expanded up to degree and order

14 in equation (8), meaning we solve for 448 flow coefficients per epoch, but because we have regularised the inversion, the

results are not sensitive to this choice. We calculate the elements of A analytically (e.g. Whaler 1986).

Bloxham et al. (2002) found that a constant flow with TO superimposed provided a good fit to observatory SV; such

a model requires just a few parameters. However, this conclusion was not based on an inversion of the observatory data

themselves. Here, we test flow models of this type directly against the data by performing an inversion in which temporal

changes in coefficients between epochs are penalised, except for the odd degree, zero order toroidal coefficients which represent

TO. This involves inverting all the data simultaneously for the full time series of flow models, i.e. solving for 448 x (nepochs−2)

coefficients, a numerically challenging computation. Consider the monthly time series of a single flow coefficient, mj(i), i =

1, ..., nepochs. We construct a first difference penalty matrix that restricts time changes in mj from month to month:

Dj =


1 −1 0 · · · 0

0 1 −1 0 · · ·
...

...
...

...
...

0 · · · 0 1 −1

0 · · · 0 0 1

 (11)

and apply it, to all except the TO coefficients (for which the entries in Dj are zero), as an additional side constraint. The

parameter λt controls how strongly the constraint is applied, resulting in an additional term λt DTD in the inversion (equation

(10), extended to include all data and epochs). We refer to flows obtained with this constraint as TO-like flows.

The size of this inverse problem is not amenable to direct inversion, but fortunately most elements of the enhanced normal

equations matrix vanish, so iterative sparse matrix techniques are appropriate. We used the conjugate gradient algorithm with

Jacobi pre-conditioning, having validated on a smaller system (withNmax = 8) that the results of direct and iterative inversions

agree satisfactorily.

In addition, we found the minimum amount of temporal variability required to fit monthly mean estimates of SV ad-

equately by applying the temporal constraint, equation (11), to all coefficients. We refer to these as minimum acceleration

flows.
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Core surface flows from monthly means 5

Figure 1. Observatories contributing data used in the analysis.

3 DATA

We used data from up to 128 observatories, shown in Fig. 1, between January 1997 and July 2013. Monthly means of orthogonal

vector components were calculated in the traditional fashion, as the arithmetic mean of hourly mean values from all days, to

give ordinary monthly means (omm) and using the method of Olsen et al. (2014), to give revised monthly means (rmm). rmm

are also calculated using data from all days of a given month, but using a robust averaging procedure, and after removal of

ionospheric and magnetospheric contributions. The magnetospheric ring current is characterised by a new index, RC (Olsen

et al. 2014), that does not suffer from the baseline changes inherent in Dst. Ionospheric Sq was estimated using the CM4

model of Sabaka et al. (2004). First differences a year apart were taken to provide SV estimates, ascribed to the mid-point of

the interval, giving 187 monthly data sets covering the period July 1997 to January 2013. The SV derived from the two sets of

means agreed in its major features, but the rmm SV was less scattered than that from the omm (by a factor of typically 3),

and also had fewer short timescale (i.e. over periods of several months) excursions. Since these excursions were only present

in the omm, we suspect that they reflect external field contamination that was not removed when data are processed in the

traditional manner. SV data covariance matrices were formed from robust estimates of the variances and cross-variances of

generalised covariance function spline fits to the Ẋ, Ẏ and Ż time series, for both omm and rmm. Values of both diagonal and

off-diagonal elements tended to be larger for omm than rmm. Examples of omm and rmm SV at a selection of observatories,

with their standard deviations, are shown in Figs. 2 and 3. Oscillations with periods of 2–3 years are seen in some observatory

mean first differences, both omm and rmm(e.g. Ẏ at Hermanus observatory). rmm processing helps clean up the signals, but

there is still some contamination, especially at high latitudes. Figs. 2 and 3 show predictions of the CHAOS-4 model, which

also exhibits some oscillations with similar periodicities. Ionospheric currents are internal to satellite data, so in principle their

effects could be mapped into the internal field, and periods of 2–3 years are easily representable with the 6-month spacing

of CHAOS-4‘s B-spline basis. However, oscillations that are not consistent between satellite and observatory data should be

suppressed as far as possible by temporal regularisation, though some contamination of the internal field remains possible.

Observatories suffer from the usual problem of poor geographical distribution, in particular, concentration over Europe and,

to some extent, North America, and very few over the oceans and southern hemisphere (Fig. 1). We will see this reflected in

the averaging functions for our core flow models in section 4.4.

4 RESULTS

4.1 Original versus revised monthly mean flows

We first describe and compare the results of inverting sets of 3 consecutive months of SV data for flow snapshots, using

equation (10), from both omm and rmm data. We tested a variety of damping parameters λv to find a value for which flows

converged but retained enough structure to provide a reasonable fit to the data. This value, 10−4, was then fixed for all

subsequent inversions, and was the same for omm and rmm inversions. The overall root-mean-square (rms) misfits for all 185

flows were 0.91 and 0.90 for omm and rmm data respectively. These are lower than the expected value of 1 because there are a

number of epochs for which only a relatively small number of data are available, and these tend to be heavily over-fitted. For

a more typical flow (obtained from of order 1000 data), the rms misfit was around 1.3 for omm and 1.1 for rmm inversions,

and the rms flow speed was in the range 12–15 km/yr. We do not seek to achieve values as low as the expected misfit value

of 1 because we expect there to be some diffusion which is not accounted for in these frozen-flux inversions, to allow for the

SV generated by the interaction of unresolved small-scale flow and small-scale field (Eymin and Hulot 2005), and because we
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Figure 2. Time series of omm SV data at Niemegk, M’Bour and Hermanus observatories (black dots) and their predictions by the flow
(red, yellow and green dots when the datum is the first, second or final month of the three contributing to the flow estimation). The blue

line is the prediction of CHAOS-4. Standard deviations in the top left of each panel are of a generalised covariance fit to the original

data (black), from the flow predictions when it is the third month contributing to the estimate (green) and from the CHAOS-4 fit (blue).
Panels are arranged Ẋ, Ẏ and Ż from left to right.

assume the main field is perfectly known when in fact it is subject to uncertainty. Reducing the damping parameter to bring

the typical misfit down to 1 gave barely converged solutions with little coherency from epoch to epoch, especially for the omm

flows.

The fit to the data and non-normalized standard deviations are shown in Figs. 2 and 3, for a selection of observatories.

The data standard deviations are up to ∼10 nT/yr for omm, and typically 1–2 nT/yr for rmm. Except at the end points,

each month’s SV estimates were used in three inversions (when they were the first, middle or final month of the three used);

their predictions are virtually indistinguishable, especially for the rmm flows. The predictions are smoothly-varying yet follow

the rapid SV changes, such as in Ż at M’Bour observatory between 2006 and 2011. They reproduce features which are not

fully captured by field models in which the temporal variability is expressed using B-splines, such as the CHAOS series (e.g.

Olsen et al. 2006, 2014), including in Ẏ at M’Bour observatory around 2004, and in Ż at Niemegk observatory from 2006

onwards, and hence their standard deviations are lower than for the CHAOS-4 model. The difference in goodness-of-fit to the

omm and rmm data is clearly visible, both from the time series and the standard deviations. The fit to each component at

each observatory is broadly commensurate with the overall normalized misfits of the flow models (and so is poorer for the

omm compared to the rmm data) – there is no evidence for over-fitting some components or observatories at the expense of

the fit to others, or for the fit being better at, say, times of slower SV. The omm flows follow excursions in the data that are

not seen in the rmm, such as in Ż at Hermanus observatory between 2002 and 2004 and which are likely to be the result of

external field contamination. However, the differences between the flows obtained from omm and rmm are generally rather

small, and are almost impossible to discern by eye. Since the main differences between the omm and rmm SV are in features

that we suspect arise from greater external field contamination in the omm, and because these differences do not give rise to

substantially different flow models, henceforth we describe only the results obtained from rmm.
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Figure 3. As for Fig. 2 but for revised monthly means, rmm.

4.2 Temporal variability of flows

The sequence of flow snapshots undergoes some notable changes over the 16 years investigated, particularly in the anti-

clockwise eddy beneath the southern Indian Ocean, which disappears and reappears twice, each time over the period of just

a few months, in the first decade of the 21st century (see Supplementary Material). The eastern part of the eddy remains

in place, but the western part, a southward flow, gets stretched out to the west so that the eddy is no longer closed. These

changes in the flow geometry take place at times of jumps in the inter-decadal length-of-day, thought to be linked to the

occurrences of geomagnetic jerks (Holme and de Viron 2013).

Decadal timescale length-of-day changes, ∆LOD, have been shown to be consistent with exchange of angular momentum

between the mantle and core through the excitation of TO (Jault et al. 1988; Gillet et al. 2015). The change in angular

Table 1. Root-mean-square (rms) speed, v, of the total flow for a typical epoch, centred on October 2005, and the partitioning of its
kinetic energy into the toroidal (T ), poloidal (P ), equatorially symmetric (S), equatorially asymmetric (AS), tangentially geostropic
(TG), tangentially ageostrophic (AG) and zonal toroidal (ZT ) components, expressed as a percentage. vrmm is the flow snapshot from
rmm data, vTO (moderate) a TO-like flow with a temporal damping parameter λt of 103, vTO (strong) a TO-like flow with temporal

damping parameter 106, and vMA a minimum acceleration flow with temporal damping parameter 104 applied to all flow coefficients.
To make the results comparable, misfit is to all epochs, i.e. in the case of the flow snapshot in the first line, is the rms misfit over all

such models.

Flow v (km/yr) T (%) P (%) S (%) AS (%) TG (%) AG (%) ZT (%) Misfit

vrmm 12.2 82.2 17.8 77.2 22.8 79.8 20.2 41.4 0.90
vTO (moderate) 11.3 87.0 13.0 80.7 19.3 81.6 18.4 48.8 0.92

vTO (strong) 10.8 86.5 13.5 79.1 20.9 80.1 19.9 48.1 1.77
vMA 11.5 88.3 11.7 81.1 18.9 82.2 17.8 55.3 0.92
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8 Whaler et al.

momentum, and hence length-of-day, carried by these flows is dominated by zonal toroidal coefficients of degrees 1 and 3. Can

we reduce the temporal variability of the flow, and match the observed ∆LOD, while retaining an adequate fit to the data?

Since the ∆LOD are often assumed to arise through the excitation of TO-like flows, we seek flows that are constant except

for motion consistent with TO by applying the penalty matrix constraint (equation (11)) to all but the TO flow coefficients,

i.e. except to the t0n with n odd that represent toroidal, zonal and equatorially symmetric flows. For relatively small values

of λt, the misfit is similar to that of the sequence of flow snapshots (0.92 compared to 0.90; Table 1), but with much less

temporal variability in all flow coefficients, i.e. including those whose temporal differences are not directly penalised. Fig. 4

shows the coefficients up to degree and order 4 as a function of time, for the flow snapshots (blue curves) and for such a

moderately TO-like flow (green curves). There are significant differences between the two models for all coefficients, especially

in the high frequencies, which are virtually absent in the constrained coefficients, and significantly reduced in those that

are not directly penalized. As we increase λt, the misfit increases dramatically, such that when the non-TO coefficients are

(essentially) steady (illustrated by the red curves in Fig. 4), it has a value of 1.77. Thus we can conclude that a constant flow

with TO superimposed does not provide an adequate fit to the SV data. Similar conclusions regarding the inadequacy of TO

to explain the SV have been reached by other means, for example in the studies by Wardinski et al. (2008), Silva and Hulot

(2012) and Chulliat and Maus (2014). It is also noteworthy that TO are unable to produce changes in the axial dipole field.

Sample observatory fits and standard deviations are shown in Fig. 5, from which it can be seen that such a model fails in some

cases to reproduce the amplitude of the SV (e.g. Ẋ at Hermanus around 2007, and Ẏ at M’Bour around 2010) and in others

does not predict the correct amount of variability (especially in Ẋ e.g. from 2000 at Canberra). The standard deviations of

the moderately TO-like flow are very similar to those of the sequence of flow snapshots, but in general are markedly higher

for the steady flow with TO superimposed.

Although we have demonstrated that flows whose only temporal variability is TO do not provide an adequate fit to

the data, we have also shown that flows need relatively little temporal variability to be able to reproduce quite rapid SV

in individual observatory components. Thus the time changes found in the sequence of flow snapshots is not required to

fit the data. To establish the minimum amount of temporal variability necessary to explain the data, we penalized all flow

coefficients using equation (11), varying the temporal damping parameter λt until the misfit matched the value obtained

for the moderately TO-like flow (Table 1). For these minimum acceleration flows, it is difficult to discern any temporal flow

changes by eye (see Supplementary Material), but inspection of the differences from the mean demonstrates that the largest

changes are in the equatorial and southern hemisphere regions in a band around 90◦ wide centred on 180◦ longitude (see

Supplementary Material).

Restricting the temporal variability of the flows, either to produce TO-like or minimum acceleration flows, does not

change their basic geometry (see Supplementary Material), and they remain predominantly toroidal, equatorially-symmetric,

tangentially geostrophic, and with a significant zonal toroidal component (Table 1).

4.3 Resolution

Two ways to assess how well the flows are resolved are through resolution matrices of the flow coefficients, and averaging

functions derived from them that indicate the extend of spatial averaging to form a flow estimate at a given point on the

CMB. The resolution matrix is (e.g. Bloxham et al. 1989)

R = (ATCe
−1A + λvCm

−1)−1ATCe
−1A (12)

extended to include a term involving the second damping parameter λt if the temporal side constraint (equation (11)) is also

imposed. R relates the estimated parameters ˆ(m) to their true values (m), and therefore the ideal resolution matrix is the

identity matrix. Although an un-regularised solution has perfect resolution (if there are more data than model parameters, as is

the case for most epochs of the period we studied), other aspects of such models are undesirable, such as the lack of convergence

of the power spectrum, meaning that the values of many of the coefficients change substantially if the spherical harmonic limit

Nmax of the flow coefficients changes. Non-zero off-diagonal elements of R indicate that flow coefficients are correlated, and

diagonal elements deviating from 1 show that coefficient amplitudes are not correctly recovered. A typical resolution matrix

for a flow snapshot is shown in Fig. 6. The significant off-diagonal elements show that estimates of individual coefficients are

severely contaminated, at all spherical harmonic degrees, and not just by coefficients of the same given degree, nor just by either

other toroidal or other poloidal coefficients. These correlations are more pronounced for toroidal coefficients and, in particular,

estimates of the low degree and order toroidal coefficients are severely contaminated by poloidal coefficients. The diagonal

elements corresponding to toroidal coefficients decrease rapidly with spherical harmonic degree and only coefficients up to

degree and order 3 or so can be regarded as resolved. For a given degree (except 1), the tesseral harmonics are better resolved

than the zonal ones. This is similar to the situation Bloxham et al. (1989) found for their historical magnetic field models which

were dominated by declination data, although it is not clear why it applies to toroidal flow coefficients derived from orthogonal

component observatory SV data. The decay along the diagonal is a lot more gentle for poloidal coefficients, and those up to

degree and order 8 can be regarded as reasonably well resolved; similarly, the amplitude of the off-diagonal elements associated
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Figure 4. Temporal variability of flow coefficients (in km/yr) up to degree and order 4. Degree (n) and order (m) and whether the

coefficient multiplies cosmφ (c) or sinmφ (s) is given above each panel. Solid lines are for toroidal coefficients, dashed lines for poloidal
coefficients. Blue: flow snapshots; green: moderately TO flows; red: strongly TO flows.

with a given poloidal coefficient tends to be smaller than for the corresponding toroidal coefficient. Previous studies also found

better resolution of poloidal than toroidal flow coefficients, when calculated from both observatory SV data (Madden and

Le Mouël 1982) and from spherical harmonic SV coefficients (Gire et al. 1986). A number of off-diagonal elements exceed 1 in

absolute value, indicating very high correlations/anti-correlations between coefficients. Bloxham et al. (1989) found the same

phenomenon in the resolution matrix for their model of the CMB radial field in epoch 1715, which was based on directional

(declination and inclination) data only. The trace of the resolution matrix indicates the number of free parameters of the

solution; this is typically 100 for our flows, consistent with resolution up to spherical harmonic degree approximately 6 if both

toroidal and poloidal coefficients were equally well resolved. Given that most of the energy is in the toroidal flow (Table 1),

it is unfortunate that its resolution is considerably poorer.

A diagonal block and its two adjacent blocks in the same row of the 82880 by 82880 resolution matrix for the inversion

spanning all epochs with a moderately TO-like flow (i.e. with a misfit comparable to that of the individual flows), again

calculated using the Jacobi pre-conditioned conjugate gradient algorithm, are shown in Fig. 7. Each block has dimension

the number of flow coefficients for a given epoch, so the image indicates correlations between them, and their correlations

with those from the previous and subsequent month. The structure of the diagonal block is similar to that of Fig. 6, but the

diagonal elements have smaller values, i.e. are less well resolved. The off-diagonal blocks have prominent diagonal elements

(except for those corresponding to the odd-degree, zero order toroidal coefficients), indicating correlations between the same

coefficient at successive epochs introduced through the temporal constraint, but their off-diagonal elements generally are very

small. The pattern repeats for blocks further away from the diagonal but with the magnitudes of the elements decreasing. The

trace of the full 82880 by 82880 matrix is 9622, i.e. the model resolves of order 52 coefficients, or up to degree and order 4, per

epoch on average. The loss of resolution compared to the snapshot solutions is partly because of the correlations introduced
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Figure 5. Data (black dots) and their predictions by flow models at Niemegk, Kakioka, M’Bour, Canberra and Hermanus observatories.
Blue: flow snapshots; green: moderately TO flows; red: strongly TO flows. The grey line is the prediction of CHAOS-4. Standard deviations

in the top left of each panel have the same colour codings.
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Core surface flows from monthly means 11

Figure 6. Resolution matrix for the flow snapshot centred on October 2005. Toroidal flow coefficients are numbers 1 to 224, and poloidal

coefficients from 225 to 448.

by the temporal constraint; however, the trace of each immediate off-diagonal block shown in Fig. 7 is 10, which does not

match the difference between the trace of the diagonal block and the trace of the resolution matrix of the snapshot solution.

In both snapshot and temporally constrained flow resolution matrices, the rows corresponding to coefficients t0n with n

odd stand out through having significant non-zero elements (Figs. 6 and 7). This presumably reflects the null space of the

flow, which depends on the geometry of the magnetic field. For example, the westward drift term represented by t01 acting on

an axial dipole magnetic field generates no SV. Since the axial dipole is the dominant part of the field, theoretically this flow

coefficient is poorly resolved (Madden and Le Mouël 1982).

4.4 Averaging functions

Averaging functions are continuous functions of position that indicate how well a model estimate at a given point is localised.

The estimated model value m̂ is a spatial average of the true model, m, weighted (in an integral sense) by the averaging

function. Here, we are interested in models defined on a spherical surface, specifically, the CMB. Hence we write

m̂(θ0, φ0) =

∮
CMB

A(θ0, φ0, θ, φ)m(θ, φ)dΩ (13)

where A is a function that we would like to be well-peaked at (θ0, φ0) and small elsewhere, enclosing an area of 1 on the unit

sphere. The ideal averaging function would be δ(θ − θ0)δ(φ− φ0) where δ is the Dirac delta-function, since in that case, the

model estimate would equal the true model. However, approximations to the ideal from finite quantities of inaccurate data

are less well-peaked, may not be centred on the point of interest, and may have side lobes (‘ringing’ or Gibbs’ phenomenon).

The two-dimensional width, or aperture, of an averaging function indicates the area over which the point model estimate is

an average of the true model, and the height of its peak indicates how reliable its amplitude is. Minimising in a least-squares

sense the difference between the averaging function and δ(θ − θ0)δ(φ − φ0), Whaler and Gubbins (1981) show that the best

approximation to the ideal averaging function (i.e. when the solution is not regularised, and hence resolution is perfect) for

the radial magnetic field at the CMB, expressed as a finite spherical harmonic sum to degree and order N is

1

4π

N∑
n=1

(2n+ 1)Pn(µ) (14)
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12 Whaler et al.

Figure 7. The diagonal block and two adjacent blocks (row-wise) of the resolution matrix for the moderately TO-like flow for October

2005. Note the different colour scale from Fig. 6.

where µ is the cosine of the angle subtended at the Earth’s centre between (θ0, φ0) and the point at which it is calculated. An

example for N = 14 is given in the top row of Fig. 8, indicating that the model value at a given point is an estimate over an

area subtended by an angle at the Earth’s centre of at least 30◦. As N increases, the central peak becomes taller and narrower,

but there are always side lobes, increasing in number but decreasing in amplitude, and a small peak at the antipodal point.

Hence an estimate of the CMB radial field at a given point is significantly contaminated by its value elsewhere on the core

surface even in the ideal case; the contamination is worse for a regularised inversion. The same development as Whaler and

Gubbins (1981) used for the CMB radial magnetic field applies to any quantity that can be expressed as a linear combination

of spherical harmonics, and hence to the toroidal and poloidal scalars of the flow, T and S, for which, following the notation

of Bloxham et al. (1989), the averaging function can be written

A(θ0, φ0, θ, φ) = cT(θ0, φ0)Rb(θ, φ) (15)

where c has elements of the form

rcP
m
n (cos θ0)

{
cosmφ0

sinmφ0

}
with rc the core radius, and b has elements of the form

2n+ 1

4πrc
Pmn (cos θ)

{
cosmφ

sinmφ

}
.

Using the addition theorem for spherical harmonics, equation (14) is recovered if resolution is perfect (R = I). In the Appendix,

we discuss efforts to form averaging functions for the flow components themselves, which are combinations of derivatives of

the spherical harmonics, rather than of spherical harmonics themselves.

The middle row of Fig. 8 shows the comparison at the same scale for the averaging functions for the toroidal (left) and

poloidal (right) flow scalars centred on (50◦N, 10◦E) where the high concentration of European observatories should provide

good flow resolution, for a typical flow snapshot. However, the averaging functions are poorly peaked, broad and can reach

amplitudes comparable to those at the point at which they are centred elsewhere on the CMB. The toroidal scalar averaging

function is a much poorer approximation to the ideal than that for the poloidal scalar, in agreement with the evidence from

the resolution matrix. The bottom row of Fig. 8 shows the same averaging functions centred on (50◦S, 170◦W) where, as

expected, the low density of observatories provides even poorer resolution. Here, the toroidal flow is essentially unresolved –

the averaging function has only a weak maximum at the point at which it is centred. With central peak widths of at least 50◦

for the toroidal part, flow features such as the anti-clockwise eddy beneath the southern Indian Ocean are barely resolved.

To capture the global variability in the toroidal and poloidal scalar averaging functions, Fig. 9 plots them at the point they

are centred as a fraction of the maximum possible value from a truncated spherical harmonic sum (given by equation (14) with

µ = 1). Over large parts of the CMB, the toroidal scalar averaging function is no more than about 20% of its maximum possible

value, and never exceeds 60% of it. These low values are a combination of generally poor resolution and the averaging function

peaking in the ‘wrong’ place, i.e. not at the point at which it is centred. The distribution of the poloidal scalar averaging

function is more variable. Over large areas of the northern hemisphere continental land masses where there observatories are
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Core surface flows from monthly means 13

Figure 8. Averaging functions for toroidal and poloidal flow scalars. Top: best approximation to the ideal averaging function for flows
to degree and order 14; it is independent of location. Middle: actual averaging functions for the toroidal (left) and poloidal (right) scalars

at (50◦N, 10◦E) for a typical spatially regularised flow. Bottom: as for the middle panel, but at (50◦S, 170◦W). The green dot on the

map projection marks the point at which the averaging function is centred. Contour interval is 1 for the ideal and poloidal flow scalar
averaging functions, 0.1 for the toroidal scalar averaging functions, with negative contours dashed.
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14 Whaler et al.

Figure 9. Averaging function at the point at which it is centred as a fraction of the maximum possible value for a typical epoch, for

the toroidal (left) and poloidal (right) scalars. Continents shown for reference.

concentrated (Fig. 1) it exceeds 60% and approaches 90% of the maximum possible value. However, there is a pronounced

band of very low values around the magnetic equator, extending into the large areas of reverse flux in the southern hemisphere

beneath South America, the Atlantic region and southern Africa. This is reminiscent of the areas affected by the ‘Backus

effect’ in main field modelling of scalar data. We noted above that the resolution matrix contains features that Bloxham et al.

(1989) associated with ambiguity in magnetic field modelling based on only directional data (e.g. off-diagonal elements with

magnitude greater than 1). Methods of analysing this ambiguity (e.g Gubbins and Proctor 1990; Hulot et al. 1997) cannot

obviously be applied to core flow modelling. We suggest that it reflects a null-space of the poloidal flow component, one that is

similar to, but different from, the ambiguous regions for tangentially geostrophic flows, which are connected to the geographic,

rather than magnetic, equator. There are patches of the CMB where the toroidal and poloidal scalar averaging functions are

negative at the point at which they are centred, meaning that the estimate there, rather than being dominated by the actual

flow, has a negative contribution from it. Regardless of location on the CMB, we find that the flow, especially its toroidal

component, is not well resolved by ground observatory data.

The resolution matrix and averaging functions depend on the data distribution and the value(s) of the damping param-

eter(s), which are varied according to the quality and quantity of data available. Assuming the flow is constant over a period

longer than three months might improve its spatial resolution (as measured by the averaging function) because of the increased

quantity of data, but this would be at the expense of poorer temporal resolution. Similarly, an increased data density, such

as that provided by satellite data, should improve the resolution and averaging functions; however, we cannot predict by

how much, nor whether a more even data distribution would reduce the correlations between (in particular) toroidal flow

coefficients, partly because this will depend on the specific damping applied.

5 DISCUSSION

Our flows exhibit the main features of many previously published models, such as having a strong band of westward flow

in the equatorial region in the hemisphere centred on the Greenwich meridian, slower flow beneath the Pacific, and an anti-

clockwise eddy beneath the southern Indian Ocean at most epochs (see Holme 2015). They are less equatorially symmetric

than flows derived under the quasi-geostrophic constraint (Pais and Jault 2008), and have weaker sub-Pacific flow than most

derived under the assumption that the flow is tangentially geostrophic. However, they are predominantly toroidal, equatorially

symmetric and tangentially geostrophic, and have a substantial zonal toroidal component (Table 1). An example snapshot flow

and its power spectra are shown in Fig. 10. The time-average of the flow snapshots and the averages of those which have been

temporally constrained are indistinguishably different by eye, and closely resemble that shown in Fig. 10. Like the individual

epoch flows, they are predominantly toroidal, tangentially geostrophic, equatorially-symmetric and zonal toroidal. These time-

average flows, which account for much of the data variance, are large scale and simple. Flows deduced from satellite data,

or spherical harmonic models derived from them, generally show more detail, but we can see evidence in our flows for more

diffuse expressions of their features. For example, our flows have a northward component beneath North America, westward

flow beneath the northern-post Pacific Ocean and a southward component beneath eastern Asia which, if focussed, would form

part of the eccentric planetary gyre characteristic of quasi-geostrophic flows discussed by Gillet et al. (2009), amongst others.

This feature of our flow resembles more closely that of Baerenzung et al. (2014) which, although derived from satellite data,

has a less spatially concentrated gyre. Baerenzung et al. (2016) note that it is not necessary to make the quasi-geostrophic

assumption to obtain flows with an eccentric planetary gyre. Similarly, in the southern hemisphere, northward flow around

90◦E, westward flow beneath the Atlantic Ocean, then turning south, is seen in models derived from satellite data (e.g Holme

 at D
T

U
 L

ibrary on A
ugust 16, 2016

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


Core surface flows from monthly means 15

Figure 10. Left: CMB flow (at a typical epoch, centred on October 2005) from inverting three consecutive months of rmm first difference

data. Continents shown for reference. Right: Flow power spectra, units (km/yr)2. Solid and dotted lines are power in the toroidal and
poloidal components, respectively, of the flow in the left panel. Dashed and dot-dashed lines are the corresponding power spectra of the

moderately TO-like flow.

and Olsen 2006; Silva and Hulot 2012; Lesur et al. 2015; Baerenzung et al. 2016). The strong southward flow beneath the

western Indian Ocean visible in Fig. 10, completing the anti-clockwise eddy, is not, or is only weakly, present in most satellite

data-based flows. Similarly, the small clockwise eddy beneath the south-western Pacific Ocean is not generally a feature of

models derived from satellite data – in fact, the tangentially geostrophic flow of Holme and Olsen (2006) has a weak clockwise

eddy, but their toroidal flow has an anti-clockwise eddy in the same location (and, as noted above, features of this size are not

well resolved by observatory data). Besides generally decreasing power spectra for both toroidal and poloidal flow components,

and an approximately order-of-magnitude difference between the toroidal and poloidal power, the dominant feature of the

spectra is the loss of power at toroidal degree 3 (e.g Holme and Olsen 2006; Lesur et al. 2010; Lesur et al. 2015; Baerenzung

et al. 2014, 2016), regardless of whether or not the flow is assumed tangentially geostrophic. All these features are present

in our spectra, for both snapshot and moderately TO-like flows (Fig. 10). The flow of Baerenzung et al. (2016) with highest

posterior probability density is faster than ours but similar in morphology, though again with more localised features; its

toroidal power spectrum has a similar shape to ours, but its poloidal spectrum is markedly different at low harmonic degree,

as it increases with increasing degree.

While the basic features of the time-average flow do not depend on what type of flow is sought, the fluctuations around it

are very different, depending mainly on whether or not a temporal constraint is applied. As noted previously, these fluctuations

can be quite substantial for snapshot flows, including a change to the morphology of the flow beneath the Indian Ocean,

specifically, that it does not remain as a closed eddy throughout. This region is unusual in that, when temporal variability is

restricted by seeking a moderately TO-like flow, the fluctuations in its upwelling and downwelling remain. The time-average

flow has an upwelling beneath the eastern part of the Indian Ocean, and a downwelling beneath the western part, similar

to the pattern seen in the flows Olsen and Mandea (2008) generated for 2003–4 to fit rapid changes in the SV. From mid-

2004, these over-turning features of our temporally constrained flows start to weaken. In contrast, the downwellings beneath

northern South America and the northern Pacific Ocean, and the upwelling beneath Hawaii, remain in place throughout the

period of our study. In general, the fluctuating part of the flow has a higher proportion of its kinetic energy in the poloidal

component than the average flow (typically ∼35% for epochs of the moderately TO-like flow, higher for flow snapshots,

compared to ≤20% for the time-average part). Beneath the equatorial western Pacific, the fluctuations in the moderately

TO-like flow model are dominated by the toroidal component, changing steadily by an anti-clockwise rotation superimposed

on a strengthening westward zonal flow. Fig. 2A of Finlay and Jackson (2003) shows that the historical field evolution is

consistent with waves propagating westward away from this location. Beneath the western Atlantic and eastern Americas, the

fluctuations show an increasing southward component to the flow (deviations from the mean are predominantly northward at

the beginning of the interval and finish predominantly southward, with a weak anticlockwise rotation).

Although the TO-like flow changes slowly throughout the interval modelled, there are rapid changes and local variability

in fluid acceleration which, in order to reduce noise, we have estimated by fitting smoothing splines to the discrete monthly

flow coefficients and then differentiating the spline representation. For example, in the equatorial region beneath the western

Atlantic and eastern Americas there are peaks in a predominantly poloidal acceleration of opposite sign in 2006 and 2009, the

times at which Chulliat and Maus (2014) note an anti-correlated pulse in CMB secular acceleration there. They also found

that a constant flow and TO (with an assumed 6-year period) did not provide an adequate fit to secular acceleration data. Our

fluid acceleration power has maxima in 2007 and 2009.5 (and also in 2000, 2002 and 2003.5); the variability has an amplitude

of about 0.5 (km/yr2)2 around a mean of ∼3 (km/yr2)2.

Fig. 11 shows the temporal variability of the non-zonal part of vφ at 85◦W; at the equator, it undergoes a sign change
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Figure 11. The non-zonal component of vφ of the moderately TO-like flow at 85◦W as a function of latitude and time.

in around 2006 followed by a pulse of westward flow until 2009 when it weakens again. Such temporal variability is another

indicator that zonal TO superimposed on a steady flow are insufficient to fit the data. Over most of the core surface, non-zonal

vφ is faster and more-or-less steady; it is also much more equatorially-symmetric at 85◦W than at other longitudes. At the

same location, the non-zonal vφ of Gillet et al. (2015) undergoes a series of oscillations with a period of about 7 years (see

their Fig. 12). They also report a minimum in amplitude at 10◦ latitude, but their flows are equatorially-symmetric under the

quasi-geostrophic constraint; typically, non-zonal vφ of our moderately TO-like flow is strongly asymmetric about the equator.

Beneath the Asian land mass the flow also shows strong deviations from the mean, which is dominated by a southward jet

feeding into the band of equatorial westward flow.

None of our models that fit the data adequately provides a good match to decadal ∆LOD (Fig. 12); in particular, the

unconstrained flows have much shorter timescale changes, and amplitudes are a factor ∼ 10 too high. Wardinski (2004)

and Gillet et al. (2015) note that excess variability (both temporally and amplitude) can result from ignoring data time

covariances, as we have done here. ∆LOD predictions by the moderately TO-like and minimum acceleration flows appear

to be an increasingly damped version of the unconstrained flow predictions, such that the moderately TO-like flow predicts

changes of the right amplitude and with a similar amount of temporal variability, but not correlated with the ∆LOD data.

In contrast, our strongly TO-like flow model forces all the flow-time-dependence into coefficients which participate in angular

momentum exchanges and predicts a much better match to the observed ∆LOD, although it does not fit the SV data. We

have not attempted a joint inversion of SV and ∆LOD data to establish whether there is a flow model that fits both data

sets, although Holme (2015) showed that small modifications to the flow can change angular momentum predictions by a

significant amount. Nor have we attempted to establish whether the much smaller inter-annual changes occurring at times of

geomagnetic jerks (Holme and de Viron 2013) are reproduced by any of our models, since the uncertainties in the predictions

are expected to exceed the signal. However, we did note that the substantial changes in geometry in the sequence of flow

snapshots occurred at times of geomagnetic impulses.
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Figure 12. Change in LOD and its prediction by flows. The data (black curve) have been corrected for atmospheric effects, the annual

and semi-annual signals removed and then a moving average over 31 days was taken. The predictions of the flows use the same colour
coding as Figs. 4 and 5, i.e. blue: flow snapshots, green: moderately TO and red: strongly TO. The curves have been offset for clarity.

6 CONCLUSIONS

The traditional method of calculating observatory monthly means provides estimates of SV that are more scattered than

with the revised method proposed by Olsen et al. (2014), and they almost certainly retain some external field contamination.

These features can be modelled by CMB flows that will therefore contain artefacts. We recommend that monthly means are

calculated using the revised method.

By inverting SV data directly for CMB flow snapshots (assuming the main field is perfectly known), we have been able to

find flows fitting the data adequately. The fit is better than that achieved by the CHAOS-4 model. These flows demonstrate

rapid, but systematic, changes in geometry. The eddy beneath the Indian Ocean undergoes the most obvious change, to the

extent that for part of the period studied, it is no longer closed on its western side; its strength is also rather variable. However,

by restricting the month-to-month variability of the flow coefficients, we were able to provide an equally good fit to the data

with considerably smaller changes in the flow. The temporally variable part of the flow must include more terms than the odd

order, zero degree toroidal flow coefficients that describe TO. The more rapid changes in these flows are at times when and

are located on patches of the CMB where pulses of secular acceleration occurred.

The uneven and relatively sparse observatory distribution means that the resolution of our flows is not good, as evidenced

by both the resolution matrix and averaging functions. The resolution of the toroidal part of the flow, which contains about

90% of the flow energy, is considerably worse than that of the poloidal part. As expected, the averaging functions are poorer

approximations to the ideal beneath areas of lower observatory density at the surface, such as the Pacific Ocean. We have the

prospect of improving resolution and the averaging functions from the higher density of coverage based on satellite data, such

as from the current Swarm satellite constellation mission. However, the problem of external field contamination is more severe

than for ground observatories, and previous estimates of point SV values from ‘virtual observatories’ from single satellites also
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appear to contain artefacts from the orbit sampling of the volume containing each virtual observatory (Beggan et al. 2009;

Shore 2013).
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APPENDIX A: FLOW AVERAGING FUNCTIONS

We have presented averaging functions for the toroidal and poloidal flow scalars, rather than for components of the flow itself.

Since the flow involves derivatives of spherical harmonics, the development for the radial magnetic field component or scalar

potentials does not apply directly. We would like to write our estimate v̂c of a component of the flow, vc, at a point (θ0, φ0)

on the CMB as

v̂c(θ0, φ0) =

∮
CMB

A(θ0, φ0, θ, φ)vc(θ, φ)dΩ (A.1)

where A is a function that is well-peaked at (θ0, φ0) and small elsewhere, enclosing an area of 1 on the unit sphere. Whaler

and Gubbins (1981) discuss several definitions of A applicable to models defined on the surface of a sphere.

Before proceeding, we establish an orthogonality relationship for the derivatives of spherical harmonics. Consider the

integral ∫ π

0

dPmn
dθ

dPm
′

n′

dθ
sin θdθ. (A.2)

Integrating by parts, and noting that sin θ vanishes at the limits of integration, we have∫ π

0

dPmn
dθ

dPm
′

n′

dθ
sin θdθ = −

∫ π

0

Pmn
d

dθ

(
sin θ

dPm
′

n′

dθ

)
dθ. (A.3)

From Legendre’s equation

− d

dθ

(
sin θ

dPmn
dθ

)
= sin θ

(
n(n+ 1)− m2

sin2θ

)
Pmn (A.4)

and hence ∫ π

0

dPmn
dθ

dPm
′

n′

dθ
sin θdθ =

∫ π

0

Pmn P
′m′
n

(
n′(n′ + 1)− m′2

sin2θ

)
sin θdθ. (A.5)

Thus∫ 2π

0

∫ π

0

(
m′Pm

′

n′ mPmn
sin2 θ

{
− sinmφ

cosmφ

}{
− sinm′φ

cosm′φ

}
+
dPmn
dθ

dPm
′

n′

dθ

{
cosmφ

sinmφ

}{
cosm′φ

sinm′φ

})
sin θdθdφ

=

∫ 2π

0

∫ π

0

n′(n′ + 1)Pmn P
m′

n′

{
cosmφ

sinmφ

}{
cosm′φ

sinm′φ

}
sin θdφ. (A.6)

By orthogonality, the integral vanishes unless n = n′, m = m′ and the φ dependence has both cos or both sin terms, in which
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case, for Schmidt quasi-normalised spherical harmonics, it equals

4π
n(n+ 1)

2n+ 1
. (A.7)

Winch et al. (2005) provide an alternative derivation of this result.

This orthogonality relation suggests that we can calculate an averaging function for components of the flow itself by

equation (15), with c having elements of the form

rc

(
−mP

m
n (cos θ0)

sin θ0
sinmφ0,

mPmn (cos θ0)

sin θ0
cosmφ0,

dPmn (cos θ0)

dθ
cosmφ0,

dPmn (cos θ0)

dθ
sinmφ0

)
(A.8)

and b of the form

2n+ 1

8πn(n+ 1)rc

(
−mPmn (cos θ)

sin θ
sinmφ,

−mPmn (cos θ)

sin θ
cosmφ,

dPmn (cos θ)

dθ
cosmφ,

dPmn (cos θ)

dθ
sinmφ

)
. (A.9)

When resolution is perfect, this gives a well-peaked averaging function that has the same value as equation (14) at the point

(θ0, φ0) at which it is centred; in fact, it is very similar to, but subtlety different from, equation (14) elsewhere on the CMB.

Orthogonality holds so long as c and b contain pairs of θ and φ derivatives of spherical harmonics, so the same formulation

provides averaging functions for either the toroidal or the poloidal parts of the flow, or the θ- or φ-component of the complete

flow, by setting appropriate pairs of elements of c and b to zero (and the factor 8 in the denominator of b to 4 to preserve the

amplitude). Hence this formulation appears at first sight to provide a good candidate flow averaging function. However, it is

not well-behaved at the poles – the value depends on longitude, i.e. it is not single-valued. It might be possible to overcome

the problem by rotating the coordinate system (and the resolution matrix that contains the data distribution information) so

that the centre the averaging function is at a pole; we have not tried this approach.
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