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Scale separated low viscosity 
dynamos and dissipation within the 
Earth’s core
Andrey Sheyko1, Christopher Finlay  2, Jean Favre3 & Andrew Jackson1

The mechanism by which the Earth’s magnetic field is generated is thought to be thermal convection 
in the metallic liquid iron core. Here we present results of a suite of self-consistent spherical shell 
computations with ultra-low viscosities that replicate this mechanism, but using diffusivities of 
momentum and magnetic field that are notably dissimilar from one another. This leads to significant 
scale separation between magnetic and velocity fields, the latter being dominated by small scales. 
We show a zeroth order balance between the azimuthally-averaged parts of the Coriolis and Lorentz 
forces at large scales, which occurs when the diffusivities of magnetic field and momentum differ so 
much, as in our model. Outside boundary layers, viscous forces have a magnitude that is about one 
thousandth of the Lorentz force. In this dynamo dissipation is almost exclusively Ohmic, as in the Earth, 
with convection inside the so-called tangent cylinder playing a crucial role; it is also in the “strong field” 
regime, with significantly more magnetic energy than kinetic energy (as in the Earth). We finally show a 
robust empirical scaling law between magnetic dissipation and magnetic energy.

Earth’s dynamo is generally considered to be driven by cooling of the core (radius r = r0) and from latent heat 
and buoyancy associated with the crystallisation of the inner core (radius r = ri). Complex motions v associated 
with this cooling mechanism act in concert with an existing magnetic field B to generate electrical currents by 
Faraday’s Law, and these currents generate more magnetic field by Ampere’s Law. This general picture of a mag-
netic field generator is termed a dynamo, but the actual details are more complex: the system is governed by the 
coupled momentum (Navier-Stokes), induction (pre-Maxwell) and energy equations that must be simultaneously 
satisfied. Of primary importance in the momentum equation is the presence of the Coriolis force, associated with 
the rapid rotation of the Earth; this effect is generally considered paramount in leading to a roughly dipolar field 
whose axis is located close to the rotation axis of the Earth.

Numerical solutions of these sets of equations1,2 have borne great fruit, but numerical limitations restrict the 
reality of the computations performed thus far. Here we report on solutions closer to the geophysical regime, in 
which the Coriolis and Lorentz forces are dominant, viscosity plays a minor role, and we observe scale separation 
between magnetic and velocity fields. Using a length scale L = ro − ri, fluid kinematic viscosity ν and rotation rate 
Ω, the Ekman number E = ν/(2ΩL2) for these simulations is as low as E = 3 × 10−7, rarely achieved in numerical 
studies. Reduced values of E imply finer flow structures, which lead to larger space and time resolutions and, as 
a consequence, tremendously increase computational costs. Table 1 gives details of the dynamo solutions com-
puted, together with one purely hydrodynamic simulation (HYDRO0) that removes the presence of the magnetic 
field altogether (see also Supporting Figs S0–S4). A critical parameter is the magnetic Prandtl number Prm = ν/η, 
where η is the magnetic diffusivity. Liquid metals in general, including at high pressure, have very small values for 
Prm, namely O(10−5–10−6). Our simulations include some that reduce this value to 0.05 in the case of model S4. 
The aim of the reduction in Prm is to ensure that almost all energy is dissipated Ohmically, as in the Earth, rather 
than viscously. Figure 1 compares our models with others in the literature3–6 and shows that we have achieved 
this, with model S4 dissipating 85% of its energy Ohmically (this fraction is commonly called fohm).

Our simulations in the electrically-conducting fluid outer and solid inner cores (ri/ro = 0.35) are constructed 
with the energy to drive the dynamos partitioned equally between heating at the inner core boundary (ICB; sim-
ulating crystallisation) and internal heating (secular cooling)7. We use constant heat flux boundary conditions8 at 
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the core-mantle boundary (CMB) and a constant temperature ICB; no-slip boundary conditions are applied at the 
ICB and CMB and the inner core is conducting and free to rotate. Details of our computations, which are stand-
ard, are given in the Materials and Methods section. Kinetic Reynolds numbers in excess of 5000 are achieved in 
our most extreme calculation S4; see Table 1. The unit for magnetic field we use is the “Elsasser unit” ρ µ ηΩ2 0  
where ρ and μ0 are density and free space magnetic permeability respectively. With the recent values9 for η of 
approximately 0.5 m2 s−1, one Elsasser unit is close to 1 mT. We have run the simulations, which are computation-
ally demanding (requiring more than 1700 CPU years), until a statistical equilibrium is found. All of our solutions 
are quasi-steady, dipole-dominated and non-reversing.

Fixed heat flux boundary conditions were suggested by Sakuraba and Roberts8 as being more realistic bound-
ary conditions for the core considering the overlying convecting mantle. They showed that the use of these 
boundary conditions affected the length scale of magnetic fields. Our simulation S0 has the same values of E, Pr 
and Prm as8, but 10 times lower Ra [This corrects an incorrect statement made in10 that S0 had the same Ra as8, 
this error of comparison was caused by inappropriate non-dimensionalizations but does not affect any of the 
results reported by10. We thank N. Schaeffer for pointing out this error]. Case S0 exhibits westward drift at the 
equator as a result of thermal winds driven by development of a hot equator. Convection has not set in within the 
tangent cylinder (the imaginary cylinder just touching the inner core and parallel to the axis of rotation). When 
the Rayleigh number is raised by a factor of five, Case S1 exhibits convection within the tangent cylinder and 
reduced CMB temperature gradients, with concomitant reduced westward drift. As the Rayleigh number is raised 
to thirty times that of Case S0, the sign of the temperature gradient is reversed, leading to a cold equator, hot 
poles and a weak eastward drift. Case S4, which represents our most extreme calculation, has the same Rayleigh 

Name E /10−6 Ra/Rac q = Prm Rm Re

S0a 1.1834 14.4 0.20 63 315

HYDRO0 1.1834 14.4 457

S1 1.1834 72 0.20 180 900

S2 1.1834 432 0.20 868 4340

S4 0.2959 432 0.05 274 5480

Table 1. Control parameters of the numerical simulations. E is the Ekman number, Ra is the Rayleigh number, 
Prm is the magnetic Prandtl number. Output characteristics are the magnetic Reynolds number Rm and the 
conventional Reynolds number Re. The Prandtl number is unity for all runs. Rac is the critical Rayleigh number 
for the onset of non-magnetic convection. The Rayleigh number is measured relative to the critical Rayleigh 
number for the onset of convection, Rac, and the Prandtl number Pr = 1. aS0 is as in ref.8 but with ten times 
lower Ra.

Figure 1. Fraction of dissipation that is Ohmic. The fraction is fohm = Dmag/(Dmag + Dkin) and is considered to 
be close to unity in planetary cores. Our models (red stars) fill the low-Prm parameter space while dissipating 
primarily Ohmically. Other models from the literature are shown: black dots3,4; open diamonds6 (omitting 
models using hyperviscosity); open squares5.



www.nature.com/scientificreports/

3SCIENTIfIC REpoRtS |  (2018) 8:12566  | DOI:10.1038/s41598-018-30864-1

number as Case S2 but has had its Ekman and magnetic Prandtl numbers reduced by factors of four. Now (see 
Fig. 2) the tangent cylinder is very hot, but temperature gradients outside the TC are ameliorated to an extent that 
there is essentially no global azimuthal flow at the equator of the CMB. Thus, aside from the thermal boundary 
condition, the supercriticality of the Rayleigh number plays a vital role in determining whether there is azimuthal 
flow at the equator or not.

Our simulations show evidence for the role of the Lorentz force in modifying the flow at all scales. Figure 3(a) 
compares non-magnetic and magnetic simulations at the same Rayleigh, Ekman and Prandtl numbers (Case S0 
and Case HYDRO0).

The magnetic field generates a Lorentz force that substantially modifies the energy content at all scales. Note 
that in the HYDRO0 case we have a very good fit to Kolmogorov’s −5/3 law for the energy spectrum, despite the 
fact that this law is generally applied to isotropic non-rotating turbulence. Figure 3(b) shows our extreme simu-
lation at E = 3 × 10−7, Prm = 0.05 (Case S4). Magnetic energy exceeds kinetic energy for all spherical harmonic 
degrees l < 100. When the kinetic spectrum is modified by the presence of magnetic field, it fits a −4/3 slope in 
both Case S0 and Case S4.

Force Balance
The Coriolis and Lorentz forces in our most extreme model, Case S4, are shown in Fig. 4(a–c). Since convection 
is well-developed within the tangent cylinder, the forces are strongest here. In the figures we choose to examine 
the azimuthal average of the azimuthal component of all forces, which immediately removes the contribution 
from the pressure and buoyancy. We find evidence of a primary local balance between Coriolis and Lorentz 
forces, essentially the magnetostrophic or MAC force balance foreseen by Taylor11, and reported in some other 
very recent low E simulations5,6,12,13. The use of a particularly small Ekman number means that the viscous forces 
play an insignificant role in the bulk of our dynamo, as expected for the Earth’s core. While we see the largest 
scales of the azimuthal average of the instantaneous Coriolis and Lorentz forces are almost identical in Fig. 4a,b, 

Figure 2. Structures of velocity, magnetic and temperature fields in Case S4. The left hand column shows 
meridional sections (quantities have been averaged in time and azimuth), the middle column shows views from 
above of the plane z = ri + 0.5, and the third column shows the surface of the sphere in a Hammer projection (all 
these are at t = 0.0712). The top row shows radial magnetic field Br, azimuthal velocity vφ and radial field Br at ro. 
Second row shows temperature with red representing higher temperature. The last row shows radial magnetic 
field in the equatorial plane at t = 0.0712324 and azimuthal velocity vφ averaged in azimuth and time.
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there is a slight mismatch at the very smallest scales. To see this more clearly we examine the same quantity in the 
spectral domain, and examine the contributions by spherical harmonic degree6. Figure 4c shows a remarkable 
zeroth order balance between the azimuthally-averaged parts of the Coriolis and Lorentz forces at large scales, 
but at small scales that balance has been broken. This effect arises when the diffusivities of magnetic field and 

Figure 3. Time-averaged energy spectra. (a) Kinetic energy spectra (volume averaged) as a function of spherical 
harmonic degree l are compared for Case S0 (a dynamo) and Case HYDRO0: we see that the Lorentz force 
modifies the velocity field at all scales from l = 1 to l~150. (b) Magnetic and kinetic energy spectra as a function of 
spherical harmonic degree l for Case S4. The Ekman number is 3 × 10−7 and Prm = 0.05. There is scale separation 
between the large scale magnetic field peaking at l = 1 and the velocity field with maximum energy at l = 9. Note 
that the magnetic energy, which is ten times larger in total than the kinetic energy, exceeds the latter for all l < 100.

Figure 4. Instantaneous force balances in model S4 at t = 0.174. (a,b) show the azimuthally averaged φ 
component of the Coriolis and Lorentz forces respectively, where the Coriolis force has an inverted color bar to 
aid comparison. For this average the pressure gradient vanishes identically and thus one can see almost perfect 
balance between the forces. (c) Shows the same azimuthal component of all forces occurring in the Navier-
Stokes equation when averaged over azimuth, squared, and integrated in non-dimensional radius (omitting 
10% in radius at each boundary) as a function of spherical harmonic degree. This again removes the pressure 
component. The choice of radii is such that it excludes the boundary layers where there is a viscous-Coriolis-
Lorentz balance. At the largest scales the balance between Coriolis and Lorentz forces is almost perfect. The rms 
viscous force is about 3 orders of magnitude smaller at the largest scales.
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momentum differ so much, as in our model. The Coriolis force is small scale, as it depends on u, whereas the 
Lorentz force is larger scale, depending quadratically on B. Although large scales can be balanced, the scale sep-
aration leads to a different balance at small scales where the role of nonlinear advection (Reynolds stresses) and 
accelerations are more pronounced. Even at the smallest scales the viscous force remains one order of magnitude 
smaller (in rms) than the Coriolis force. We believe that this behaviour represents well the appropriate dynamics 
of the core. Yadav et al.12 have also recently presented evidence of a time-averaged Lorentz-Buoyancy-Coriolis 
balance at an Ekman number of 5 × 10−7 (using our definition of the Ekman number), albeit with a 2 > Prm > 0.4, 
so that their scale separation is not as prominent.

Dissipation
All of our simulations have magnetic energy exceeding kinetic energy as is expected in the Earth’s core, see 
Table 2. Of particular interest is the way that energy is dissipated. A fundamental study of this was carried out 
by14. Their study noted the inverse scaling of dissipation with magnetic Reynolds number, and used an estimate 
of the latter for the Earth to deduce a value of 0.5 TW for the dissipation taking place in the Earth’s core. Here 
we take a different approach that focuses on the internal magnetic energy rather than the magnetic Reynolds 
number.

Ohmic dissipation dominates our simulations as the mechanism by which energy is returned to heat, with the 
exception of Case S0 where viscous and Ohmic dissipations are close to being equal. In Case S4 the effect of the 
well-developed convection in the tangent cylinder leads to a remarkable concentration of the Ohmic dissipation 
in this area (see Supporting Fig. S1). Analysis of the distribution of dissipation shows that it is relatively constant 
in radius. When we analyse all our models together we observe a very precise power law scaling of magnetic dis-
sipation with magnetic energy that appears to remain true over 3 decades of magnetic energies (Fig. 5a).

The favoured scaling fit to these non-dimensional data is of the form = .D E1 35mag mag
3/2 . We compare this law 

to the large library of runs supplied by Uli Christensen3,4 in Fig. 5b. [We have rescaled all the results so that time 
is measured in terms of Ohmic decay times. This leads to Christensen’s results being scaled by V Prm

a , where V is 
the shell volume and a = 3 for dissipation and a = 2 for energy]. One can see that there is reasonable consistency 
of the fit to the scaling law. The power law can be argued to be consistent with a previous theory3,15 (see Supporting 
Information).

Emag Ekin Emag/Ekin Dmag Dkin Dmag/Dkin

S0 8.71e + 04 2.91e + 04 2.99 3.41e + 07 4.04e + 07 0.84

S1 7.50e + 05 2.38e + 05 3.15 8.66e + 08 5.04e + 08 1.72

S2 9.52e + 06 5.50e + 06 1.73 4.85e + 10 1.18e + 10 4.11

S4 2.13e + 06 5.50e + 05 3.87 3.34e + 09 5.73e + 08 5.83

Table 2. Diagnostics measured in the simulations. Emag and Ekin are the magnetic and kinetic energies, while 
Dmag and Dkin are the Ohmic and viscous dissipations.

Figure 5. Variation of magnetic dissipation Dmag with magnetic energy Emag. (a) for the new simulations 
reported herein (see Table 1) and (b) for the dataset from Uli Christensen3,4. In (a) the solid line is a law of the 
form = .D E1 35mag mag

3/2 , and fits all three Prm = 0.2 models. In (b) colours indicate the fraction of energy 
dissipated Ohmically. The brightening spectrum starts with models (black) with predominantly viscous 
dissipation (Ohmic dissipation ≤30%) and proceeds black-brown-blue-green-yellow-orange-red to the models 
dissipating mostly (red: 80–90%) Ohmically. The straight line is a law of the form = .D E1 35mag mag

3/2 .
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Materials and Methods
Governing equations and non-dimensionalization. We adopt the Boussinesq approximation for con-
vection-driven, rotating magnetohydrodynamics, which results in the following non-dimensional equations:
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Variables v, B, T are the velocity, magnetic field and temperature. ∇P̂ is the modified pressure that contains 
information about conservative forces. The axis of rotation of the system is z and ẑ is a unit vector in its direction. 
Time is denoted as t. A uniform heat source ε is included. Incompressibility conditions ∇ ⋅ =B 0 and ∇ ⋅ =v 0 
are integrated into the solution technique through use of a poloidal-toroidal decomposition of the vector field. 
Non-dimensional parameters are defined as:
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The units of length, time, magnetic field and temperature for the non-dimensional governing equations are 
chosen as follows:
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→ Δ = − .T T T L r r, o i

The following symbols denote the parameters of the system: Ω = Ωẑ is the rotation rate, μ0 is the permeability 
of free space, ρ is the density, ΔT is the unit of temperature, ν, κ and η are the kinematic viscosity, thermal diffu-
sivity and magnetic diffusivity respectively, and α is the thermal expansivity. Gravity is assumed to vary linearly 
with radius and has value g on the outer boundary. The spherical coordinates are denoted (r, θ, φ).

Boundary conditions and internal heating. The modelled fluid is enclosed in a rotating spherical shell 
between radii ri and ro with c = ri/ro = 0.35. Both boundaries are no-slip and impermeable. The outer boundary is 
electrically insulating, the inner core has the same electrical conductivity as the outer core. The inner core temper-
ature is kept constant at T = 5.434, the gradient of temperature on the outer core equals to −2/(1 − c). A uniform 
heat source with ε = 3q is adopted throughout the outer core. For details see10.

Diagnostics. The kinetic and magnetic energies are defined as ∫=E v dVkin
1
2

2  and ∫=E B dVmag Ro
1

2
2 , 

where the volume integral is over the entire outer core. The viscous and Ohmic dissipations are defined as 
∫= ∇ ∧D v( ) dVkin

E
Ro

2  and ∫= ∇ ∧D B( ) dVmag Ro
1 2 . The magnetic Reynolds number Rm is vL/η.

Numerical setup. We solve the governing equations using a parametrization in spherical harmonics up 
to degree and order 255 for the angular component and 528 finite difference points in radius. A second order 
predictor-corrector scheme is used for the time integration16. The timestep is adaptive and varies throughout 
the run. Parallelisation is carried out in radius. In the linear parts of the code, data is split over the spherical har-
monics. 528 cores were used simultaneously for one simulation. The bulk of the simulations and visualizations 
were performed on the supercomputer s Piz Daint (Cray XC 30) and Monte Rosa (Cray XE 6) at Swiss National 
Supercomputing Center. The code was originally developed by Willis17 and then subsequently optimized for the 
Cray and successfully benchmarked against other dynamo codes18.

Data availability. Data used for plots can be supplied by the authors upon request.
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