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S U M M A R Y
We jointly invert for magnetic and velocity fields at the core surface over the period 1997–2017,
directly using ground-based observatory time-series and measurements from the CHAMP
and Swarm satellites. Satellite data are reduced to the form of virtual observatory time-
series distributed on a regular grid in space. Such a sequential storage helps incorporate
voluminous modern magnetic data into a stochastic Kalman filter, whereby spatial constraints
are incorporated based on a norm derived from statistics of a numerical geodynamo model.
Our algorithm produces consistent solutions both in terms of the misfit to the data and the
estimated posterior model uncertainties. We retrieve core flow features previously documented
from the analysis of spherical harmonic field models, such as the eccentric anticyclonic gyre.
We find enhanced diffusion patterns under both Indonesia and Africa. In contrast to a steady
flow that is strong under the Atlantic hemisphere but very weak below the Pacific, interannual
motions appear evenly distributed over the two hemispheres. Recovered interannual to decadal
flow changes are predominantly symmetrical with respect to the equator outside the tangent
cylinder. In contrast, under the Northern Pacific we find an intensification of a high latitude
jet, but see no evidence for a corresponding feature in the Southern hemisphere. The largest
flow accelerations that we isolate over the studied era are associated with meanders, attached
to the equatorward meridional branch of the planetary gyre in the Eastern hemisphere, that are
linked to the appearance of an eastward equatorial jet below the Western Pacific.

Key words: Core; Magnetic field variations through time; Inverse theory; Probabilistic fore-
casting.

1 I N T RO D U C T I O N

Inferring information on the motions of the liquid outer core of
the Earth requires properly separating the numerous sources of
observed magnetic fields (geodynamo, crustal magnetization, iono-
spheric and magnetospheric currents and their Earth induced coun-
terparts). To circumvent some of the leakage issues, magnetic field
models are often built using regularizations, to ensure spectral con-
vergence of the core field and its time variations. This prevents
a proper assessment of a posteriori errors on model coefficients.
When these are used as data in reconstructions of the core dynam-
ics, it can lead to biased estimates. Furthermore, by proceeding in
successive steps (to a field model and then on to the core flow), one
loses information.

From the early 1990s alternative avenues of research arose,
through which field models were built under topological constraints
derived from physical insights. Constable et al. (1993) and O’Brien
et al. (1997) proposed algorithms to apply, on single epoch pairs of
models, magnetic flux conservation conditions at the core–mantle

boundary (CMB) that are appropriate assuming that magnetic diffu-
sion is negligible. Along the same lines, Jackson et al. (2007) added
a constraint on the radial vorticity. They showed that it was possible
for a magnetic model to satisfy both these topological conditions,
and the constraint from magnetic observations, from the late 19th
century onwards.

Conversely, Chulliat & Olsen (2010) tested the validity of
the frozen flux hypothesis using data from Magsat, Oersted and
CHAMP satellite missions. They found an increase of the data
misfit in some areas, potentially suggesting local failures of the
constraint. Such studies motivated the coestimation, from magnetic
observations, of both the field and the flow, imposing with a weak
formalism the frozen flux radial induction equation at the CMB
(Lesur et al. 2010; Wardinski & Lesur 2012). They concluded that
the frozen flux constraint remained compatible with ground-based
and satellite magnetic records. Pursuing an alternative approach,
Beggan & Whaler (2009) and Whaler & Beggan (2015) obtained
piecewise constant or linear flow models directly from magnetic
data (see also Whaler et al. 2016).
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One limitation though of such approaches is related to the uncer-
tainties associated with the large-scale induction equation itself (and
associated null-flux curves), assuming models truncated at spher-
ical harmonic degree n � 13 (Gillet et al. 2009). Subgrid-scale
effects arising due to the nonlinear induction process (e.g. Eymin
& Hulot 2005; Pais & Jault 2008; Gillet et al. 2009; Baerenzung
et al. 2016) turn out to be the main source of uncertainty in the
recovery of core surface flows from modern geomagnetic records.
Barrois et al. (2017)—hereafter referred as BGA17—illustrate how
ignoring their impact leads to severely biased flow models (see also
Baerenzung et al. 2017, on the reliability of core flow reconstruc-
tions).

BGA17 furthermore show from the analysis of geodynamo sim-
ulations that magnetic diffusion at the core surface, enslaved to
poloidal flow below the CMB, affects the recorded field changes
at all timescales including rapid changes. This may seem at odds
with the often used assumption of negligible magnetic diffusion
that follows the argument of a high magnetic Reynolds number for
large-scale motions in the core (see Holme 2015).

In the present work we invert, from magnetic field observations
collected at and above the Earth’s surface, for both the magnetic
and velocity fields at the core surface, taking into account both
magnetic diffusion and subgrid induction. We merge spatial infor-
mation provided by numerical simulations, specifically from the
Coupled Earth dynamo (CED) model (Aubert et al. 2013) and tem-
poral constraints coming from a restriction of the field evolution
to a chosen class of stochastic process. The sequential algorithm
of BGA17, which considers as input data time-series of spherical
harmonic coefficients of the main field, is extended to account for
both virtual observatory (Mandea & Olsen 2006) and ground obser-
vatory time-series that cover the period 1997–2017. Our approach
has similarities with the previous works of Gillet et al. (2015a) and
Baerenzung et al. (2016), which favoured flat flow spatial spectra
at the CMB, since the spatial dynamo norm employed here departs
from the norms often employed to ensure spectral convergence. In
addition, our stochastic framework allows us to discuss posterior
model errors for both the flow and the magnetic field.

The paper is organized as follows. In Section2 we describe the
ground-based observatory data and satellite-based virtual observa-
tory data, and the methodology we follow to recover magnetic and
velocity fields at the CMB. In Section3.1, we present our result-
ing geomagnetic model and its associated uncertainties, before we
analyse in Section 3.2 our core flow solutions. Finally, implications
for our understanding of the core dynamics and possible further
improvements for the algorithm are given in Section4.

2 M E T H O D O L O G Y

2.1 Ground-based and virtual observatory data

2.1.1 Ground observatory data

We use magnetic measurements made at 186 ground observatories
(GOs) covering the period 1997–2017. Hourly mean values are
taken from the BGS database1, version 0111, using Intermagnet
and WDC Edinburgh data as available in May 2017. The data have
been checked and corrected for known baseline jumps (Macmillan
& Olsen 2013). ‘Revised monthly means’ were then derived from
these hourly means, following the procedure described by Olsen

1ftp://ftp.nerc-murchison.ac.uk/geomag/Swarm/AUX OBS

et al. (2014). Briefly, predictions of the large-scale magnetospheric
field (and the associated induced field) from the CHAOS-6 field
model, as well as predictions for the ionospheric Sq field (and the
associated induced field) from the CM4 model (Sabaka et al. 2004)
are subtracted from the hourly mean values, and then robust (Huber-
weighted) monthly mean values are computed using an iterative-
reweighting procedure. Annual differences of such revised monthly
means are routinely used in deriving the CHAOS series of field
models and in order to study high resolution secular variation since,
compared with simple monthly means, they are less contaminated
by external field effects. Here, since we also wish to use the field
itself for model construction, the median difference between each
series and CHAOS-6 predictions was removed, in order to account
in a simple way for the bias due to unmodelled crustal fields. In
order to obtain the same sampling rate as that adopted for the virtual
observatory series described below, the revised monthly mean series
were finally averaged over 4 months windows to obtain the GO series
used in our data assimilation scheme.

2.1.2 Virtual observatory data

In addition to GO data, we make use of satellite measurements from
the CHAMP and Swarm missions covering respectively 2000–2010
and 2014–2017, through so-called virtual observatory (VO) data
(Mandea & Olsen 2006; Olsen & Mandea 2007). These provide a
regular spatial and temporal sampling of the global field, convenient
for our Kalman filter algorithm (detailed in Section 2.2) and involve
estimates from an easily manageable number of locations, which has
computational advantages.

VO data were computed using measurements collected by the
CHAMP vector field magnetometer between July 2000 and Septem-
ber 2010 and from the Swarm vector field magnetometers, onboard
all three satellites (Alpha, Bravo, Charlie), between January 2014
and April 2017. Starting from the CHAMP MAG-L3 and Swarm
Level 1b MAG-L, version 0501, data products, we subsampled at 15
s intervals the data in the vector field magnetometer (VFM) frame.
Using the Euler rotation angles as given by the CHAOS-6-x3 model
(which was based on Swarm and ground observation data up un-
til April 20172), we rotated the VFM data into an Earth-Centered
Earth-Fixed (ECEF) coordinate frame.

Measurements from known problematic days were removed, for
instance where satellite manoeuvres happened. Furthermore, gross
data outliers with deviations more than 500 nT from CHAOS-6-x3
field model predictions were rejected. Based on previous studies
of VO estimates (e.g. Beggan et al. 2009), we then employed data
selection criteria retaining only data for which:

(1) the sun was at maximum 10◦ above horizon;
(2) geomagnetic activity index Kp < 3◦;
(3) the RC disturbance index (Olsen et al. 2014) had |dRC/dt| <

3 nT hr−1;
(4) merging electric field at the magnetopause Em ≤ 0.8 mV

m−1, with Em = 0.33v4/3 B2/3
t sin(|�|/2). v is the solar wind speed,

� = arctan(By/Bz) and Bt =
√

B2
y + B2

z . By and Bz are components

of the interplanetary magnetic field (IMF) in the geocentric so-
lar magnetospheric (GSM) coordinate system, calculated using 2

2http://www.spacecenter.dk/files/magnetic-models/CHAOS-6

/
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hourly means of 1 min values of the IMF and solar wind extracted
from the OMNI database3;

(5) IMF Bz > 0 nT and IMF |By| < 10 nT, again based on 2
hourly mean of 1 min values.

Following this data selection, estimates of the fields due to various
unmodelled sources were next removed from the data:

(1) the magnetospheric and its induced fields as given by the
CHAOS-6-x3 model;

(2) the ionospheric and its induced fields as given by the CM4
model (Sabaka et al. 2004);

(3) the static internal field for spherical harmonic degrees n >

20 given by the CHAOS-6-x3 model.

Although imperfect, in our opinion it is more consistent to remove
such estimates rather to ignore known field sources.

Based on this data we then carried robust inversions for time-
averaged point estimates (i.e. VOs) using data windows of 4 months
width (60 d each side of an epoch tj). In order to aid the robust inver-
sion procedure in identifying and downweighting outliers, following
Olsen & Mandea (2007) as a pre-processing step, we also removed
a time-dependent internal field, here taken from the CHAOS-6-x3
model (Finlay et al. 2016b), for spherical harmonic degrees 1 to 20,
within each four month window. The CHAOS-6x-3 prediction at the
target point and time was then added back at the end of the analysis.
Note that this does not prevent our 4-monthly VO series, and the
derived SV series from departing from CHAOS-6x-3; information
about the time-dependence within each 4 month window is however
lost.

We assume that the residual field B̃, after the removal of the time-
dependent internal field from the CHAOS-6-x3, can be represented
as the gradient of a scalar potential V, that is,

B̃ = −∇V . (1)

The residual field and associated positions are transformed into
a local Cartesian coordinate system with origin at the VO points
of interest, with x pointing towards geographic south, y pointing
towards east and z pointing upwards. We use an expansion of the
local potential up to cubic terms. Because the geomagnetic field
is irrotational (∇ × B̃ = 0) and solenoidal (∇ · B̃ = 0), this local
potential is entirely determined by 15 independent parameters:

V (x, y, z) = vx x + vy y + vz z + vxx x2 + vyy y2 − (vxx + vyy)z2

+2vxy xy + 2vxz xz + 2vyz yz − (vxyy + vxzz)x
3

+3vxxy x2 y + 3vxxz x2z + 3vxyy xy2 + 3vxzz xz2

+6vxyz xyz − (vxxy − vyzz)y3 + 3vyyz y2z

+3vyzz yz2 − (vxxz + vyyz)z
3. (2)

For each VO position vector rk = (θ k, φk, rk) and at epoch tj,
all data positioned within a cylinder of radius 850km (≈7.5◦) of
the VO target rk, and within 60 days either side of tj were used to
build a local data vector dk, j. These data are then related to the 15
parameters defining the VO potential model mk, j

vo at that site and
epoch via dk, j = gk, j mk, j

vo , where the elements of the matrix gk, j are

determined from eqs (1) and (2).
Rather than working directly with dk, j in deriving mk, j

vo we make
use of along-track (AT) and east–west (using Swarm Alpha and

3http://omniweb.gsfc.nasa.gov

Charlie only) sums and differences of the magnetic field compo-
nents. An advantage of using field differences is that these have a re-
duced sensitivity to large-scale external signals, although data sums
also need to be included in order to ensure sufficient information
on the longer wavelengths core field. Using sums and differences
has been found advantageous in a number of other field modelling
efforts (Olsen et al. 2015; Sabaka et al. 2015). We calculate AT
sums (�) and differences (�) as{

�dAT
i = [B̃i (r, t) + B̃i (r + δr, t + 15 s)]/2

�dAT
i = [B̃i (r, t) − B̃i (r + δr, t + 15 s)]

. (3)

B̃i = 1i · B̃(r) are the residual magnetic field components in spher-
ical polar coordinates (where i = r, θ or φ, and 1i are unit vectors).
The east–west cross-track (CT) sums and differences between are
calculated as{

�dCT
i = [B̃Alpha

i (r1, t1) + B̃Charlie
i (r2, t2)]/2

�dCT
i = [B̃Alpha

i (r1, t1) − B̃Charlie
i (r2, t2)]

. (4)

Here, for a given orbit of Alpha we select the corresponding Charlie
data to be the one closest in colatitude such that |δt| = |t1 − t2| <

50 s. Crucially, in order to relate these sums and differences to the
VO model parameters, we also take sums and differences of the
elements of the design matrices gk, j associated with the predictions

of the VO model for the field components at the individual data
locations. This results in a design matrix

Gk, j =
[

�gk, j

�gk, j

]
(5)

associated with the data vector Dk, j = [
�dk, j �dk, j

]T
. In this way

we fully account for the change in the unit vectors associated with
the two locations contributing to the sums and differences when
deriving the parameters mk, j

vo . The inversion for each mk, j
vo is carried

out via a robust Huber weighted least-squares fit

mk, j
vo =

[
(Gk, j )T WGk, j

]−1
(Gk, j )T Dk, j (6)

where W is a diagonal vector of Huber weights that ensure a robust
solution (Olsen 2002; Sabaka et al. 2004) and are iteratively updated
until convergence. Once mk, j

vo is determined, the three field compo-
nents at the site and epoch of interest, B̃k(rk, t j ) = −∇Vk(rk, t j ),
are computed and added back on to the CHAOS-6-x3 prediction for
the internal field (for degrees 1–14 only, to avoid as far as possible
the lithospheric field) at the target location.

We constructed VO estimates at PVO = 200 locations, with a
spacing of about 1600 km (≈14◦, see dots in Fig. 1), located in an
approximately equal area grid based on the spherical surface parti-
tion algorithm of Leopardi (2006). The altitude of the VOs are 300
and 500 km during the CHAMP and Swarm periods, respectively.
Using predictions of the three components (Br, Bθ , Bφ) of the mag-
netic field at PVO locations, we finally obtain 3PVO time-series (i.e.
one point every 4 months during CHAMP and Swarm times, 48
epochs in all), stored in a vector yVO(t). The SV was computed as
annual differences of the 4 month time-series.

2.1.3 Uncertainty estimates for the GO and VO series

In order to obtain as much information as possible from the GO and
VO data, while at the same time seeking to avoid overfitting them, it
is important that appropriate uncertainty estimates are specified for
each time-series. We define CGO and CVO to be the measurement
error cross-covariance matrices for GO and VO data at each epoch,
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Figure 1. SV observation error estimates (colour scale in nT yr−1) at all location where GOs (hexagons) and VOs (circles) are used in this study, for the three
components Ḃr , Ḃθ and Ḃφ (from top to bottom). The size of the markers is proportional to the magnitude of the a priori error estimates.
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of sizes respectively 3PGO × 3PGO and 3PVO × 3PVO. Data errors
are supposed to be independent of time. Different data uncertain-
ties are assigned for the VO’s derived from CHAMP and Swarm
respectively.

Regarding the GO time-series described above, we follow a sim-
ilar approach to that used in CHAOS field model series (Olsen et al.
2014; Finlay et al. 2016b) and derive uncertainty estimates as fol-
lows. A 3 × 3 covariance matrix was computed for each observatory
location from the time-series of the three components, after remov-
ing the predictions of the CHAOS-6 field model and detrending. The
square roots of the diagonal elements of these covariance matrices
were taken to be the uncertainty estimates for each component at
each observatory. The same procedure was applied to both the MF
and SV series.

For consistency, a very similar procedure was also applied to the
VO series in order to obtain their uncertainty estimates. For each VO
location, covariances were calculated between the time-series of the
three components (after removing from each series the predictions
of the CHAOS-6 model and de-trending), in order to obtain a 3
× 3 covariance matrix. A robust procedure for calculating the co-
variances (using the Minimum Covariance Determinant estimator,
Verboven & Hubert 2005) was employed. However, only the square
roots of the diagonal elements of the covariance matrices were taken
to be the uncertainty estimates for each series, with similar proce-
dures applied to both MF and SV series. To illustrate the range of
the adopted uncertainty estimates, we show in Fig.1 the r.m.s. SV
uncertainty estimates for all locations where data (GO or VO) are
used in this study.

Note that by using only the diagonal elements of CGO and CVO

we effectively consider the errors on each GO and VO series to be
uncorrelated with the errors on other series. In reality errors between
components and between series will be correlated. This can be taken
into account using full (i.e. dense) covariance matrices. It is however
challenging to estimate cross-covariances for matrices of size larger
than the length of the contributing times series (consisting of one
sample every 4 months). We therefore postpone this step to future
studies. Instead, by restricting to only 200 VO locations and ensuring
that there was little overlap between the VO search radii we reduce
as far as possible the correlations between distinct VO series.

Finally, we concatenate the above GO and VO main field data
vectors for each epoch into yo(t) = [yT

VO yT
GO]T . The associated ob-

servation errors covariance matrix Ryy, of rank P = 3PVO + 3PGO, is
thus derived from the diagonals of CVO and CGO. In the next section
we will consider both main field and secular variation data. SV data
ẏo(t) are computed as annual differences of the four monthly (GO
or VO) series. We follow the same approach as above to estimate
the SV data errors variances (shown in Fig. 1) that are stored in a
diagonal matrix Rẏ ẏ of rank P.

2.2 Reanalysis of GO and VO data ground and satellite
magnetic observations

The assimilation algorithm used in this study is essentially the one
derived by BGA17 (see their table 2 for a summary). It is a sequential
tool, consisting of a succession of forecast and analysis steps. The
main modifications concern the direct integration of observations
at and above the Earth’s surface, while BGA17 considered data
in the form of MF and SV spherical harmonic coefficients. We
begin by recalling the main points of our stochastic forecast model,
before we go on to describe the changes implemented in the present

study regarding the analysis step. These essentially concern the
observation operator linking the state variables to the observations.

2.2.1 Stochastic forecast model

We forecast the evolution of the radial magnetic field, Br, at the
CMB using the radial component of the induction equation, written
as

∂ Br

∂t
= −∇h · (

uH Br

) + er + dr (uH , Br ) , (7)

where overlines mean the projection onto large length-scales. er

stands for the subgrid induction processes arising due to the unre-
solved magnetic field at small length-scales, uH is the horizontal
flow, and dr, enslaved to Br and uH , approximates the radial compo-
nent of the diffusion operator (see below). The evolutions of er and
uH are governed by order one autoregressive stochastic processes,

der

dt
+ er

τe
= ζe , (8)

duH

dt
+ (uH − ûH )

τu
= ζu , (9)

with ζ e and ζ u white noise processes, and ûH the background flow
model (obtained as the time-averaged flow from the CED model).
These processes come from the same family of process as employed
by Baerenzung et al. (2017). For each process, an effective restoring
force is implemented via single time scales that we respectively fix
as τ e = 10 yr and τ u = 30 yr. Spatial cross-covariances of the two
above fields are derived from statistics of a free run of the CED
(Aubert et al. 2013).

The advected fields er, uH , Br and dr are represented through
spherical harmonics, whose coefficients are stored in vectors e(t),
u(t), b(t) and d(t), respectively. Diffusion in eq. (7), and its de-
pendence on er and uH, is also an expression of cross-covariances
extracted from the CED (involving the radial magnetic field below
the CMB). The projection onto large length-scales is processed in
the spectral domain, restricting the induction equation (and thus the
expansion of the fields er, Br and dr) to spherical harmonic degrees
n ≤ nb = 14, while the velocity field is truncated at nu = 18. We
write as ḃ(t) the vector of SV spherical harmonic coefficients.

2.2.2 Integrating ground and satellite data in the assimilation tool

We write as M the operator that links the vector b(t) to the three
components main field observations y(t) in the spatial domain (e.g.
Olsen et al. 2010):

y(t) = Mb(t). (10)

At each epoch it is of size no × nb(nb + 2), with no = 3(PVO + PGO)
the size of the observation vector. The matrix M is composed of
submatrices Mr, Mθ and Mφ , depending on the considered compo-
nent of the magnetic field. In practice, elements of the matrix are,
for a column j corresponding to a coefficient g

m j
n j , and a line i to an

observation at a coordinate ri = (ri, θ i, φi),

Mri, j = (n j + 1)

(
a⊕

ri

)n j +2

Pm
n (θi ) cos(m jφi ) , (11)

Mθ i, j =
(

a⊕

ri

)n j +2 dPm
n (θi )

dθ
cos(m jφi ) , (12)
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Figure 2. Time evolution of the number of SV data points (VOs in red, GOs in blue).

Mφi, j =
(

a⊕

ri

)n j +2 m jPm
n (θi )

sin(θi )
(−1) sin(m jφi ). (13)

For a line j corresponding to a coefficient h
m j
n j , the function sin

replaces cos in eqs (11) and (12), and cos replaces ( − 1)sin in
(13). a⊕ = 6371.2 km is the Earth’s spherical reference radius and
Pm

n are the Legendre polynomials.
The analysis in the Kalman filter algorithm employed by BGA17

consists of two steps: first an analysis of the vector b containing
MF spherical harmonic coefficients from MF spherical harmonic
coefficients data, and second an analysis of the vector z (that con-
catenates u and e) from SV spherical harmonic coefficients data.
Writing as P f

bb the forecast model covariance matrix for b, the first
analysis (eq. 19 of BGA17) is replaced here by

∀k ∈ [1, Nm], bka(ta) = bk f (ta) + P f
bbMT

[
MP f

bbMT + Ryy

]−1

(
yko(ta) − Mbk f (ta)

)
, (14)

with ta the analysis epoch and the superscript k referring to the
kth realization within an ensemble chosen to be of size Nm = 50.
Writing as P f

zz the forecast model covariance matrix for z, the second
analysis (eq. 20 of BGA17) is replaced here by

∀k ∈ [1, Nm], zka(ta) = zk f (ta) + P f
zzG

kT
[
GkP f

zzG
kT + Rẏ ẏ

]−1(
δẏko(ta) − Gkzk f (ta)

)
, (15)

where the new observation operator is Gk = MH(bka), with H as
defined in BGA17. Here δẏko(ta) = ẏko(ta) − Mdk f (ta) are the di-
rect SV observations corrected by the forecast contribution from
diffusion to the radial induction equation. This latter is sought iter-
atively at each analysis step, as in BGA17. Note that we consider an
ensemble of observations yo and ẏo, which are perturbed by random
noise according to respectively Ryy and Rẏ ẏ . We recall that we con-
sider in eqs (14) and (15) forecast covariance matrices Pzz and P f

bb

that are frozen throughout the reanalysis period. These are derived
directly from the CED cross-covariances on b, u and e spherical
harmonic coefficients, involving scaling pre-factors obtained ana-
lytically from the stochastic model presented in Section2.2.1 (see
BGA17 for details). For comparison, Baerenzung et al. (2017) em-
ploy a full implementation of the Ensemble Kalman filter (Evensen
2003), that is, they update the cross-covariances at each analysis
step, requiring many more realizations to obtain well-conditioned
matrices.

Finally, an extra complexity arises because the number of ob-
servation sites changes over time. Indeed, because of the selection
criteria, the number of satellite data available may not always be
sufficient to make a reliable VO estimate. Under these conditions
the VO data point is considered to be absent: the associated elements
of the data vector yo(t) at a given time t are removed, together with
the corresponding lines and columns of Ryy, and the corresponding
lines of the matrix M (and thus G). This procedure is performed
during each analysis. Thus, the size P of the data vector changes
through time, reflecting the changing number of available satellite
observations through time (see Fig. 2).

To summarize, in this study we work with predictions made by
spherical harmonic coefficients that are projected in physical space,
where they are adjusted during the analysis step according to the
observations and the covariance matrices. As such, our algorithm is
still based almost entirely on the spectral domain; only the analysis
steps are performed in physical space, in order to match the ob-
served magnetic field data. Note that we corrected for two mistakes
in the implementation of the algorithm by BGA17: a sign error in
the background flow û, and off-diagonal elements of the covariance
matrix for e were non-intentionally ignored. Performing compar-
isons between reanalyses before and after correction, we found two
consequences: a reduction of the dispersion within the ensemble of
realizations, and a (almost stationary) shift in the analysed diffusion
for some coefficients (including the axial dipole, see Section3.1.2).
This latter is almost entirely compensated by a shift in the anal-
ysed er, with minor impact on the recovered flow. Otherwise, the
qualitative conclusions of BGA17 remain unaltered.

2.3 Posterior diagnostics

We now define several diagnostics used to evaluate the quality and
the consistency of our results. We shall compare a quantity x (MF,
SV, subgrid error, diffusion... in the spatial or spectral domain) with
observations xo (when available), or with the same quantities xc

from the CHAOS-6 geomagnetic model (Finlay et al. 2016b). We
define its time average

x̂ = 1

t f − ti

∫ t f

ti

x(t)dt , (16)
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Figure 3. SV time-series for the three components (dBr/dt, dBθ /dt, dBφ /dt), at one VO location {r = 6671 km, θ = 90◦, φ = 88, 8◦} (top), and at Chambon-
la-forêt {r = 6366 km, θ = 42◦, φ = 2◦} (bottom). SV observations are shown in black, CHAOS-6 predictions in green and predictions from our analysis in
red. The shaded area correspond to ±σḃ , see eq. (18).

with ti and tf the initial and final epochs, its ensemble mean

〈x(t)〉 = 1

Nm

Nm∑
k=1

xk(t) , (17)

the dispersion within the ensemble

σ x (t) =
√√√√ 1

Nm − 1

Nm∑
k=1

(xk(t) − 〈x(t)〉)2
, (18)

and finally the bias between our ensemble mean model and the
reference xc,

δx (t) = xc − 〈x(t)〉 . (19)

We also define spatial power spectra of any magnetic trajectory
b(t) as

Rb(n, t) = (n + 1)

(
a⊕

c

)2n+4 n∑
m=0

[
gm

n (t)2 + hm
n (t)2]

, (20)

Downloaded from https://academic.oup.com/gji/article-abstract/215/1/695/5057476
by DTU Library - Technical Information Center of Denmark user
on 20 August 2018



702 O. Barrois et al.

Figure 4. Top: histograms of MF prediction errors δMF (eq. 19), accumulated over all analysis epochs, normalized to the observation errors, for the components
Br (left), Bθ (middle) and Bφ (right). Superimposed in black are the Gaussian distribution fits obtained with the mean μ and the variance σ 2 for each of the
three distributions. Bottom: same histograms for the SV prediction errors δSV.

Figure 5. Top: CMB maps of the ensemble average radial magnetic field 〈b〉 (eq. 17) in 2017 (left: MF in mT; right: SV in μT yr−1), as estimated with our
algorithm. Bottom: MF (left) and SV (right) maps of the difference of our ensemble average field with CHAOS-6 (truncated at degree 14) at the CMB (with
the same colour scales).

with similar notations for ḃ(t), d(t) and e(t). c = 3485 km is the
Earth’s core radius, and gm

n and hm
n are Schmidt semi-normalized

spherical harmonic coefficients for the magnetic field at the Earth’s
surface. Finally, the spatial power spectrum for core flow trajectories
u writes

S(n, t) = n(n + 1)

2n + 1

n∑
m=0

[
tc

m
n (t)2 + ts

m
n (t)2 + sc

m
n (t)2 + ss

m
n (t)2]

,

(21)

with tc,s
m
n and sc,s

m
n Schmidt semi-normalized spherical harmonic

coefficients for the toroidal and poloidal components of the flow.

We also define the flow norm

N =
nu∑

n=1

n(n + 1)

2n + 1

n∑
m=0

[
tc

m
n

2 + ts
m
n

2 + sc
m
n

2 + ss
m
n

2]
. (22)

The above power spectra can be considered for the ensemble
mean or the dispersion within the ensemble, in which case they
are respectively noted R<x>(n, t) and Rδx (n, t). Additionally, all
those quantities may be averaged in time and/or computed only
at analysis periods. For example, the time-averaged spatial power
spectrum of the dispersion of magnetic field solutions at analysis
epochs is R̂a

δb(n). The same convention as above holds for core flow
spectra.
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Figure 6. SV spherical harmonic coefficient time-series for ġ0
1 (left) and ḣ6

6 (right). Predictions from our ensemble average model are shown in dark red (±2σḃ
in red) and CHAOS-6 in black. Contributions from subgrid errors and diffusion extracted from our ensemble of realizations are superimposed in respectively
blue and yellow (with dispersions ±1σ diff and ±1σ er in the corresponding colours).

3 R E S U LT S

We apply our algorithm to VO and GO magnetic field observations
over a period spanning from ti = 1996.92 to tf = 2016.92. We
recall that since we use satellite measurements from CHAMP and
Swarm missions, VOs are available only over the periods 2000–
2010 and 2014–2017, whereas GOs are available over the whole
time span. Analysis are performed every �ta = 4 months. The
sequences of analyses and forecasts between 1997 and 2001 are
used to warm up the filter (see fig. 7 in BGA17), avoiding an
increase in the ensemble spread over the first years of the targeted
satellite era. This warm-up period is not considered below when
interpreting the ensemble of inverted magnetic field and flow. We
first describe predictions from our reanalysis for observations in
the physical domain (Section3.1.1), before we present the resulting
magnetic model (Section 3.1.2), and insights on core flows over
various timescales (Section3.2).

3.1 Geomagnetic field models

3.1.1 Predictions for GO and VO series

We compare in Fig. 3 our series of SV forecasts and analysis with
two examples of observation series (one VO and one GO), and with
the predictions from CHAOS-6. The large spread of the SV fore-
casts is to be expected given the large uncertainties associated with
subgrid errors and the large-scale flow (see BGA17). At both sites,
the dispersion within the ensemble of SV trajectories encompasses
most of the time the observations. Moreover the predictions from
CHAOS-6 and from our ensemble of SV models are generally con-
sistent. Our algorithm thus seems able to provide a coherent estimate
of the SV probability density function (PDF) at the Earth’s surface
and at satellite altitude. In addition, we highlight that even during
the period 2010-2014 where no VO data are available, the trajectory
of SV model, controlled by the stochastic prior and GO data only,
remains reasonable, with a slight increase in the ensemble spread
that always contains CHAOS-6. Note that our algorithm tends to
drive the system toward low SV values (see the saw-tooth patterns
in Fig. 3). This feature is to be expected given our choice of the
stochastic models for uH and er, which control the evolution of the
SV. In the absence of data constraints, the process will drift back
the ensemble average trajectories for uH and er towards the aver-
age dynamo state, which by construction is responsible for a weak

SV. This is not a major drawback as soon as we analyse frequently
enough, though it does limit the prediction capabilities of our tool
(as discussed in BGA17).

We check in Fig. 4 the accuracy with which our model fits MF and
SV observations, with the histograms of the prediction errors (over
all analyses) normalized to the observation errors, for the three com-
ponents of the magnetic field. Concerning the MF, prediction errors
are only weakly biased, excepted for Bθ (normalized biases on the
three components are μr = −0.02, μθ = −0.23 and μφ = 0.0). The
histograms of prediction errors are reasonably close to Gaussian
for the three components with observation errors that appear to be
under-estimated on average, in particular on Br (normalized r.m.s.
errors on the three components are σ r = 2.18, σ θ = 1.55 and σφ

= 1.63). The SV predictions errors are remarkably consistent with
the a priori errors with small biases and standard deviation close
to unity for the three components (μr = −0.06, σ r = 1.01; μθ =
−0.09, σ θ = 1.11 and μφ = 0.03, σφ = 1.14), even though the dis-
tributions appears more peaked than a Gaussian. The Kalman filter
employed here implicitly assumes Gaussian distributed data errors.
However, the above remark suggests that alternative treatments of
data residuals may be worth considering in future studies (e.g. L1
or Huber norms, see Constable 1988; Farquharson & Oldenburg
1998).

3.1.2 Field models, and contributions to the SV

We now describe in more detail our MF and SV models. We present
in Fig. 5 MF and SV maps for our ensemble average model at the
CMB truncated at spherical harmonic degree n = 14. Comparing
it to a more traditional field model CHAOS-6, which is temporally
regularized, the overall agreement is very good, indicating that our
tool is indeed capable of producing reasonable field models. MF
discrepancies to CHAOS-6 are relatively small, with peak to peak
values less than 10% of the total amplitude for a field truncated at
degree 14. They are dominated by isotropically distributed, small
length-scale patterns. As well as being dominated by small length-
scales, the disagreements are larger for the SV, with peak to peak
differences about 30% of the total amplitude, which is to be expected
given the blue SV spectrum at the CMB, meaning that small length
scales dominate. Interestingly, the largest differences are localized
under South America and the Indian Ocean, where the planetary
gyre respectively detaches from and joins the equatorial belt (Pais
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Figure 7. Top: time averaged spatial power spectra at the Earth surface of the magnetic field of CHAOS-6 (R̂a
bc , eq. 20, in green), our estimate (R̂a

〈b〉, in

red), the difference between the two (R̂a
δb , red thin line) and the dispersion within our ensemble of analyses (R̂a

σb
, dotted line). Bottom: idem for the SV,

superimposed with the spectra of the contributions from subgrid errors (blue) and from diffusion (yellow).

& Jault 2008) and where rapid time-dependence is observed (Finlay
et al. 2016a).

In Fig. 6 we show the various contributions in our model to two
SV spherical harmonic coefficient series. The dispersion within
the ensemble of models is large enough to include time changes
as estimated by CHAOS-6, with some exceptions during the high
solar activity era, for example, in 2002 for h6

6, and at the very end
of the CHAOS-6 era (this latter possibly in link with the damping
of SA towards end-points in the regularized field model). We note a
larger spread of the analysis for the axial dipole than for non-zonal
coefficients of intermediate length-scale such as h6

6. This may be
a consequence of the weaker constraint on zonal coefficients from
surface observations (e.g. Kotsiaros & Olsen 2012), although we
only note such behaviour for g0

1 . An enhancement of the dispersion
is notable between 2010 and 2014, displaying in the spectral domain

the impact of the decreasing number of data during this era when no
vector satellite data were available. Over 2001–2006, the ensemble
average h6

6 trajectory shows distinctive square shaped variations,
probably partly related to variations in the number of data satisfying
selection criteria during this interval of enhanced solar activity when
only CHAMP data were available.

Spatial spectra shown in Fig. 7 summarize the characteristics
of our model in the spectral domain. We find excellent agreement
with CHAOS-6 for the main field and its secular variation, except
at the small length scales of the SV (n > 10), which are more
likely to be affected by the different data set chosen and by the
different temporal kernel used (short time windows in our case
against whole time span for CHAOS-6). The ensemble spread gives
a good approximation of the characteristic distance between our
model and CHAOS-6. Diffusion and subgrid errors in the SV have
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Figure 8. Magnetic diffusion at the CMB (top, colour scale in μT y−1),
and horizontal divergence ∇h · uh (bottom, colour scale in 10−3 yr−1)
superimposed with passive tracers trajectories (black, tracer size scale in km
yr−1), for the ensemble average model in 2017. Core flow visualizations are
performed using the tools provided at https://geodyn.univ-grenoble
-alpes.fr/. The size of the tracers is proportional to the velocity field (see
the legend). The initial positions of the tracers is random; each trajectory is
advected by the velocity field for a fixed time; along each trajectory, the late
(early) positions are darker (lighter).

Figure 9. Core flow norm N for all flow constituents that enter eq. (23).
The norm N for the linear flow acceleration is obtained by integrating the
linear trend over the 16 yr.

approximately the same amplitude except for the dipole. The power
stored in these two SV sources represents about 10 to 20% of the
total SV energy at all scales.

Even though the dispersion within the model predictions is large
enough to encompass most of the MF and SV observations, the
dispersion within the ensemble of realizations is lower, by a factor
about 2.5, than the distance between the ensemble average model
and CHAOS-6 for both the MF (at all length-scales) and the SV

(towards small length-scales only). A complete account of SV errors
from all subgrid interactions (see Baerenzung et al. 2017) may
help reduce the above under-estimation. Our current estimate is
nevertheless larger than that obtained for the COV-OBS.x1 model
Gillet et al. (see fig. 4 in 2015a, the error spectrum in 2010). We
suspect that the accumulation of data (assumed independent) during
the construction of this latter field model involved too strong a
decrease of the posterior error within the COV-OBS framework.
The more consistent approach to error propagation developed here
and presented in Fig. 7 favours larger uncertainties on spherical
harmonic coefficients during the satellite era.

Overall, we are generally able to retrieve earlier well-established
results. For instance the contribution from advection dominates
(over diffusion) the axial dipole decay (Finlay et al. 2016b; Bar-
rois et al. 2017) and its fluctuations—even though our estimate
for the contribution from diffusion to dg0

1/dt , shifted upward by a
couple of nT yr−1 in comparison with the results of BGA17 (see
Section 2.2.2), amounts to a relatively larger fraction over the latest
years where the dipole decay tends to be weaker. The ensemble
average SV originating from diffusion is presented in Fig. 8 for
2017: the most significant contributions appear below Africa and
Indonesia. The strongest diffusion appears linked to intense patches
of up-/downwellings in the equatorial belt at the CMB (see Fig.8)
and/or where strong gradient of B occur. This is a direct consequence
of our estimation of diffusion through cross-covariances involving
core surface velocity and magnetic fields (see BGA17 and Amit &
Christensen 2008). In the framework of our modelling, such diffu-
sion patterns seem to be required by magnetic observations rather
by the imposed prior cross-covariances (or if it is the case, it does
not show up in the background state).

3.2 Core flow solutions

Next, we study with more details the temporal information con-
tained in our core flow solutions. The idea is to extract an average
signal and a linear acceleration, together with the flow at different
periods, to check if we witness any preferential frequency, or if the
characteristics of the flow change with the period. To do so, we
apply a least-squares regression to our core flow solution with a
function of the form

u(t) = Â + AL (t − t0) +
11∑

k=1[
As

k sin

(
2π (t − t0)

k

T

)
+ Ac

k cos

(
2π (t − t0)

k

T

)]
, (23)

with t0 = (ti + tf)/2 = 2008.92 and T = tf − ti = 16 yr. Vectors Â,
AL, Ac

k and As
k store respectively the spherical harmonic coefficients

of the time average velocity, time average flow acceleration, and
cosines and sines from periods 16 yr (for k = 1) to 1.45 yr (for k
= 11) – of course the longer periods are not well constrained given
the short time span considered here.

We show in Fig. 9 the norm (22) of all flow constituents for the
ensemble average solution. The flow is dominated by long periods,
translating onto core surface motions the red SV temporal spectrum
(see Gillet et al. 2015a; Lesur et al. 2017). In comparison with a
r.m.s. time average flow of 11.1 km yr−1, the linear acceleration AL

corresponds, integrated over 16 yr, to a r.m.s. flow increment of
6.6 km yr−1.

Downloaded from https://academic.oup.com/gji/article-abstract/215/1/695/5057476
by DTU Library - Technical Information Center of Denmark user
on 20 August 2018

https://geodyn.univ-grenoble-alpes.fr/


706 O. Barrois et al.

Figure 10. Intensity maps at the CMB of the flow constituents Â (in km yr−1) for the ensemble average flow solution, superimposed with passive tracers
trajectories (black). Top: Aitoff projection. Middle: north (right) and south (left) polar projections. Bottom: Aitoff projection for equatorially symmetric (left)
and antisymmetric (right) components. The colour scale and tracer size scale are the same for all subfigures.

3.2.1 Stationary motions, and flow model uncertainties

We show in Fig. 10 core surface maps of the flow intensity and
tracers trajectories for the ensemble average flow constituents Â.
We retrieve on the map for the time average flow classical fea-
tures, such as the westward gyre offset towards the Atlantic Ocean
found in many studies (e.g. Pais & Jault 2008; Aubert 2014;; Gillet
et al. 2015b Baerenzung et al. 2017), with a Pacific hemisphere
that is on average much less energetic. The most energetic flow
features are associated with (i) azimuthal motions in the equatorial
belt below Africa, (ii) high latitudes azimuthal jets in the Pacific

hemisphere and (iii) meridional circulations, poleward (resp. equa-
torward) around 90◦W (resp. 90◦E).

Our solution is dominated by equatorially symmetric features
(see Fig. 10, bottom), as expected outside the tangent cylinder (or
TC, the cylinder tangent to the inner core, whose axis coincides with
the rotation axis) when rotation forces dominates the momentum
balance (e.g. Pais & Jault 2008). Nevertheless, the symmetry may
be locally broken. The most striking examples of this are anticy-
clonic circulations within the TC, retrieved in both the Northern
and Southern hemispheres (Fig.10, middle). In contrast with polar
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Figure 11. Time averaged spatial power spectra for ensemble average core flows (Ŝa
〈u〉, red thick line) and the spectra for the ensemble average of each

realization (
〈
Ŝa

uk

〉
, yellow thick dotted line, eq.21), obtained from the reanalysis of VO and GO data. Spectra for the corresponding dispersion within the

ensembles of models are displayed in dotted lines. In green is shown the averaged spectrum for the prior CED.

vortices previously inferred from geomagnetic observations (Olson
& Aurnou 1999; Amit & Olson 2006), features we isolate here are
offset to one side of the polar caps (i.e. they contain an important m
= 1 contribution). This is a common configuration for polar vortices
found in the most up to date numerical simulations (Schaeffer et al.
2017), which show much variability through epochs.

We show in Fig. 11 the time-average spatial power spectra for
the ensemble average solution and for the dispersion within the
ensemble of models. The former is comparable with the spectrum
of the prior CED. The latter indicates that uncertainties, as mea-
sured by the ensemble spread, constitute a large fraction of the flow
magnitude for degrees n ≥ 10. The oscillation in the power seen
between odd and even degrees might be magnified by possibly too
low subgrid error budget (see Section 3.1.2).

3.2.2 On transient core surface motions

We now explore transient flow motions. We particularly focus on the
amount of equatorial symmetry of our solutions inside and outside
the TC, in order to detect if our model is sensitive to the specific
geometry of the Earth’s core (does it hold a signature of the TC?).
As for the time-average flow, the linear acceleration over the past 16
yr is primarily symmetric with respect to the equator (see Fig.12).
The largest contributions consist of accelerating circulations around
the meridional, Eastern branch of the gyre. Associated with these
time-changing eddies around the equatorward branch of the plane-
tary gyre, an Eastward equatorial jet intensifies under the Western
Pacific. This suggests an underlying dynamics more complex than
a simple longitudinal shift of the planetary gyre.

Interestingly, our average solution does not show a major inten-
sification of equatorially symmetric azimuthal jets at high latitudes
in the Pacific hemisphere, as inferred by Livermore et al. (2017).
Indeed, we see an increase of the Northern jet only, by about 67%

in average (the one σ dispersion within the ensemble of flow re-
alizations allowing for an increase up to 100%). Although still an
appreciable acceleration, it is significantly less than the factor of
3 found by Livermore et al. The disagreement is likely due to our
global inversion (in opposition to their local model). The difference
seems to be related with antisymmetric circulations within the TC.
One should keep in mind that in these high and low latitude areas,
gradients of Br are much larger in the Northern Hemisphere, mean-
ing that the signature of any motions near the TC below the Southern
Pacific are significantly weaker. As for the stationary constituent,
the equatorial symmetry is not perfectly respected, and we retrieve
the largest antisymmetrical features within the TC, associated with
polar jets.

We give in Fig. 13 an example of one interannual flow constituent
at the CMB for a period of 5.3 yr. In this case, the most energetic
flows are concentrated into non-axisymmetric azimuthal jets near
the equator (already highlighted by Gillet et al. 2015b; Finlay et al.
2016b), and into localized circulations at mid and high latitudes.
These are not confined to the Atlantic hemisphere: despite being
less energetic on average, the Pacific hemisphere shows interesting
interannual flow variations. At these sub-decadal periods, we have
not detected any obvious propagation of non-zonal flow patterns,
which might be interpreted as the signature of azimuthally propa-
gating waves (as advocated for by Chulliat & Maus 2014; Chulliat
et al. 2015). The other periods display globally the same kind of
features and no particular behaviour is found at any period. At these
timescales also show up less intense antisymmetric features; the
most significant shows up in the equatorial area (for instance un-
der the Atlantic ocean and the Western Pacific), and towards high
latitudes on the edge of the TC.

Fig. 14 summarizes the amount of equatorial symmetry found
in regions inside and outside the TC, for our core flow solutions
at all periods. It appears almost independent of the considered pe-
riod: outside the TC, it is within 90 to 95% of the surface energy
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Figure 12. Same as Fig. 10 for the flow constituent AL (in km yr−2).

for all flow constituents of eq. (23). The partition of energy be-
tween symmetric and antisymmetric flow components is more bal-
anced inside the TC where, depending on the considered timescale,
≈55 ± 15% of the energy is contained in equatorially symmet-
ric flows. This latter observation could be expected because the
presence of the inner core is intended to partially break the equa-
torial symmetry However, it is remarkable that the algorithm ap-
pears accurate enough to detect a specific behaviour within the
tiny areas covered by polar caps. Moreover, although our ensem-
ble average model and the CED show very similar amounts of
equatorial symmetry outside the TC (the value for the CED model
is 95% of symmetrical flows inside and outside TC), they differ

significantly inside the TC (it is much less in the inverted flows).
As a consequence, the larger proportion of equatorial antisym-
metry inside the TC is driven by observations (against the prior
information).

4 S U M M A RY A N D D I S C U S S I O N

Following earlier strategies for geomagnetic field model reconstruc-
tion (e.g. Jackson et al. 2007; Lesur et al. 2010), and moving to-
wards geomagnetic data assimilation (Aubert 2015; Gillet et al.
2015a; Baerenzung et al. 2017), we continue the work initiated in
BGA17. We retain their idea of combining spatial information from
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Figure 13. Same as Fig. 10 for the flow constituent Ac
3 (in km yr−1).

numerical simulations of the geodynamo with temporal information
implemented through stochastic equations, chosen to replicate the
frequency spectrum of ground-based geomagnetic series. However,
instead of considering spherical harmonic coefficients of the main
field as data, here we have inverted observations (GOs and VOs) di-
rectly, at and above the Earth’s surface. In this respect we follow the
studies by Beggan & Whaler (2009) and Whaler & Beggan (2015),
although we account for subgrid processes (of great importance,
as shown by BGA17 or Baerenzung et al. 2016) and for surface
magnetic diffusion. This avenue allows us to propose PDFs for the
main field and its secular variation, as well as for the recovered core
motions.

4.1 Geophysical insights

The MF models presented here are consistent both with observations
and with the imposed dynamical prior. The model uncertainties, as
suggested by the ensemble spread, are slightly less than the distance
of the average model to CHAOS-6. We recover in our core flow solu-
tions a westward gyre that circulates around the TC at high latitudes
in the Pacific hemisphere, and flows closer to the equator in the
Atlantic hemisphere. The largest contributions from magnetic dif-
fusion are associated with up-/downwellings where the gyre meets
the equatorial region (under Indonesia) and in the equatorial region
below Africa. At all timescales, the flow is predominantly sym-
metric with respect to the equator, except inside the TC where the
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Figure 14. Fraction of energy contained into the equatorial symmetric part of the flow, inside (blue line) and outside (yellow line) of the tangent cylinder (TC),
for each of the flow constituent that enters eq. (23). The total symmetric part of the flow is also displayed in green. The value for the CED dynamo used as a
prior is 0.95 both inside and outside the TC.

situation is more balanced (contrary to our dynamo prior that is
mostly symmetric everywhere).

The most intense time-average flow acceleration over the past
16 yr is linked with evolving meanders around the equatorward
branch of the gyre in the Eastern hemisphere, also associated with
the appearance of an Eastward equatorial jet under the Western
Pacific. We do find a decadal intensification of jets near the TC,
although the magnitude of the acceleration we infer is lower than
that estimated by Livermore et al. (2017) with their reduced model.
In our study, it is furthermore confined to the Northern Hemisphere.
This equatorial asymmetry may be interpreted as the signature of
an ageostrophic acceleration, keeping in mind that main field gradi-
ents are weak in the Southern Pacific, implying a weaker constraint
on flow motions there (see fig. 7 in Baerenzung et al. 2016). How-
ever, because our prior does not show any particular bias in those
areas, it is likely that those features are mostly driven by the data.
On interannual periods, we find relatively energetic flow changes in
both the Atlantic and the Pacific hemispheres, with both non-zonal
equatorial jets and time-dependent mid-to-high latitudes eddies
evident.

4.2 Future work

We currently lack a physical understanding for the features de-
scribed above, whether it be through quasi-geostrophic flows (e.g.
Labbé et al. 2015), motions within a stratified layer (e.g. Buffett
& Knezek 2017), or any other interpretation through a reduced
model. We also lack suitable long coverage by high quality satellite
records to perform spectral analyses with a refined sampling in the
frequency domain, which would allow us to isolate possible waves
at interannual periods. Development of such reduced models, and
their coupling with stochastic processes for modelling unresolved
processes, will be an important next step in our ability to understand
and predict geomagnetic field changes.

Meanwhile, our stochastic model itself could be improved; in
particular it is desirable to avoid driving back the average trajectory
towards an average dynamo simulation. This is indeed an unlikely
state for the current era (say over decadal to centennial timescales),
which might be better represented by a reanalysis of for instance

centennial motions from historical records (Jonkers et al. 2003).
Furthermore, because of the short time span covered today by satel-
lite data, we found it challenging to derive well-conditioned matrices
for VO uncertainties. This is a key-point for such data assimilation
studies, which calls for further developments, for example, through
projections onto reduced basis in the data space. Alternatively, we
may wish to coestimate, together with the core state, time-dependent
external fields. Although possible, this calls for a severe re-encoding
of both the forecast and analysis steps, in order to integrate satellite
measurements along the tracks.

The general philosophy of our work is to retrieve information on
the state of the Earth’s core, and to provide realistic uncertainties
on all state variables in a simple way. The encouraging magnetic
models obtained with this approach render our algorithm suitable
for deriving candidates to the International Geomagnetic Reference
Field (Thébault et al. 2015). Remaining in a stochastic framework,
modifications of the forward model parametrization—such as ac-
counting for a background state closer to the flow responsible for
the magnetic field over the past decades—may extend the predic-
tion capability of our algorithm. However, targeting accurate field
predictions one will have to resort to deterministic (i.e. dynamically
based) equations for the core state.
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