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time‑scale dependence of solar 
wind‑based regression models 
of ionospheric electrodynamics
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nikolai Østgaard1, paul A. R. Tenfjord1, christopher c. finlay2 & clemens Kloss2

The solar wind influence on geospace can be described as the sum of a directly driven component, or 
dayside reconnection, and an unloading component, associated with the release of magnetic energy 
via nightside reconnection. The two processes are poorly correlated on short time scales, but exactly 
equal when averaged over long time windows. Because of this peculiar property, regression models of 
ionospheric electrodynamics that are based on solar wind data are time scale specific: Models derived 
from 1 min resolution data will be different from models derived from hourly, daily, or monthly data. 
We explain and quantify this effect on simple linear regression models of various geomagnetic indices. 
We also derive a time scale-dependent correction factor that can be used with the Average Magnetic 
field and Polar current System model. Finally, we show how absolute estimates of the nightside 
reconnection rate can be calculated from solar wind measurements and geomagnetic indices.

The solar wind carries the energy that shapes the magnetosphere and powers auroras, plasma flows, and elec-
tric currents at high latitudes. Because the key controlling solar wind parameters—the speed, density, and the 
magnetic field that the solar wind carries with it—have been reliably measured at L1 for several decades, many 
empirical models of ionospheric  electrodynamics1–3 are parametrized in terms of these measurements.

This practice, however, ignores the large variations in time scales of the solar wind influence on geospace: 
Magnetic reconnection between the interplanetary and terrestrial magnetic fields on the dayside leads to changes 
in flows and currents in the ionosphere typically within less than 20 min4. Simultaneously, solar wind kinetic 
energy is converted to magnetic energy that builds up in the magnetotail lobes. Sometime later, typically hours, 
this energy is released through nightside reconnection, and flows and currents are again excited in the iono-
sphere. Solar wind measurements are good indicators of the first of these two steps, but much less useful in 
predicting when the magnetotail energy conversion will take place. On the other hand, since the nightside and 
dayside reconnection rates on average must balance, solar wind measurements provide an excellent indication of 
both nightside and dayside processes on long time scales. In this paper, we discuss the effects of this paradoxical 
time scale property on solar wind-based regression models of ionospheric electrodynamics.

As a starting point, we make use of the so-called expanding contracting polar cap  paradigm5–8, which explains 
how the excitation and decay of ionospheric flows are related to nightside and dayside reconnection. A central 
result of this  paradigm6 is that, for a circular polar cap, the cross polar cap potential V is given by

where �D and �N are the dayside and nightside reconnection rates. It is clear from this equation that any statisti-
cal model of V, or quantitites correlated with V, that depends on �D but not �N will be imperfect.

The effects of �N may be at least partially present even in models that are based only on estimates of �D . 
Consider the following approximate model for �N in terms of �D:

where the superscripts τ denote an averaging time window, here also referred to as time scale, defined as follows:

(1)V = (�D +�N )/2

(2)�τ
N = c(τ )+ d(τ )�τ

D
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The parameters in Eq. (2) are functions of τ because of the two-step response to solar wind driving discussed 
above. When τ is small (i.e., of the order of minutes or less), d(τ ) is correspondingly small since �D and �N are 
not closely related on such short time scales. On the other hand, in the limit τ → ∞ , c(∞) = 0 and d(∞) = 1 
since dayside and nightside reconnection rates must balance (i.e., �∞

D = �∞
N ).

Because of the time scale dependent relationship between �D and �N , statistical models of some measurable 
quantity related to magnetosphere/ionosphere convection that use �D are also dependent on time scales. To 
quantify this dependence, assume that such a measurable quantity, y, depends on V as follows:

y is here a generic term for any parameter that follows Eq.  (4), and will later be replaced by specific geomagnetic 
indices. The physical justification for Eq. (4) is discussed further in the next section. This equation is assumed to 
be valid on all time scales, and α and β do not depend on τ . Since we do not know V, Eq. (4) is not very useful for 
making empirical models of y. Instead, it is common to use a solar wind magnetosphere coupling  function9–11, ε . 
Such coupling functions combine solar wind measurements in different ways to maximize the correlation with 
the transfer of energy or magnetic flux from the solar wind to the magnetosphere. We will assume that they 
correlate with the transfer of mganetic flux, i.e., the dayside reconnection rate �D:

where k is a proportionality constant that scales ε such that its amplitude matches that of the dayside reconnec-
tion rate. The unit of Eq. (5) is magnetic flux per second (Wb/s), which is equal to volt (V). The Milan coupling 
 function10 is a special case, where the function includes an empirically determined scale factor so that k = 1.

Using the above equations, we can derive a model of yτ that depends only on ετ . The model will be time scale-
dependent (hence the superscripts τ ), since we make use of Eq. (2): Starting with the time-averaged Eq. (4), we 
express V τ in terms of ετ using Eqs. (1), (2), and (5):

where

Equation (6) is a linear model of yτ in terms of ετ , with model parameters a and b that depend on τ since c(τ ) and 
d(τ ) from Eq. (2) are time-scale dependent. The implication of this time scale dependence is that a regression 
model on this form which is derived using data with time resolution τ in general should not be compared with 
data having a different time resolution. In the next section we demonstrate this by estimating a and b for a range 
of time scales by replacing y with specific geomagnetic indices. Later we discuss how the time-scale dependence 
of solar-wind based regression models affects the interpretation of more complex empirical models, using the 
Average Magnetic field and Polar current System (AMPS)  model3 as an example. The AMPS model is an empiri-
cal global model of ionospheric currents and associated magnetic field based on magnetic field measurements 
in low Earth orbit from the CHAMP and Swarm satellites.

In the limit τ → ∞ , Eq. (7) reduces to a(∞) = α since c(∞) = 0 , and Eq. (8) reduces to b(∞) = βk since 
d(∞) = 1 . Using the above results, we can derive an expression for �N in terms of y and �D that is independent 
of time scales: By solving Eq. (1) for �N , and using (4) to replace V, we get

where in the last step, we used Eqs. (7) and (8) in the limits τ → ∞ to replace α and β . As will be demonstrated in 
the next section, a(∞) and b(∞) can be estimated from data, by averaging over several days. If we use a coupling 
function that is scaled so that k = �D/ε = 1 , such as the function developed  by10, �N can be calculated from 
observations of y and of the solar wind. Equation (9) is in principle valid on any time scale of �N , �D , and y. We 
will later put this equation to use and discuss its limitations.

time‑scale dependence of solar wind based linear regression models of geomagnetic indi‑
ces. Here we apply the equations from the previous section to a set of geomagnetic indices: AL, AU, PC, and 
ASY-H. These are four geomagnetic indices with 1 min time resolution, which are believed to describe various 
aspects of geomagnetic activity. The AL and AU indices monitor the westward and eastward auroral electrojets, 
respectively. The PC (polar cap) index is based on a magnetometer that is typically poleward of the auroral oval, 
and it is ostensibly an indirect measurement of the magnitude of the solar wind-magnetosphere coupling. The 
ASY-H index is a measure of the longitudinal variability of the magnetic perturbations at mid latitudes, and it 
tends to correlate with the auroral electrojet indices. For definitions and details about interpretation, see the 
review by Kauristie et al.12, and references therein. We will show that these parameters, when modeled as func-
tions of a solar wind coupling function ε , depend on the time scale τ.

(3)yτ (t) =
1

τ

∫ t

t−τ

y(t)dt.

(4)y = α + βV .

(5)�D = kε,

(6)
yτ = α + βV τ

= α + β(kετ + c(τ )+ d(τ )kετ )/2,

yτ = a(τ )+ b(τ )ετ ,

(7)a(τ ) = α + βc(τ )/2,

(8)b(τ ) = βk(1+ d(τ ))/2.

(9)�N = 2(y − α)/β −�D = 2(y − a(∞))/b(∞)−�D ,
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For the sake of argument, we assume that each index is a linear function of dayside and nightside reconnec-
tion rates, and nothing else. In other words, they obey (4), but with different values for α and β . This is of course 
an approximation, since they would otherwise be exactly correlated. For example, we ignore conductivity effects 
for all indices except AU, which we scale by (1+ sinψ)−1 , where ψ is the dipole tilt angle. This scaling is meant 
to roughly account for seasonal variations in solar EUV induced conductivity. The scaling improves the results 
with AU, but not with the other indices which may be more dependent on precipitation induced conductivity. 
In this analysis ε is the coupling function defined by Newell et al.9, but similar results are obtained when using 
other  functions10,11. The Newell coupling function depends on the solar wind speed and the component of the 
interplanetary mganetic field (IMF) that is perpendicular to the Sun-Earth line. The solar wind data and indices 
are taken from the 1 min resolution OMNI database, between 1995 and 2018.

Figure 1A shows, for each of the four indices, the ratio b(τ )/b(∞) where b(τ ) is defined in Eq. (6) and esti-
mated using ordinary least squares. b(∞) was calculated with τ = 8 days. The ratio b(τ )/b(∞) is related to the 
slope d(τ ) in Eq.  (2), which describes the relationship between dayside and nightside reconnection rates on 
time scale τ . Specifically, d(τ ) = 2b(τ )/b(∞)− 1 , which can be found by solving Eq. (8) for d(τ ) and using that 
βk = b(∞) . All curves in Fig. 1A follow a similar variation with τ , with a steep increase at τ < 3 h ( τ = 3 h is 
indicated with a dashed bar), and then a more gradual increase towards 1. The transition at about 3 h is expected 
from previous  studies13,14 indicating that this is an average substorm cycle period (i.e., the time between bursts 
of tail reconnection associated with individual substorms).

Figure 1B shows the squared of the Pearson correlation coefficient r2 between model and data. This coeffi-
cient is a measure of the fraction of variation in data that is explained by the model. For each index, r2 is rapidly 
increasing for larger τ . For the AL and PC indices, r2 > 0.8 at large τ . This indicates that (4) is indeed a good 
representation of these indices, and it reflects that ε = k�D = k�N as τ → ∞ . Figure 1C shows the root mean 
square error (RMSE) of the model compared to the data, relative to the RMSE at τ = 1 min. The basic result 
shown in Fig. 1 is that the models improve as τ increases; the physical reason for this trend is that ε becomes 
representative of both dayside and nightside reconnection.

The indices studied here follow a skewed distribution. The peak of the distribution is near zero for each of 
the four indices that we consider. This represents a quiet day baseline. Active events tend to give negative excur-
sions in the AL index and positive excursions in the other three indices. Since the indices do not follow a normal 
distribution, a quantitative interpretation of the Pearson correlation coefficient is questionable. However, in this 
study, the main purpose of the correlation coefficient is to qualitatively indicate how the association between 
our simple model and the observation that it describes vary with time scales. Given the very large number of 
measurements ( > 20 years of measurements at 1-min resolution), we believe this use is appropriate.

Effect of time-scale dependence on climatological models
Several climatological models of ionospheric electrodynamics depend on solar wind parameters, and lack param-
eters that represent the high-frequency portion of �N

2,3. The AMPS  model3 describes the ionospheric disturbance 
magnetic field in space, and the associated ionospheric currents. It is formulated in a way that makes it possible 
to write the model magnetic field as

where B0 and Bε are two different functions of space and of the external parameters used in the AMPS model 
(the IMF, solar wind velocity, dipole tilt angle and F 10.7 solar flux index). In the sum in Eq. (10), Bε is multiplied 
by Newell’s solar wind-magnetosphere coupling  function9 ε , and B0 is not. This is conceptually similar to the 
much simpler Eq. (6), and it implies that the AMPS model may also be time-scale dependent.

Relating magnetic field disturbances in space and ground. To address the time scale dependence 
of the AMPS model, we compare model estimates with measurements of the magnetic field disturbances from 
ground magnetometers, instead of satellites. This is because time averaging satellite measurements mixes spatial 
and temporal effects. However, the AMPS model is based only on magnetic field measurements in space, above 
the conducting layer of the ionosphere where horizontal currents flow. This region is the only place where the 
full current system can be estimated using only magnetic field  measurements15. The reason for this is that below 
the ionosphere, the magnetic field is partially canceled. In this section we derive mathematical expressions which 
relate ground magnetic field perturbations to the AMPS model coefficients, thus allowing for calculation of 
model predictions of the AL index, which we will use in comparisons with measurements in the next section.

We model the ionospheric current system as a two-dimensional sheet current on a sphere at some height hR , 
set to 110 km here. The sheet current is connected to the magnetosphere by a vertical volume current that extends 
out from the sphere. At polar latitudes, where the Earth’s magnetic field lines are almost vertical, such currents 
are approximately equal to the Birkeland currents (magnetic field-aligned electric currents). The sheet current 
can be decomposed further into divergence-free ( Jdf  ) and curl-free ( Jcf  ) components. The latter is related to the 
radial current density Ju by the current continuity equation ∇ · Jcf = −Ju . The magnetic fields of Jcf  and Ju cancel 
below the ionosphere, according to the Fukushima  theorem16. Consequently, only the magnetic field of Jdf  must 
be considered. From now on we call that magnetic field B , disregarding contributions from Birkeland/curl-free 
currents. We also assume that that contributions from the Earth’s core, crust, and large-scale magnetosphere are 
accounted for by subtracting CHAOS-6 model  predictions17. The CHAOS-6 model is a high resolution, regularly 
updated, geomagnetic field model derived from magnetometer measurements from ground observatories and 
several satellites in low Earth orbit.

Above and below the current sheet, the magnetic field of Jdf  can be expressed as a gradient, B = −∇V  . In 
the AMPS model, V is expressed as

(10)B = B0(. . . )+ εBε(. . . ),
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Figure 1.  Linear regression model statistics as functions of timescale τ . Four models of the form 
yτ = a(τ )+ b(τ )ετ are considered, where ε is Newell’s solar wind magnetosphere coupling  function9 and y 
is the AL index, solar conductivity corrected AU index (AU*), the PC index, and the ASY-H index. The three 
statistics are (A) the slope b(τ ) normalized by b(∞) , (B) the Pearson correlation coefficient squared ( r2 ) between 
the model and the data, and (C) the root-mean-square error (RMSE), normalized by the RMSE for τ = 1 min, 
which is the time scale of the peak value. The vertical dashed lines mark τ = 3 h, a typical substorm cycle 
period.
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where �q is quasi-dipole  latitude18, φmlt is the magnetic local  time19, h (km) is the altitude, RE = 6371.2 km is 
the Earth radius, Pmn (sin �q) are Schmidt semi-normalized associated Legendre functions of degree n and order 
m, and the spherical harmonic coefficients gmn  and hmn  are specific functions of solar wind speed, IMF By and Bz , 
dipole tilt angle, and the F 10.7 solar flux  index3. In the AMPS model, the truncation level of the double sum is set 
to n ≤ 45,m ≤ 3 . The radial dependence of Eq. (11) corresponds to a magnetic field of internal  origin20. It can 
be modeled by a sheet current JV at some height hR < h , where JV = k ×∇� , k is an upward unit vector, and

where µ0 is the vacuum permeability ( 4π · 10−7 H/m). Since Eq. (11) refers to a magnetic field of internal origin, 
relative to altitudes above the ionospheric horizontal currents, it is not suitable for use below the ionosphere, 
where the ionospheric currents are external. Below the ionospheric currents, the magnetic potential field is often 
split in two parts, B = −∇Ve −∇Vi , one ( Ve ) that corresponds to external sources (ionospheric currents) and 
another ( Vi ) that corresponds to currents below the Earth’s surface, that are induced by the external currents. A 
spherical harmonic expansion of Vi is exactly analogous to the expansion of V in Eq. (11), while the expansion 
of Ve has a different radial dependence:

Just like the internal potential of Eq. (11), the external potential can be modeled by a sheet current Je at height 
hR > h , where Je = k ×∇�e and

We now make the assumption that the currents JV = Je = Jdf  , so that � = �e + c , where c is an arbitrary constant. 
This equation allows us to express the spherical harmonic coefficients in Eq. (14), amn  and bmn  , in terms of the 
AMPS model coefficients, gmn  and hmn :

These expressions can be inserted in Eq. (13), and thus we can calculate the magnetic field component of the 
external magnetic field below the ionosphere, Be = −∇Ve , in terms of AMPS model coefficients:

The magnetic field components Bφ , B�q , and Br , must be regarded as quasi-dipole components. For conversion to 
geographic east, west, and upward components, we use the quasi-dipole base vectors gi and fi , which vary with 
the geometry of the main magnetic  field19:

where F = f1 × f2 · k.
At least two critical approximations are involved in the approach described above: (1) The choice of 110 km 

altitude is somewhat arbitrary; lowering it would increase the ground magnetic field; (2) We ignore effects of 
ground-induced currents. Induced effects are in theory present in the AMPS field, but they will be stronger on 
ground, and will also be time-scale  dependent21.

In our analysis we derive a synthetic AL index from the AMPS model, and compare with measured AL val-
ues. We chose the AL index since it measures the westward electrojet, which typically peaks on the nightside in 
response to increases in magnetotail activity, most notably substorms. It is also comparatively straightforward to 
calculate: The synthetic AL values are calculated as the lower envelope of the H component of the AMPS model 
magnetic field at the AL station locations. The H component is the magnetic field along the horizontal part of 
Earth’s main magnetic field (here we use the CHAOS  model17). An updated version (version 0103) of the AMPS 
model was used, defined and calculated as described in the original AMPS model  paper3, but with a 43% larger 
dataset which includes more recent Swarm data. In the updated version we have also corrected a programming 
error that damped the longitudinal variation in the toroidal magnetic field and associated magnetic field-aligned 
electric currents (FACs) of the original model. The correction leads to peak FACs that are significantly increased 
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(by typically ∼ 20% ) compared to the original model, however the integrated FACs differ by typically less than 
∼ 10% . The changes in poloidal magnetic field and associated horizontal divergence-free currents and ground 
magnetic field disturbances are small (typically ∼ 1% ). The new version is now integrated in the latest update 
(version 1.4.0) of the publicly available AMPS forward code,  pyAMPS22, which was used for this study. The model 
is also published as an ESA Swarm Level 2 data product.

Results
Figure 2 summarizes the results of the comparison between AMPS model predictions and ground magnetic field 
measurements. To the left, we show the r2 and RMSE between model and measured AL, in black. The RMSE 
is calculated using iterative reweighting with Huber weights, to reduce the effect of outliers. The coefficient of 
determination ( r2 ) increases with time scale, as expected. The increase in RMSE with time scale is more surpris-
ing. The model increasingly underestimates the data points as time scale increases. The reason for this is prob-
ably the time-scale dependent relationship between ε and �N : The AMPS model is based on relatively high time 
resolution data, and is thus scaled to fit the directly driven part of the magnetic disturbances. When compared 
with data on longer time scales, it correlates with both the loading and unloading parts of the disturbances, but 
the amplitudes still represent only one part.

The time-scale dependence discussed in the previous sections suggest that the AMPS model estimates could 
be improved by including a time scale-dependent scale factor for the εBε term in Eq. (10). We estimate such a 
scale factor using the model and measured AL time series from the period 1995 to 2018. For each time scale 
considered in the scatter plots in Fig. 2, we find the scale factor that minimizes the Huber weighted root mean 
square model data mismatch. The resulting points, plotted against time scale τ , are approximately sigmoidal, and 
we therefore estimate the τ-dependent scaling factor as a logistic function plus a constant:

(20)C(τ ) = 1.0+ 1.18(1+ e−0.01(τ−28))−1,
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Figure 2.  Time scale dependence of AMPS model estimates of ground magnetic field perturbations. (A) 
Pearson correlation coefficient squared between AMPS model predictions and measured values of the AL 
index, as function of averaging window. Black dots correspond to unscaled estimates, using the approach 
for calculating AMPS ground magnetic field outlined in the main text. The orange dots correspond to scaled 
estimates, using Eq. (20). (B) Root mean square error (RMSE) of AMPS AL estimates, in units of nanotesla (nT). 
Black (orange) correspond to unscaled (scaled) AMPS values. (C) Example time series of running 5 h mean AL 
index (grey) compared to unscaled (black) and scaled (orange) AMPS estimates. (D) Example time series of 
5 h running mean southward magnetic field disturbance at the Thule station, at approximately 85◦ quasi-dipole 
latitude, compared with unscaled (black) and scaled (orange) AMPS estimates.
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with τ given in minutes. Multiplying the εBε term in Eq. (10) by C(τ ) results in the orange dots in Fig. 2A and 
B. We see that the correlation is almost unaffected. This is expected, because the scaled version does not include 
any more information about the high-frequency component of nightside processes. However, the RMSE is 
significantly improved: At time scales of the order 24 h the RMSE is only 20 nT, and about 90% of the variation 
is explained.

Example time series are shown in Fig. 2C,D. Figure 2C shows the AL index measurements averaged over 
5 h in grey, and corresponding AMPS estimates in black and orange. The black curve is unscaled, and clearly 
underestimates the fluctuations in AL. The orange curve is scaled using C(τ ) in Eq. (20), and is much closer to 
the measurements.

Figure 2D shows measurements of the ground magnetic field at the Thule station in Northern Greenland 
together with AMPS model estimates. The plot represents perturbations in the southward direction averaged 
over 5 h. The black curve represents unscaled model estimates, and the orange curve represents model estimates 
scaled using C(τ ) in Eq. (20). The close fit indicates that the scale factor derived using AL index comparisons can 
be applied to other ground magnetometers as well.

The scale factor C(τ ) given by Eq. (20) is 1.51 at small τ . This may imply that the AMPS model ground 
perturbations underestimate the measurements at short time scales, even though the model was derived using 
high time resolution data: 1 Hz satellite measurements and τ = 20 min solar wind data. It is possible that this 
is because the AMPS model lacks the spatial resolution to see localized instantaneous features. It is also pos-
sible that this discrepancy is due to the neglect of induced effects in our calculations of ground magnetic field 
disturbances. The induction effect, which is likewise time scale dependent, also influences the scale factor C(τ ) 
in Eq. (20), such that C(τ ) can not be interpreted as a pure effect of the time-scale dependence between dayside 
and nightside reconnection rates.

estimating nightside reconnection rate using geomagnetic indices and solar wind data. We 
have shown how measurements of y and �D can be used to estimate the nightside reconnection rate �N on 
any time scale via Eq. (9). Figure 3 shows (in thick blue) an example time series �N , calculated as the average 
of four different estimates obtained with the AL, PC, AU, and ASY-H indices. The thin blue lines show the �N 
estimates calculated using the four individual indices. The green curve shows �D , as estimated with the  Milan10 
coupling function. Both time series are shown with 1 min resolution. The two vertical bars denote the time of 
substorm onsets observed in global images of the aurora produced by the Far Ultra Violet (FUV) instrument on 
the IMAGE  satellite23. We see that both substorm onsets are preceded by a period of strong dayside reconnection 
(growth phase), and followed by a period of strong tail reconnection (substorm expansion).

Figure 3 shows only a small extract of a time series calculated for the years 1995 through 2014, containing 
8.3 million 1 min values. During these years the Pearson correlation coefficient between �N and �D is 0.2, which 
means that only 4% of the variation in �N can be explained by �D for a time scale τ = 1 min. This tells us that 
�N , estimated from Eq. (9), contains information which is not in �D . Since the calculation can be done whenever 
solar wind data is available to calculate �D , and since geomagnetic indicies typically have very few data gaps, this 
may be a useful parameter to include in future empirical models of ionospheric electrodynamics.

The correlation r ( r2 ) between �D and �N at τ = 8 days is 0.85 (0.72). If Eq. (9) and Milan’s coupling  function10 
gave perfect estimates of �N and �D , we would instead find r ≈ 1 at this time scale. The difference indicates 
that there is a need for closer scrutiny of the �N estimates. In future work we plan to carry out more detailed 
calibration and validation of our estimates of �N by comparing with other independent estimates. For example, 
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previous estimates of �N have been based on observations of the polar cap together with the  Milan10 coupling 
function. The polar cap is the area threaded by open magnetic field lines. By observing this area over some time, 
the change in open flux F can be calculated, and the nightside reconnection rate calculated as �N = �D − dF/dt . 
This technique is good because it uses the definitions of �N and �D directly, instead of the indirect approach 
outlined here. A major disadvantage is that F must be measured precisely and continuously, which is very dif-
ficult to do. So far it has only been done in limited time intervals, for example periods when the IMAGE satellite 
could observe the whole auroral  oval24–26. It can in principle also be done by inferring the polar cap boundary 
position from magnetometer measurements at low Earth  orbit27.

Discussion
The two-step response of the magnetosphere-ionosphere system to changes in the solar wind has been known 
for decades, and it is an integral part of the expanding contracting polar cap  paradigm7,8. The contribution of 
the present study is to quantify the time-scale dependent statistical relationship between nightside and dayside 
reconnection rates, as well as its effect on solar wind based regression models of ionospheric electrodynamic 
parameters; and to use this relationship to derive Eq.  (9), which following more detailed calibration and valida-
tion may prove useful as a monitor of the nightside reconnection rate.

We have shown that solar wind-based regression models of ionospheric electrodynamics are time scale 
dependent: Model parameters depend on the time resolution of the input data. We have demonstrated this with 
simple linear regression models of the AL, AU, PC, and ASY-H indices. We have also shown that this applies to the 
more complex AMPS model. By comparing AMPS model predictions with measured values of the AL index, we 
have derived the time-scale dependent correction factor C(τ ) given in Eq. (20), which can be used with the AMPS 
model when estimating time-averaged magnetic field disturbances. The Python AMPS forward code,  pyAMPS22, 
includes support for this scaling in the get_B_ground function, via the epsilon_multiplier keyword argument.

We have also presented a simple model for the nightside reconnection rate, Eq. (9), which depends on geo-
magnetic indices and on the dayside reconnection rate. The latter can be estimated from solar wind  parameters10. 
This derivation assumes that the geomagnetic indices we have considered are proportional to the cross polar cap 
potential (i.e., they obey Eq. (4)), and takes into account that nightside and dayside reconnection rates balance 
over time. The high correlation between linear models and corresponding indices on long time scales, seen in 
Fig. 1, indicate that this assumption is reasonable. However, it is not perfect, since that would imply that all 
the indices are perfectly correlated with each other. In this study we have not attempted to assess which index, 
when used in Eq. (9), gives the most accurate estimate of nightside reconnection rate. By comparing different 
realizations of this equation, using combinations of indices with independent estimates of nightside recon-
nection, it should be possible to derive an empirical function that describes the ”unloading” response, similar 
to how empirical solar wind-magnetosphere coupling functions describe ”loading”, or direct driving. Such a 
function will be the topic of a future study. The inclusion of an unloading parameter in physics-based empirical 
models, like the AMPS model, may help to determine the role of individual driving processes in controlling the 
ionospheric electrodynamics.
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