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Abstract 

Models of the geomagnetic field rely on magnetic data of high spatial and temporal resolution to give an accurate 
picture of the Earth’s internal magnetic field and its time-dependence. The magnetic data from low-Earth orbit satel-
lites of dedicated magnetic survey missions such as CHAMP and Swarm play a key role in the construction of such 
models. Unfortunately, there are no magnetic data available from such satellites after the end of the CHAMP mission 
in 2010 and before the launch of the Swarm mission in late 2013. This limits our ability to recover signals on timescales 
of 3 years and less during this gap period. The magnetic data from platform magnetometers carried by satellites for 
navigational purposes may help address this data gap provided that they are carefully calibrated. Earlier studies have 
demonstrated that platform magnetometer data can be calibrated using a fixed geomagnetic field model as refer-
ence. However, this approach can lead to biased calibration parameters. An alternative approach has been developed 
in the form of a co-estimation scheme which consists of simultaneously estimating both the calibration parameters 
and a model of the internal part of the geomagnetic field. Here, we go further and develop a scheme, based on 
the CHAOS field modeling framework, that involves co-estimation of both internal and external geomagnetic field 
models along with calibration parameters of platform magnetometer data. Using our implementation, we are able to 
derive a geomagnetic field model spanning 2008 to 2018 with satellite magnetic data from CHAMP, Swarm, secular 
variation data from ground observatories, and platform magnetometer data from CryoSat-2 and the GRACE satellite 
pair. Through a number of experiments, we explore correlations between the estimates of the geomagnetic field and 
the calibration parameters, and suggest how these may be avoided. We find evidence that platform magnetometer 
data provide additional information on the secular acceleration, especially in the Pacific during the gap between 
CHAMP and Swarm. This study adds to the evidence that it is beneficial to use platform magnetometer data in geo-
magnetic field modeling.

Keywords: Geomagnetism, Core field modeling, Inverse theory, Secular acceleration, Secular variation

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/.

Introduction
The Earth’s magnetic field is a superposition of many 
sources. By far, the largest contribution comes from 
within the Earth at a depth of more than 3000 km. There, 

in the outer core, a liquid iron alloy is rapidly moving and 
thus advecting, stretching, and maintaining the ambient 
magnetic field against dissipation in a process called the 
Geodynamo. Earth’s core dynamics are not fully under-
stood, but can be studied using time-dependent geomag-
netic field models. Such models are constructed using 
measurements of the magnetic field taken at and above 
Earth’s surface.
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The study of core processes on decadal or longer time-
scales requires long time-series of magnetic vector data 
with high spatial and temporal resolution. Along with 
ground-based magnetic observatories, low-earth orbit 
satellites from dedicated magnetic survey missions such 
as CHAllenging Minisatellite Payload (CHAMP, 2000–
2010) and the Swarm trio (since 2013) provide such data. 
However, other than scalar data from Ørsted, no high-
quality calibrated magnetic vector data from satellites 
are available between the end of the CHAMP mission in 
September 2010 and the launch of the Swarm satellites 
in November 2013. This data gap not only cuts in two an 
otherwise uninterrupted time-series of high-quality mag-
netic satellite data since the year 2000, but also limits our 
ability to derive accurate core field models that resolve 
temporal changes of the magnetic field on timescales of a 
few years and less in the gap period. To address the issue, 
one can utilize the crude magnetometers that are carried 
by most satellites for navigational purposes, the so-called 
platform magnetometers. Although not a substitute for 
dedicated high-quality magnetic survey satellites, plat-
form magnetometers can supplement ground observa-
tory data in gaps between dedicated missions and help 
improve the local time data coverage of simultaneously 
flying high-quality magnetic survey satellites.

Satellite-based magnetic vector data need to be cali-
brated to remove magnetometer biases, scale factors, 
and non-orthogonalities between the three vector com-
ponent axes (Olsen et  al. 2003). Comparing the vector 
magnetometer output with a magnetic reference field 
allows the estimation of these calibration parameters. 
On dedicated survey mission satellites, the reference is a 
second, absolute scalar, magnetometer mounted in close 
proximity to the vector magnetometer and measuring the 
magnetic field intensity. However, non-dedicated satel-
lites carrying platform magnetometers are typically not 
equipped with such scalar reference magnetometers. In 
this case, it is possible to use a-priori geomagnetic field 
models like CHAOS (Olsen et al. 2006; Finlay et al. 2020) 
or the IGRF (Thébault et al. 2015) as reference. Such an 
approach has been successfully used, e.g., by Olsen et al. 
(2020) for calibrating data from the CryoSat-2 mag-
netometer, but use of a fixed reference field model is 
not without risks and could lead to biased calibration 
parameters.

An alternative venue has been explored by Alken 
et al. (2020), who combined high-quality magnetic data 
from CHAMP and Swarm with platform magnetom-
eter data from CryoSat-2 and several satellites of the 
Defense Meteorological Satellite Program (DMSP) to 
estimate a model of the internal field and the required 
calibration parameters for each satellite simultaneously. 
Ideally, such a co-estimation scheme eliminates the 

need for a-priori geomagnetic field models, but Alken 
et al. (2020) fall short by co-estimating only the internal 
field while still relying on a fixed model of the external 
field. Nevertheless, their study convincingly demon-
strated that platform magnetometer data provide valu-
able information about the time-dependence of Earth’s 
magnetic field.

In this study, we followed Alken et  al. (2020) and 
developed a co-estimation strategy but within the 
framework of the CHAOS field model series. Our 
implementation differs in three important aspects. 
First, we estimated both the internal (core and crust) 
and external (magnetospheric) geomagnetic field con-
tributions in contrast to only the internal field. This 
way, we avoided having to remove a fixed external field 
model from the satellite data prior to the model param-
eter estimation. Following the methodology of the 
CHAOS model, we did use a prior external field model 
for processing the ground observatory data which we 
used in addition to the satellite data. Second, we used 
the platform magnetometer data from CryoSat-2 and, 
instead of DMSP, data from the Gravity Recovery and 
Climate Experiment (GRACE) satellite pair. Finally, to 
reduce the significant correlation between the internal 
axial dipole and the calibration parameters during peri-
ods of poor coverage of high-quality magnetic data, we 
excluded platform magnetometer data from determin-
ing the internal axial dipole (its time variation is well 
resolved with ground observatory data during the gap 
period, while its absolute value is constrained by Swarm 
and CHAMP data on both sides of the gap) rather than 
controlling the temporal variability of the internal axial 
dipole through an additional regularization as done by 
Alken et al. (2020).

The paper is organized as follows. In the first part, we 
present the datasets and the data processing. Next, we 
describe the model parameterization and define the cali-
bration parameters, which are similar to those used for 
the Ørsted satellite (Olsen et al. 2003). We go on by pre-
senting a geomagnetic field model derived from high-
quality calibrated data from the CHAMP and the Swarm 
satellites as well as ground observatory secular varia-
tion data and supplemented this with previously uncali-
brated platform magnetometer data from CryoSat-2 and 
GRACE, spanning a 10 year period from 2008 to 2018. 
Finally, we explore in a series of experiments the effect of 
co-estimating an external field, the trade-off between the 
internal dipole and the calibration parameters, and the 
importance of including dayside platform magnetometer 
data when estimating calibration parameters. We con-
clude the paper by looking at the secular acceleration of 
our model, paying particular attention to the data gap 
between 2010 and 2013.
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Data and data processing
We used calibrated magnetic data from the Swarm sat-
ellites Alpha (Swarm-A) and Bravo (Swarm-B), and 
from the CHAMP satellite from January 2008 to the 
end of December 2017, supplemented with five datasets 
of uncalibrated magnetic data from the three platform 
fluxgate magnetometers (FGM) on-board the CryoSat-2 
satellite (CryoSat-2 FGM1, CryoSat-2 FGM2 and Cryo-
Sat-2 FGM3), the one on-board the first GRACE satel-
lite (GRACE-A), and the other one on-board the second 
GRACE satellite (GRACE-B). In addition to the satellite 
data, we included revised monthly mean values of the SV 
from ground observatories to contribute to the Earth’s 
internal time-dependent field. Details of the datasets are 
given in the following.

Absolute satellite data from scientific magnetometers
The satellite data from scientific magnetometers are in 
general of high quality in terms of accuracy, precision, 
and magnetic cleanliness. The high standard of the data 
is achieved by low-noise instruments that are mounted 
together with star cameras on an optical bench further 
away from the spacecraft body at the center of a several 
meter long boom. The data are regularly calibrated in-
flight with a second absolute scalar magnetometer placed 
at the end of the boom and carefully cleaned from mag-
netic disturbance fields originating from the spacecraft 
body.

From the CHAMP mission, we used the Level 3 1Hz 
magnetic data, version CH-ME-3-MAG (Rother and 
Michaelis 2019), between January 2008 and August 2010, 
downsampled to 15 s , and only when attitude information 
from both star cameras was available. From the Swarm 
mission, we used the Level 1b 1Hz magnetic data prod-
uct, baseline 0505/0506, from the Swarm-A and Swarm-
B satellites between November 2013 and December 2018, 
also downsampled to 15 s . Here, we worked with vector 
data from CHAMP and Swarm in the magnetometer 
frame.

Relative satellite data from platform magnetometers
Relative satellite data refer to the raw sensor output from 
platform magnetometers. The data have to be corrected 
and calibrated before they can be used in geomagnetic 
field modeling. The correction of the data accounts for 
temperature effects, magnetic disturbances due to solar 
array and battery currents, magnetorquer activity, as 
well as non-linear sensor effects, whereas the calibra-
tion removes magnetometer biases, scale differences, and 
non-orthogonalities between the three vector component 
axes.

From CryoSat-2, we took magnetic data, baseline 0103, 
from the three platform magnetometers as described in 

Olsen et al. (2020) from August 2010 to December 2018 
and only when the attitude uncertainty qerror was below 
40′′ . Since the purpose of this paper is the co-estimation 
of calibration parameters for the platform magnetom-
eters, we processed the dataset using the original cali-
bration parameters to undo the calibration step that has 
been performed by Olsen et  al. (2020) but keeping the 
applied correction for magnetic disturbances from the 
spacecraft and its payload. This way, we obtained essen-
tially uncalibrated data while still retaining the correc-
tions for magnetic disturbances, temperature effects 
and non-linearities. In a pre-whitening and data reduc-
tion step, we computed residuals to the CHAOS-6-x9 
model in the uncalibrated magnetometer frame, removed 
those larger than 1000 eu (quasi nanoTesla, in the follow-
ing referred to as engineering units) in absolute value to 
discard gross outliers, computed component-wise robust 
mean values of the residuals in 1min bins to reduce the 
original 4 s sampled data to 1min values, and added the 
CHAOS-6-x9 model values back. Figure  1 shows an 
example of the raw vector residuals �E of CryoSat-2 
FGM1 in the uncalibrated magnetometer frame over 3 h 
on March 24, 2016.

In a similar way, we processed the 1Hz data from 
the GRACE satellites, baseline 0101, to obtain 1min 
uncalibrated but corrected vector data between January 
2008 and October 2017 (GRACE-A) and August 2017 
(GRACE-B) (Olsen 2020).

The computation of 1min values served two purposes. 
First, to reduce the random noise of the magnetometers 
by taking the average of successive values and, second, to 
decrease the number of platform magnetometer data, so 
that a fair amount of absolute satellite data was able to 
guide the co-estimation of the calibration parameters.

Ground observatory data
In addition to satellite data, we added annual differ-
ences of monthly mean values from 162 ground obser-
vatories to help determine the time changes of the core 
field (secular variation). Following Olsen et al. (2014), we 
computed revised monthly means as Huber-weighted 
averages of the hourly observatory mean values from the 
AUX OBS database (Macmillan and Olsen 2013) at all 
local times after removing estimates of the ionospheric 
field of the CM4 model (Sabaka et al. 2004) and the large-
scale magnetospheric field of CHAOS-6-x9, including 
their internally induced parts.

Satellite data selection
We organized the satellite data according to quasi-dipole 
(QD) latitude (Richmond 1995) into a non-polar (equal 
to and equatorward of ±55◦ ) and a polar (poleward of 
±55◦ ) data subset. From each subset, we selected data 
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under quiet geomagnetic conditions. Specifically, we 
selected data from the non-polar subset that satisfied the 
following criteria:

• Low geomagnetic activity as indicated by the plan-
etary activity index Kp smaller than or equal to 2o;

• Dark condition as indicated by a solar zenith angle 
greater than 100◦ for the Swarm and CHAMP satel-
lites (i.e.,  sun at least 10◦ below the horizon). From 
CryoSat-2 and GRACE, we used data from dark and 
sunlit regions, since we found that this leads to better 
determined calibration parameters;

• Slow change of the magnetospheric ring current as 
indicated by the RC-index (Olsen et al. 2014) rate of 
change in absolute terms being smaller than 2 nTh−1.

From the polar subset, we kept data according to the fol-
lowing criteria:

• Dark condition except in the case of platform mag-
netometers on-board CryoSat-2 and GRACE, where 
we also used sunlit data;

• RC-index rate of change in absolute terms smaller 
than or equal to 2 nTh−1;

• The merging electric field at the magnetopause 
Em = v4/3B

2/3
T sin |�|/2 , where v is the solar wind 

speed, BT =
√

B2
y + B2

z  is the interplanetary mag-
netic field in the y–z-plane of the Geocentric Solar 
Magnetic (GSM) coordinates, and � = arctan(By/Bz) , 
was on average smaller than 2.4mVm−1 over the 
previous 2 h;

• The interplanetary magnetic field component Bz in 
GSM coordinates was on average positive over the 
previous 2 h.

Figure  2 shows a stacked histogram of the number of 
data for each satellite after the data selection.

It can be clearly seen that platform magnetometer 
data are the main contributor to the number of data in 
the gap period, whereas it is comparable to the number 
of data from CHAMP and the Swarm satellites in the 
time before and after the gap. The ground observato-
ries contribute approximately 130 monthly mean val-
ues of the SV each month throughout the entire model 
time span, which is much less than the monthly average 
number of satellite data.

Fig. 1 Residuals of raw vector data from CryoSat-2 FGM1 with respect to the CHAOS-6-x9 model values in the uncalibrated magnetometer frame 
for an example period of 3 h on March 24, 2016. The gap in the raw data between 10:30 and 10:40 is due to the rejection of data with poor attitude 
information ( qerror > 40

′′)
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Model parameterization and estimation
We are interested in the magnetic field vector B on 
length scales smaller than Earth’s circumference and time 
scales that are much longer than the time it takes light 
to traverse these distances (Backus et  al. 1996; Sabaka 
et  al. 2010). On these scales, the displacement current 
can be neglected and the magnetic field is governed by 
Ampere’s law. We assume that the measurements of 
Earth’s magnetic field are taken in a region free of elec-
trical currents and magnetized material, such that the 
field is irrotational, which allows us to introduce a scalar 
potential V to represent the magnetic field as the gradi-
ent of the potential B = −∇V  . The potential consists of 
two terms V = Vint + Vext that describe internal sources 
such as the time-dependent core-generated field and the 
assumed static lithospheric field, and external sources 
that we assume are mainly magnetospheric in origin for 
our chosen data selection criteria and have an internally 
induced counterpart associated with them (by selecting 
data from dark regions, we minimize ionospheric field 
contributions).

To describe the geomagnetic field, we use an Earth-
fixed frame of reference whose point of origin coincides 
with the Earth’s center and in which the position vector 
r is given in spherical polar coordinates by the radial dis-
tance r as measured from the origin (radius), the angular 
distance θ (co-latitude) as measured from the north polar 
axis, and the azimuthal angular distance φ (longitude) 
as measured from the Greenwich meridian. In the fol-
lowing, we refer to that system as the Radius-Theta-Phi 
(RTP) reference frame.

In spherical coordinates, the scalar potential can be 
expressed as a weighted sum of solid harmonics, which 
are harmonic functions of the spatial coordinates. Our 
modeling approach follows that of earlier models of the 

CHAOS model series (Olsen et  al. 2006, 2014; Finlay 
et al. 2016, 2020) and consists of describing the geomag-
netic field with the help of a scalar potential whose exact 
form depends on a set of coefficients that multiply the 
solid harmonics. The coefficients are estimated by mini-
mizing a quadratic cost function in the residuals, which 
are  the difference between the magnetic observations 
and the magnetic data calculated with the model. We 
used two kinds of residuals: the components of vector 
differences in the RTP frame (vector residuals) and the 
difference of vector magnitudes (scalar residuals). More 
specifically, we computed vector residuals of the non-
polar satellite data, scalar residuals of the polar satellite 
data, and vector residuals of the ground observatory SV 
data at all QD latitudes.

Internal field parameters
The scalar potential of the internal sources is given by:

where a = 6371.2 km is the chosen spherical reference 
radius of the Earth, n and m are, respectively, the spheri-
cal harmonic degree and order, Nint is the truncation 
degree, gmn (t) and hmn (t) are the Gauss coefficients in 
nanoTesla ( nT ) for a given n and m, and Pm

n (cos θ) are 
the Schmidt quasi-normalized associated Legendre func-
tions. We truncated the formally infinite sum of solid har-
monics at Nint = 50 and expanded the Gauss coefficients 
of degree n ≤ 15 in time using sixth-order B-splines 
(De Boor 1978), while we kept the higher degree coeffi-
cients ( n > 15 ) constant in time:

(1)

Vint(r, t) =a

Nint
∑

n=1

n
∑

m=0

(gmn (t) cosmφ

+ hmn (t) sinmφ)

(a

r

)n+1

Pm
n (cos θ),

Fig. 2 Number of selected satellite data per month as stacked histogram. Ground observatories contribute with approximately 130 vector 
measurements of the SV per month.
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where gmn,j (similarly for hmn,j ) is the coefficient of B6,j(t)

—the jth function of the B-spline basis that has knots at 
6-month intervals and six-fold multiplicity at the model 
endpoints in ts = 2008.0 and te = 2018.0 in years. For 
the purposes of testing the co-estimation of calibration 
parameters here, a truncation of the time-dependent 
internal field at degree Nint = 15 was deemed sufficient.

External field parameters
The scalar potential of the external sources consists 
of two terms Vext = VSM + VGSM that are designed to 
account for near and remote magnetospheric sources. 
We use the Solar Magnetic (SM) coordinate system to 
parameterize near magnetospheric sources:

where θSM and φSM are, respectively, the SM co-latitude 
and longitude, qmn,SM and smn,SM are the Gauss coefficients 
with respect to the SM coordinate system, �qm1,SM(t) and 
�sm1,SM(t) are the RC-baseline corrections, and Rm,s

n,SM 
and Rm,c

n,SM are modification of the solid harmonics that 
account for the time-dependent transformation from 
the SM to the geographic coordinate system and include 
internally induced contributions based on the diagonal 
part of the Q-response matrix that has been derived from 
a 3D conductivity model of Earth (Finlay et al. 2020). The 
external Gauss coefficients with n = 1 have a specific 
time-dependence in the form of:

where ǫ(t) and ι(t) are the respective internal and exter-
nal part of the RC-index linearly interpolated from hourly 
values. The RC-baseline corrections were estimated in 

(2)gmn (t) =











�

j

gmn,jB6,j(t), n ≤ 15

gmn , n > 15,

(3)

VSM = a

1
∑

m=0

(

qm1,SM(r, t) cosmφSM + sm1,SM(r, t) sinmφSM
)

Pm
1 (cos θSM)

+ a

1
∑

m=0

(

�qm1,SM(t)Rm,c
1,SM(r, t)+�sm1,SM(t)Rm,s

1,SM(r, t)
)

+ a

2
∑

m=0

(

qm,c
2,SMRm,c

2,SM(r, t)+ sm2,SMRm,s
2,SM(r, t)

)

,

(4)

q01,SM(r, t) = q̂01

[

ǫ(t)
( r

a

)

+ ι(t)
(a

r

)2
]

q11,SM(r, t) = q̂11

[

ǫ(t)
( r

a

)

+ ι(t)
(a

r

)2
]

s11,SM(r, t) = ŝ11

[

ǫ(t)
( r

a

)

+ ι(t)
(a

r

)2
]

,

bins of 30 days except in the gap period, where we used 
a single bin from August 2010 to January 2014 to reduce 
the strong co-linearity between the calibration param-
eters and the baseline corrections that earlier tests had 
revealed.

The remote magnetospheric sources, and the currents 
at the magnetopause and in the magnetotail, are taken 
into account by a purely zonal potential in the GSM 
coordinate system up to degree 2:

where qmn,GSM and smn,GSM are Gauss coefficients that are 
constant in time with respect to the GSM coordinate sys-
tem, and Rm,c

n,GSM are modifications of the solid harmonics 
similar to corresponding terms in Eq. (3) but for the GSM 
coordinates.

Alignment parameters
Using satellite data in the vector field magnetometer 
frame (VFM) requires an additional step, called data 
alignment, which involves determining alignment 
parameters that describe the rotation of the magnetic 
field vector BVFM in the VFM frame to BCRF in the com-
mon reference frame (CRF) of the satellite. Once in the 
CRF, the vector components can be combined with the 
attitude information from the star camera and rotated 
into the RTP frame for computing the vector residuals. 
We performed the data alignment for CHAMP, Swarm, 
CryoSat-2, and GRACE.

The alignment parameters are usually parameterized 
in the form of Euler angles α , β , and γ . We adopted the 
1-2-3 convention of the Euler angles to align the mag-
netic field:

where the rotation matrix is a combination of the three 
rotations:

(5)VGSM(r, t) = a

2
∑

n=1

q0n,GSMR0,c
n,GSM(r, t),

(6)
BCRF = RVFM

CRF (α,β , γ )BVFM

= R3(γ )R2(β)R1(α)BVFM,
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Following the alignment, we applied another rotation 
matrix RCRF

RTP to rotate the field components from the CRF 
to the RTP reference frame:

which depends on position and time. That rotation 
matrix was computed by combining the quaternions 
that express the rotation from the CRF to the Earth-fixed 
Earth-centered North-East-Center (NEC) frame with 
quaternions that describe the change from the NEC to 
the RTP reference frame. For each satellite dataset, we 
parameterized the Euler angles in time as a piecewise 
constant function using a sequence of 30 day bins.

Calibration parameters
The calibration can be viewed as an extension of the data 
alignment which makes it possible to use platform mag-
netometer data in geomagnetic field modeling. We per-
formed the calibration for CryoSat-2 and the GRACE 
satellites.

We assume that the platform magnetometer is a linear 
vector field magnetometer, which provides information 
about the desired local magnetic field vector BVFM (units 
of nT) in the form of the sensor output E = (E1,E2,E3)

T 
(units of eu), which typically consists of components that 
are measured relative to three biased and non-orthogonal 
axes employing different scale factors (Olsen et  al. 2003). 
More specifically, the sensor output in the magnetometer 
frame is related to the local magnetic field through:

where

(7)

R1 =















1 0 0

0 cosα − sin α

0 sin α cosα















R2 =















cosβ 0 sin β

0 1 0

− sin β 0 cosβ















R3 =















cos γ − sin γ 0

sin γ cos γ 0

0 0 1















.

(8)BRTP = R
CRF
RTP(r, t)BCRF,

(9)BVFM = P−1S−1(E− b),

is the diagonal matrix of sensitivities or scale factors 
s = (s1, s2, s3)

T (units of eu/nT):

is the matrix that projects the orthogonal components 
of magnetic field vector BVFM onto three non-orthogo-
nal directions defined by the non-orthogonality angles 
u = (u1,u2,u3)

T (units of radians), and:

is the offset or bias vector (units of eu). Combining the 
calibration step in Eq.  (9), the alignment step involv-
ing the Euler angles in Eq.  (6) and the change of frame 
in Eq. (8), yields an equation that transforms the uncali-
brated sensor output E into calibrated, aligned field com-
ponents in the RTP frame:

We estimated the nine basic calibration parameters and 
the three Euler angles in bins of 30 days. For data equa-
torward of ±55◦ QD latitude, we performed a vector 
calibration using the component residuals of BRTP for 
estimating the model parameters (see "Model param-
eter estimation" section). In contrast, for data poleward 
of ±55◦ QD latitude, we performed a scalar calibration 
using the residuals of the vector magnitude, in which 
case the rotation matrices from the VFM to the RTP 
frame including the Euler angles disappear:

at the expense of loosing the ability to estimate the Euler 
angles.

Table 1 summarizes the different parts of the model and 
the corresponding number of parameters.

Model parameter estimation
The geomagnetic field model parameters p , the Euler 
angles q , and the calibration parameters e were derived 
by solving the least-squares problem:

(10)S(s) =







s1 0 0

0 s2 0

0 0 s3







(11)

P(u) =





1 0 0
− sin u1 cosu1 0

sin u2 sin u3
�

1− sin2 u2 − sin2 u3





(12)b =





b1
b2
b3





(13)
BRTP = RCRF

RTP(r, θ ,φ)R
VFM
CRF (α,β , γ )P−1S−1(E− b).

(14)
F = |BRTP| =

√

BT
RTPBRTP

=

√

(E− b)TS−1(P−1)TP−1S−1(E− b)
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where m = (pT,qT, eT)T is the entire model parameter 
vector, and � is the cost function:

which penalizes a quadratic form in the residuals—the 
difference between the computed geomagnetic field 
model values g(p) and the calibrated, aligned magnetic 
data d(q, e)—using the inverse of the data covariance 
matrix Cd , and a quadratic form in the model parameter 
vector using the regularization matrix � . For the defini-
tion of the matrices Cd and � , see, respectively,   "Data 
weighting" and "Model regularization" sections.

The least-squares solution m∗ in Eq.  (15) is found 
through an iterative quasi-Newton method, which consists 
of updating the model parameter vector mk at iteration k 
using mk+1 = mk +�m together with:

where dk = d(qk , ek) , gk = g(pk) , and G
k
 is a matrix with 

entries corresponding to the partial derivative of the ith 
residual with respect to the jth model parameter:

(15)m∗ = argmin
m

�(m),

(16)
�(m) =

(

g(p)− d(q, e)
)T

Cd
−1

(

g(p)− d(q, e)
)

+mT�m,

(17)
�m =

(

(G
k
)TCd

−1G
k
+�

)−1

·
(

(G
k
)TCd

−1(dk − gk)−�mk

)

,

evaluated at iteration k (Tarantola 2005,  p.  69). Some 
entries of G

k
 are zero owing to data subsets that do not 

provide information on parts of the model. For example, 
scalar data do not constrain the Euler angles and vector 
data from one magnetometer do not constrain the Euler 
angles associated with another magnetometer. With the 
same idea in mind, we modified entries of G

k
 to prevent 

some data subsets from constraining certain parts of the 
internal field model. In particular, we set entries to zero 
for the following criteria: 

1 The row index of the matrix entry corresponded to 
dayside data from a platform magnetometer, on-
board CryoSat-2, or GRACE, and the column index 
corresponded to model parameters that describe the 
internal and external magnetic field. Therefore, the 
dayside data were only used to constrain the Euler 
angles and calibration parameters of the respective 
platform magnetometer.

2 The row index of the matrix entry corresponded 
to data from a platform magnetometer, on-board 
CryoSat-2 or GRACE, and the column index cor-
responded to the B-spline parameters that param-

(18)
(

G
k

)

ij
=

∂
(

g(p)− d(q, e)
)

i

∂(m)j

∣

∣

∣

∣

m=mk

Table 1 Details on  the  parameterization of  the  individual model parts. Here, the  number of  basic parameters refers 
to the number of parameters irrespective of an explicit time-dependence

Description of the model parameters Number of basic 
parameters

Temporal parameterization Number 
of parameters

Internal field Time-dependent ( n ≤ 15) 255 order-6 B-spline 6375

Static ( 16 ≤ n ≤ 50) 2345 None 2345

External field SM degree-1 3 RC-index 3

SM degree-2 5 None 5

RC-baseline corrections 3 80 bins (30 days) 240

GSM 2 None 2

Euler angles CHAMP 3 33 bins (30 days) 99

Swarm-A 3 50 bins (30 days) 150

Swarm-B 3 50 bins (30 days) 150

Euler/Calibration CryoSat-2 FGM1 12 91 bins (30 days) 1092

CryoSat-2 FGM2 12 91 bins (30 days) 1092

CryoSat-2 FGM3 12 91 bins (30 days) 1092

GRACE-A 12 120 bins (30 days) 1440

GRACE-B 12 118 bins (30 days) 1416

Total number of parameters (no platform magnetometer data) 9369

Total number of parameters 15501
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eterize the g01 Gauss coefficient of the internal field 
in time. Therefore, no platform magnetometer data 
were used to constrain the B-spline coefficients of 
the axial dipole which we believe are well determined 
using ground observatory data.

Table 2 gives an overview of whether or not certain data-
sets constrained specific parts of the model.

Nevertheless, we used the full model description in the 
forward evaluation to compute the residuals.

The iterative procedure described in Eq. (17) requires a 
starting model m0 to initialize the model parameter esti-
mation. We initialized the internal field model parame-
ters using the corresponding part of CHAOS-6-x9, while 
we set the external field model parameters to zero. To ini-
tialize the Euler angles, we used the values from CHAOS-
6-x9 in case of Swarm and CHAMP satellites, or set the 
angles to zero in case of CryoSat-2 and the GRACE sat-
ellite duo. For the calibration parameters, we simply set 
the offsets and non-orthogonalities to zero and the sen-
sitivities to one over the whole time span. The parameter 
estimation usually converged after 10–15 iterations. We 
also tested other starting models, e.g., random calibration 
parameters, but found that our choice had little impact 
on the converged model parameters other than increas-
ing the number of necessary iterations.

Data weighting
For the vector components of the non-polar  satellite 
data, we used a covariance matrix that accounts for the 
attitude uncertainty of the star cameras:

with respect to the B23 reference frame defined by unit 
vectors in the direction of B , n × B , and n × (n × B) , 
where n is an arbitrary unit vector not parallel to B that 
we chose to be the third CRF base vector, σ 2 is the vari-
ance of an isotropic instrument error and ψ2 is the vari-
ance associated with random rotations around the three 

(19)CB23 = diag(σ 2, σ 2 + B2ψ2, σ 2 + B2ψ2)

Table 2 Overview of  which data subset constrained which part of  the  model. The cross  refers to  non-zero entries 
in  the  matrix of  partial derivatives, whereas the  circle refers to  zeros. The SV data refer to  the  annual difference 
of the revised monthly means

1 Entries related to g0
1
 B-spline coefficients and platform magnetometer data are zero

Description of the model parameters Non-polar satellite data Polar satellite data SV data

Day Night Day Night

Internal field Time-dependent ( n ≤ 15) © X1 © X1 X

Static ( 16 ≤ n ≤ 50) © X © X ©

External field SM © X © X ©

GSM © X © X ©

Euler angles CHAMP © X © © ©

Swarm-A © X © © ©

Swarm-B © X © © ©

CryoSat-2 FGM1 X X © © ©

CryoSat-2 FGM2 X X © © ©

CryoSat-2 FGM3 X X © © ©

GRACE-A X X © © ©

GRACE-B X X © © ©

Calibration CryoSat-2 FGM1 X X X X ©

CryoSat-2 FGM2 X X X X ©

CryoSat-2 FGM3 X X X X ©

GRACE-A X X X X ©

GRACE-B X X X X ©

Table 3 Chosen values of  σ and  ψ for  the  different 
satellites. The values under  Swarm apply to  the  data 
from  the  two Swarm satellites in  this study (Swarm-A 
and  Swarm-B), the  values under  CryoSat-2 to  the  data 
of  the  three magnetometers (FGM1, FGM2 and  FGM3), 
and the values under GRACE to the data from both GRACE 
satellites (GRACE-A and GRACE-B)

CHAMP Swarm CryoSat-2 GRACE

σ (nT) 2.5 2.2 6 10

ψ (arcsec) 10 5 30 100
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reference axes (Holme and Bloxham 1996). Table 3 sum-
marizes the values of σ and ψ for the different satellite 
datasets.

We scaled the diagonal entries of the covariance matrix 
with Huber weights (Constable 1988; Sabaka et  al. 2004) 
that we calculated for each component in the B23 reference 
frame to downweight data points that greatly deviated from 
the model evaluated at the previous iteration. After invert-
ing and rotating the Huber-weighted covariance matrix of 
the individual data point into the RTP frame, we arranged 
them into a block-diagonal matrix completing the desired 
inverse data covariance matrix Cd

−1 . In case of the vector 
magnitude of the polar satellite  data, we simply used σ 2 
scaled with Huber weights as variance. The covariance of 
the ground observatory SV vector data was derived from 
detrended residuals to the CHAOS-6-x9 model, including 
the covariance between vector components at a given 
location.

Model regularization
The regularization in the form of the matrix � in Eq. (15) is 
designed to ensure the convergence of the model parame-
ter estimation by limiting the flexibility of the model. The 
regularization matrix is block diagonal and consists of the 
blocks �int , �ext , and �cal , which regularized the internal, 
external, and the calibration parameters, respectively. We 
did not regularize the Euler angles, such that correspond-
ing blocks in the regularization matrix are zero.

Turning to the internal part of the model, following 
the example of earlier models in the CHAOS series, we 
designed a regularization based on the square of the third 
time-derivative of the radial field component Br integrated 
over the core mantle boundary (CMB) and averaged over 
the entire model time span:

where c = 3485.0 km is the chosen spherical reference 
radius of the CMB, �(c) denotes the CMB given as the 
spherical surface of radius c, and d� = sin θdθdφ is the 
surface element for the integration. Furthermore, we 
set up a regularization of the internal field based on the 
square of the second time-derivative of the radial compo-
nent integrated over the CMB at the model start time ts:

and similarly for the end time by replacing ts with te . 
Returning to Eq.  (20), thanks to the orthogonality of 

(20)�
...
B
2
r � =

1

4π(te − ts)

∫ te

ts

∫

�(c)

(

∂3Br

∂t3

)2

d�dt,

(21)�B̈2
r (ts)� =

1

4π

∫

�(c)

(

∂2Br

∂t2

∣

∣

∣

∣

t=ts

)2

d�,

spherical harmonics on the surface of the sphere, carry-
ing out the spatial integration leads to:

where w� = (n+1)2

2n+1

(

a
c

)2n+4 is a spatial factor that fol-
lows from the surface integration and �·�t = 1

te−ts

∫ te
ts
dt 

denotes the time average. Utilizing the fact that the time-
dependence of the Gauss coefficients is given by sixth-
order B-splines, terms such as:

can be written as a quadratic form in 
gmn = (gmn,1, g

m
n,2, . . . )

T , the vector of the spline coefficients 
of gmn  , using the matrix At  that has entries corresponding 
to the time averages of products of the third time-deriva-
tive of the B-splines. While the time-derivatives of the 
B-splines are known analytically, we approximated the 
time average numerically by a Riemann sum of rectan-
gles. A similar computation of Eq.  (21), now evaluating 
the derivatives only at the endpoints instead of averaging 
in time, yields matrices 

(

Ats

)

jj′
= B̈6,j(ts)B̈6,j′(ts) and 

(

Ate

)

jj′
= B̈6,j(te)B̈6,j′(te) . Finally, based on the physical 

quantities in Eqs. (20) and (21), we devised a block-diago-
nal regularization matrix for the internal magnetic field 
model:

where n and m run over the degree and order in the 
spherical harmonic expansion of the internal field in 
Eq. (1); wm(m) and wtp(n) are functions which control the 
regularization strength based on the degree and order of 
the internal Gauss coefficients; �t , �ts , and �te are param-
eters that, respectively, set the regularization strength 
over the entire model time span, at the model start time 
and end time. Following Finlay et al. (2020), to relax the 
regularization at higher spherical harmonic degree, 
we defined wtp(n) as a tapered window which gradually 
reduces from one to 0.005:

(22)

〈...
B
2
r

〉

=

Nint
∑

n=1

(

w�(n)

n
∑

m=0

(

〈...
g m
n (t)

2
〉

t
+

〈...
h
m
n (t)

2
〉

t

)

)

,

(23)

〈...
g m
n (t)

2
〉

t
=

∑

j,j′

gmn,jg
m
n,j′

〈...
B6,j(t)

...
B6,j′(t)

〉

t

=
∑

j,j′

gmn,jg
m
n,j′Ajj′

= (gmn )
TAtg

m
n

(24)
�int = diag

n,m

(

w�(n)wm(m)wtp(n)

·
(

�tAt + �tsAts + �teAte

)

)

,
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where nmin = 3 and nmax = 6 are the chosen limits of a 
half-cosine taper:

In contrast to Finlay et  al. (2020), who used nmax = 11 
to achieve stable power spectra with more power in the 
time-dependence of the high-degree coefficients without 
causing instabilities, we were able to further decrease the 
upper limit of the taper. The magnetospheric and iono-
spheric field and their induced counterparts may also 
cause the estimation of the internal field parameters to 
become unstable. Our experience shows that it is typi-
cally the zonal harmonics that become unstable first if 
the regularization is not sufficiently strong. Therefore, in 
addition to the degree-dependent temporal regulariza-
tion, there is a special treatment of zonal and non-zonal 
spherical harmonics based on:

Note that the regularization of the internal field model 
only constrains the time-derivatives of the field but not 
the field itself.

Turning to the external part of the model, we regu-
larized only the bin-to-bin variability of the three RC-
baseline corrections �q01,SM , �q11,SM , and �s11,SM in 
Eq.  (3) using a quadratic form in the first forward dif-
ference of neighboring bins. The forward difference was 
calculated with the matrix:

whose number of columns is equal to the number of 
bins that comprise each RC-baseline correction. Taken 
together, the regularization matrix for all parameters 
related to the external field model reads:

where ⊗ is the Kronecker product, I3 is the unit matrix of 
size three corresponding to the three RC-baseline correc-
tions, D2 = DTD is the coefficient matrix that deter-
mines the quadratic form, additional zeros on the 
diagonal indicate the other unregularized model 

(25)wtp(n) =







1, n < nmin

τ (n), nmin ≤ n ≤ nmax

0.005, n > nmax,

(26)

τ (n) =
0.995

2

[

1+ cos

(

π
n− nmin

nmax − nmin

)]

+ 0.005.

(27)wm(m) =

{

�0, m = 0

�m, m �= 0.

(28)D =
1

te − ts







−1 1
. . .

. . .

− 1 1






,

(29)�ext = diag(0, . . . , 0, �extI3 ⊗D2, 0, . . . , 0),

parameters of the external field, and �ext is the chosen 
regularization parameter.

Turning to the calibration parameters, we regularized 
a quadratic form in the bin-to-bin variability of each 
calibration parameter for the five platform magnetom-
eters (three on CryoSat-2 and one on each of the two 
GRACE satellites). The regularization matrix �cal is 
block-diagonal with each block �cal,i  , i = 1, . . . , 5 , cor-
responding to the calibration parameters for each of 
the five platform magnetometers. The regularization 
matrix can be written as:

where we define the regularization parameters �b,i , �s,i 
and �u,i to control the temporal smoothness of the off-
sets, sensitivities, and non-orthogonalities, respectively.

Results and discussion
We built two geomagnetic field models which span 10 
years from the 1st of January 2008 to the 31st of Decem-
ber 2018, but differ in the use of platform magnetometer 
data to constrain the field model parameters.

The first model, Model-A, was derived with data from 
the Swarm-A, Swarm-B, and CHAMP satellites, and the 
monthly SV data from ground observatories. It served 
as a reference model, which allowed us to identify dif-
ferences to models which were derived using platform 
magnetometer data in addition. Considering the model 
parameterization, regularization, and estimation, Model-
A is very similar to the CHAOS model series. In fact, the 
parameterization of the geomagnetic field and the align-
ment parameters of the satellite data are identical, except 
for the lower truncation degree of the internal field and the 
longer bins of the alignment parameters and RC-baseline 
corrections in Model-A. A notable difference is the use of 
gradient data in the CHAOS model. The strong tempo-
ral regularization of the high-degree Gauss coefficients of 
the time-dependent internal field has been relaxed in the 
newly released CHAOS-7 model through a taper, which 
we also used here. For Model-A, we tuned the regulariza-
tion, such that the model parameters matched the ones of 
the CHAOS-6-x9 model as close as possible. Table 4 shows 
the numerical values of the regularization parameters.

The second model, Model-B, is our preferred model 
and was derived with data from Swarm-A, Swarm-B, 
CHAMP, monthly ground observatory SV data, and, as 
opposed to Model-A, platform magnetometer data from 
CryoSat-2 FGM1, CryoSat-2 FGM2, CryoSat-2 FGM3, 
GRACE-A, and GRACE-B. In addition to Model-A and 

(30)
�cal = diag(�cal,1, . . . ,�cal,5)

�cal,i = diag(�b,i, �s,i, �u,i)⊗ I3 ⊗D2,
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Table 4 Chosen numerical values of  the  regularization parameters. The values are valid for  all the  models built in  this 
paper insofar as the regularization terms are applicable to the specific model

1 Not applicable to Model-A, which was not derived from platform magnetometer data

Description of the model parameters Regularization parameter

Internal field Time-dependent
�t = 1.0

(

nT
yr3

)−2

 , 
�ts = 0.03

(

nT
yr2

)−2

 , 
�te = 0.03

(

nT
yr2

)−2

,

�0 = 60 , �m = 0.65

External field RC-baseline corrections
�ext = 4× 105

(

nT
yr

)−2

Calibration1 CryoSat-2 FGM1
�b = 9.1× 102

(

eu
yr

)−2

 , 
�s = 9.1× 1010

(

eu
nTyr

)−2

 , 
�u = 2.8× 102

(

1◦

yr

)−2

CryoSat-2 FGM2
�b = 9.1× 102

(

eu
yr

)−2

 , 
�s = 9.1× 1010

(

eu
nTyr

)−2

 , 
�u = 2.8× 102

(

1◦

yr

)−2

CryoSat-2 FGM3
�b = 9.1× 102

(

eu
yr

)−2

 , 
�s = 9.1× 1010

(

eu
nTyr

)−2

 , 
�u = 2.8× 102

(

1◦

yr

)−2

GRACE-A
�b = 1.2× 103

(

eu
yr

)−2

 , 
�s = 1.2× 1013

(

eu
nTyr

)−2

 , 
�u = 3.7× 108

(

1◦

yr

)−2

GRACE-B
�b = 1.2× 103

(

eu
yr

)−2

 , 
�s = 1.2× 1013

(

eu
nTyr

)−2

 , 
�u = 3.6× 108

(

1◦

yr

)−2

Fig. 3 Histograms of the residuals of each satellite and ground observatory SV data using Model-B. The histograms have been normalized to have 
unit area. Computed statistics are shown in Table 5 for the satellite data and Table 6 for the ground observatory SV data

Model-B, we built test models in a series of experiments 
to investigate the effect of platform magnetometer data 
on the estimation of the geomagnetic field model. Details 

of the test models are given below. The regularization 
parameters are the same for all the presented models, 
i.e., Model-A, Model-B, and the test models.
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Fit to satellite data and ground observatory SV data
We begin with reporting on the fit of Model-B to the sat-
ellite data and ground observatory SV data. The histo-
grams of the scalar and vector residuals for each dataset 
are shown in Fig. 3.

The residuals of Swarm-A, Swarm-B, CHAMP, and 
the ground observatories show narrow and near-zero 
centered peaks, which demonstrate the high-quality and 
low-noise level of these datasets. In contrast, the peaks 
are broader for CryoSat-2 and even more in the case of 

Table 5 Number N, Huber-weighted mean, and  standard deviation σ computed from  the  residuals of  the  satellite data 
for each vector component and split into polar (poleward ±55

◦ ) and non-polar (equatorward ±55
◦ ) QD latitudes. Note 

that non-polar scalar data were not used in the model parameter estimation—statistics are only shown for completeness

Dataset Quasi-dipole latitude Component N mean (nT) σ (nT)

CHAMP Non-polar Br 707131 0.02 1.93

Bθ 707131 − 0.11 2.84

Bφ 707131 0.03 2.32

F 707131 0.01 1.93

Polar F 200084 − 0.02 5.10

CryoSat-2 FGM1 Non-polar Br 958362 − 0.06 4.39

Bθ 958362 − 0.31 5.76

Bφ 958362 0.06 6.49

F 958362 0.06 4.18

Polar F 331097 − 0.28 7.56

CryoSat-2 FGM2 Non-polar Br 958362 − 0.03 6.42

Bθ 958362 − 0.29 6.01

Bφ 958362 0.07 6.55

F 958362 0.18 4.86

Polar F 331097 − 1.70 8.21

CryoSat-2 FGM3 Non-polar Br 958362 − 0.07 4.76

Bθ 958362 − 0.23 5.71

Bφ 958362 0.04 6.80

F 958362 0.12 4.35

Polar F 331097 − 1.01 7.86

GRACE-A Non-polar Br 1082071 − 0.12 11.40

Bθ 1082071 − 0.24 10.48

Bφ 1082071 − 0.79 13.57

F 1082071 − 0.16 10.59

Polar F 356988 0.32 15.56

GRACE-B Non-polar Br 997802 − 0.30 11.77

Bθ 997802 − 0.69 11.09

Bφ 997802 − 0.68 12.35

F 997802 0.02 11.53

Polar F 331516 − 0.24 15.56

Swarm-A Non-polar Br 817400 − 0.03 1.65

Bθ 817400 − 0.06 2.97

Bφ 817400 − 0.02 2.59

F 817400 − 0.03 2.06

Polar F 218776 0.22 4.66

Swarm-B Non-polar Br 809720 − 0.09 1.63

Bθ 809720 − 0.05 3.02

Bφ 809720 − 0.04 2.61

F 809720 − 0.01 2.03

Polar F 218106 0.30 4.29
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GRACE, which is, as expected, due to the higher data 
noise level. By separating the residuals poleward of ±55◦ 
QD latitude from the ones equatorward, we find that 
peaks are broader at polar QD latitudes for all data-
sets, which is a result of unmodeled magnetic signal of 
the polar ionospheric current system. Also, the histo-
grams of the GRACE residuals are biased toward nega-
tive values. Upon further investigation, we found a local 
time-dependence especially visible in the scalar residu-
als, which could indicate that signals from solar array 
and battery currents have not been fully removed from 
the GRACE datasets used here. The residual statistics are 
summarized in Table 5 for the satellite data and Table 6 
for the ground observatory SV data.

Figure 4 shows the time-series of the SV components at 
six chosen ground observatories together with the com-
puted values from Model-A and Model-B.

Overall, the fit of Model-A and Model-B to the ground 
observatory SV data is good, as expected, for the first 
five observatory SV shown, since these data were used 
in the model parameter estimation. The computed val-
ues of Model-A and Model-B differ especially during the 
gap from 2010 to 2014, where Model-B can make use of 
platform magnetometer data in addition to the ground 
observatory SV data, while Model-A only relies on the 
ground observatories. That shows that platform mag-
netometer data contribute to the internal field model 
especially when there is a lack of calibrated satellite data 
from CHAMP and Swarm. Perhaps even more convinc-
ing is the performance of both models when compared 
to a dataset not used in the inversion. With the SV data 
from Saint Helena, we show such an independent dataset 
in the last row of Fig. 4. Although both models fit Saint 
Helena well, Model-B performs slightly better in the 
radial SV in 2013 and the azimuthal SV at least in the first 
half of the gap period, until 2012.

To summarize, with Model-B, we built a model 
that fits both the satellite and ground observatory SV 
data to a satisfactory level, which shows that platform 

magnetometer data can be successfully used in geomag-
netic field modeling.

Calibration parameters
We document the estimated calibration parameters of 
each platform magnetometer dataset by showing the 
time-series in Fig.  5 and the respective mean values in 
Table 7.

In Fig.  5, the rows of panels correspond to the Cryo-
Sat-2 (top three) and GRACE (bottom two) platform 
magnetometer datasets, and the columns of panels show 
the offsets (left), sensitivities (middle), and non-orthog-
onality angles (right). Since Alken et al. (2020) also used 
magnetic data from the three platform magnetometers 
on-board CryoSat-2, it is possible to compare the esti-
mated calibration parameters. First, comparing the time-
averaged values of the calibration parameters (Table  7 
here and Table 4 in Alken et al. (2020)), we find that the 
non-orthogonalities are equal to within 0.01◦ and the off-
sets to within 1 eu . The averaged values of sensitivities are 
equal to within 1× 10−4eu/nT (notice that Alken et  al. 
(2020) use the reciprocal of the sensitivity). In terms of 
the temporal variability, we find that our estimated cali-
bration parameters have amplitudes that are smaller, or 
equal in case of the offsets, which is likely due to a dif-
ference in the regularization strength. In Fig.  5, we also 
show the CryoSat-2 calibration parameters of Olsen et al. 
(2020) for comparison. Again, the calibration parameters 
are very similar and differ only in the time variations 
(e.g.,  s1 ) due to the choice of the regularization param-
eters of this study and Olsen et  al. (2020). Given the 
acceptable fit to the platform magnetometer data and the 
reasonable temporal variability of the calibration param-
eters, we conclude that the calibration of the CryoSat-2 
and GRACE platform magnetometers was successful.

Results of the experiments
We conducted a series of experiments in which we 
changed the model estimation, parameterization, and 

Table 6 Number N, Huber-weighted mean, and standard deviation σ computed from the residuals of the monthly ground 
observatory SV data for  each component and  split into  polar (poleward ±55

◦ ) and  non-polar (equatorward ±55
◦ ) QD 

latitudes

Dataset Quasi-dipole latitude Component N Mean (nT/yr) σ (nT/yr)

Observatories Non-polar Ḃr 11348 0.20 2.09

Ḃθ 11348 − 0.18 2.26

Ḃφ 11348 0.06 2.43

Polar Ḃr 3609 0.22 4.43

Ḃθ 3609 − 0.19 4.21

Ḃφ 3609 − 0.08 2.85
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data selection with the goal to investigate and document 
difficulties when dealing with platform magnetometer 
data in a co-estimation scheme. This section also justifies 
the modeling strategies that went into the construction of 
our preferred geomagnetic field model, Model-B.

In a first experiment, we allowed the nightside plat-
form magnetometer data to participate in the estima-
tion of the axial dipole coefficient of the time-dependent 

internal field. That is, we derived a test model, Model-C, 
identical to Model-B but left the matrix of partial deriva-
tives G unchanged, so that the entries corresponding to 
the B-spline coefficients g01,j were non-zero, and thus, the 
satellite data contributed to the estimation of the inter-
nal dipole coefficients. On the left of Fig. 6, we show the 
time-derivative of g01 as a function of time computed with 

Fig. 4 Examples of time-series of monthly ground observatory SV data (black dots) and modeled SV using Model-A (green lines) and Model-B (red 
lines). The observatory names are MBour (MBO), Ascension (ASC), Kourou (KOU), Honolulu (HON), Hermanus (HER), and Saint Helena (SHE). The SV 
data of SHE are an independent dataset not used in the inversion. The gap period between CHAMP and Swarm is indicated as a blue-shaded region 
(Sep 2010–Nov 2013)
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Model-B and Model-C, while, on the right, we show s1 of 
GRACE-A as an example of the calibration parameters.

In contrast to Model-B, Model-C features a conspicu-
ous detour of the time-derivative of the g01 coefficient in 
the gap between CHAMP and Swarm data (blue-shaded 
region). Although we only show s1 of GRACE-A in Fig. 6, 

we find that all three sensitivities of each platform mag-
netometer differ in the gap period between Model-C 
and Model-B. The other internal Gauss coefficients 
also deviate but to a lesser extent. Interestingly, other 
model parameters such as the offsets, non-orthogonality 
angles, Euler angles, and external field parameters seem 

Fig. 5 Time-series of the calibration parameters of Model-B for each platform magnetometer dataset (thick lines) and calibration parameters of 
Olsen et al. (2020) for CryoSat-2 (thin lines). The respective mean values in time were removed and are shown in Table 7

Table 7 Mean values of the calibration parameters for each platform magnetometer dataset. The time-series are shown 
in Fig. 5

Dataset b1 b2 b3 s1 s2 s3 u1 u2 u3

(eu) (eu) (eu) (eu/nT) (eu/nT) (eu/nT) (◦) (◦) (◦)

CryoSat-2 FGM1 5.0 165.6 − 10.7 1.005178 1.004851 1.004479 0.453 0.191 − 0.336

CryoSat-2 FGM2 77.6 − 16.6 61.8 1.004697 1.003993 1.003427 − 0.288 0.050 0.502

CryoSat-2 FGM3 -115.2 − 29.4 − 44.6 1.000863 1.005424 1.002168 0.745 − 0.045 − 0.000

GRACE-A 746.4 − 2632.1 − 2310.0 1.034238 1.032041 1.018168 − 0.251 − 0.161 0.048

GRACE-B 406.0 − 2622.0 − 2005.6 1.029785 1.026781 1.017845 − 0.056 − 0.209 0.106
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qualitatively unaffected. The same correlation between 
the internal axial dipole coefficient and the sensitivi-
ties has been reported by Alken et  al. (2020) who show 
that this effect can be mitigated either by including large 
amounts of previously calibrated data or through the use 
of a regularization that favors a linear time-dependence 
of the internal dipole during the gap period. Due to the 
lack of additional calibrated data and our interest in the 
high-degree SA during the gap that such a regulariza-
tion affects by redistributing power to higher degrees, 
we chose to set the dependence of g01 , the most affected 
internal Gauss coefficient, on the satellite platform mag-
netometer data to zero. In other words, we completely 
relied on the ground observatory SV data and the tempo-
ral regularization to estimate the time-dependence of g01 
in the gap period.

In a second experiment, we built a test model, Model-
D, which uses 30 day bins of the RC-baseline corrections 
consistently over the whole model time span in con-
trast to Model-A and Model-B, which use a single bin 

spanning the entire gap period. As an example, Fig.  7 
shows the RC-baseline correction �q01 on the left and the 
calibration parameter s1 of GRACE-A on the right, com-
puted with Model-D and Model-B.

In Model-D, �q01 has a noticeable peak during the gap 
period that is much larger in value than the variation 
during CHAMP or Swarm times, while the sensitivity is 
slightly offset to higher values. We find the same behav-
ior for all RC-baseline corrections and calibration param-
eters, although most prominently for the sensitivities. 
Again, other model parameters seem unchanged, which 
indicates that there is a significant correlation between 
the RC-baseline corrections and the calibration param-
eters of the platform magnetometers. Using a single bin 
for the RC-baseline corrections in the gap period helps to 
reduce that effect. As a final comment regarding Model-
C and Model-D, we performed a simulation combining 
both experiments; that is, we determined g01 with the 
platform magnetomter data and estimated the RC-base-
line corrections in 30 day bin over the entire model time 

Fig. 6 Time-derivative of g0
1
 (left) and sensitivity s1 for GRACE-A as computed from Model-B and Model-C (right). For Model-C, we allowed nightside 

platform magnetometer data to contribute to the estimation of the internal g0
1
 Gauss coefficient. The gap period between CHAMP and Swarm is 

indicated as a blue-shaded region (Sep 2010 to Nov 2013)

Fig. 7 Time-series of the RC-baseline correction �q0
1
 (left) and sensitivity s1 for GRACE-A as computed from Model-B and Model-D (right). The 

gap period between CHAMP and Swarm is indicated as a blue-shaded region (Sep 2010 to Nov 2013). For Model-D, the bins of the RC-baseline 
corrections are 30 days over the entire model time span, while they were merged to a single bin in the gap period for Model-B
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span. In this case, we observed deviations from Model-B 
which were identical to those shown in Figs. 6 and 7, but, 
now, affected the internal axial dipole, the RC-baseline 
corrections, and the sensitivities all at the same time.

In an effort to analyze the relationship between the 
calibration and the other model parameters in a quan-
titative manner, we also investigated the model correla-
tions ρij = Cij/

√

CiiCjj  based on the entries of the model 
covariance matrix:

evaluated with the converged model parameters (Taran-
tola 2005,  p.  71). Unfortunately, the analysis revealed a 
large number of small correlations, which are difficult to 
interpret. Therefore, we did not make significant use of it 
in the modeling and preferred to rely on experiments to 
guide our modeling strategy.

In a final experiment, we derived a test model, Model-
E, by only using nightside platform magnetometer data 
as opposed to Model-B, where the calibration param-
eters were determined from dayside and nightside plat-
form magnetometer data. Figure 8 shows the calibration 
parameters for GRACE-A computed with Model-B (thick 
lines) and Model-E (thin lines).

(31)C =
(

GTCd
−1G+�

)−1
,

In the case of GRACE-A, using dayside data to deter-
mine the calibration parameters considerably changes 
the sensitivities and non-orthogonalities as can be 
seen, for example, when looking at s1 , s2 or u3 . In par-
ticular for s2 , there is a vertical shift of approximately 
200× 10−6eu/nT , which translates to 10 nT in a mag-
netic field of 50000 nT . Irrespective of the platform mag-
netometer, the experiment shows that the local time 
coverage of the data plays an important role in determin-
ing the calibration parameters. The importance of using 
both day and nightside data becomes clear when appre-
ciating that the orbital plane of the satellites is slowly 
drifting in local time. Under a possible nightside data 
selection criteria, the drift leads to the selection of data 
from either the ascending part or descending part of the 
orbit at a time. For example, if the ascending node of the 
orbit is on the nightside, then the platform magnetom-
eter collects data of the magnetic field that mostly points 
along the direction of flight, in agreement with the pre-
dominant dipolar field configuration, until the ascending 
node crosses over to the dayside placing the descending 
part of the orbit on the nightside. Now, the observed 
magnetic field mostly points against the direction of 
flight. In the case of CryoSat-2, it takes the ascend-
ing node 8 months and GRACE around 11 months to 

Fig. 8 Calibration parameters of GRACE-A computed with Model-B (thick lines) and Model-E (thin lines). We removed the mean values from the 
calibration parameters as given in Table 7
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traverse the nightside, which is longer than the monthly 
bins used for estimating the calibration parameters. 
Hence, the data of each bin will be collected either from 
the ascending or descending nodes with the respective 
bias of the field direction. Instead, using both nightside 
and dayside, we ensured that the data within each bin 
covered a broad range of local times to excite the plat-
form magnetometer from various directions, which we 
believe improves the estimation of the calibration param-
eters. Nevertheless, we did not use any dayside data to 
constrain the geomagnetic field model, since we do not 
account for the strong ionospheric sources on the day-
side. Those ionospheric sources, however, may contami-
nate the calibration parameters.

Secular acceleration
One motivation for using platform magnetometer data 
has been the growing interest in SA pulses, and enhance-
ments of the SA that occur on sub-decadal time scales 
and are seen most prominently at low latitudes. These 
pulses have been reported by several studies (Olsen and 
Mandea 2007; Chulliat et  al. 2010; Chulliat and Maus 
2014) and are thought to reflect the dynamical processes 
in the Earth’s outer core. To further study SA pulses and 
the SA in general, accurate internal field models are 
needed, which rely on long and continuous time-series 
of satellite data to give a global picture. When supple-
mented with high-quality satellite data, platform mag-
netometer data may play an important role in providing 
those models.

To investigate the effect of platform magnetometer data 
on the recovered SA, we show in Fig.  9 time-longitude 

maps of the radial SA on the Equator at the CMB com-
puted with Model-B (left) and Model-A (center) along-
side the difference map (right).

Recall that Model-B is partly based on platform mag-
netometer data in contrast to Model-A, so that the differ-
ence of the two reflects the use of these data. Both models 
show the SA pulses in 2009, 2013, and most recently in 
2017 as enhancement of the radial SA on the Equator. Of 
special interest is the pulse in 2013, right in between peri-
ods of high-quality magnetic data from the CHAMP and 
Swarm missions. In the difference map, the SA during 
CHAMP and Swarm period is largely unchanged, which 
suggests that the effect of the CryoSat-2 and GRACE data 
is rather minimal during these times. In contrast, the SA 
in the gap period is distinctly different for the two mod-
els. Differences that are large in absolute value seem to be 
concentrated around 0◦ and 180◦ longitude on the Equa-
tor which coincides with the Pacific and the region in the 
South Atlantic close to Central Africa. The geographical 
location of the differences is more clearly seen in Fig. 10, 
which shows global maps of the radial SA at the CMB 
during the SA pulses in 2009, 2013, and 2017.

Again, the difference between Model-B and Model-A is 
small in 2009 and 2017, i.e., during CHAMP and Swarm 
times, but large in 2013 in the middle of the gap period. 
The regions with the largest differences are located in 
the Southern hemisphere and the Equatorial region 
with prominent examples in the West and South Pacific 
Ocean, and Central Africa. Our findings seem to indicate 
that the platform magnetometers have the desired effect 
of balancing the uneven spatial distribution of the ground 
observatory network in the gap period.

Fig. 9 Time-longitude maps of the radial SA up to degree 10 on the Equator at the CMB as computed with Model-B (left), Model-A (center) and 
their difference, Model-B minus Model-A (right). The gap period between CHAMP and Swarm is in between the black dashed lines (Sep 2010–Nov 
2013)
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Conclusions
In this study, we present a co-estimation scheme within the 
framework of the CHAOS field model series that is capable 
of estimating both a geomagnetic field model and, at the 
same time, calibration parameters for platform magnetom-
eters. This approach enables us to use platform magnetom-
eter data to supplement high-quality magnetic data from 
magnetic survey satellites and removes the requirement for 
utilizing a-priori geomagnetic field models to calibrate plat-
form magnetometer data.

We followed Alken et al. (2020), but went further in that 
we co-estimated a model of not only the internal field but 
also the external field. The co-estimation scheme relies 
on absolute magnetic data which we took from CHAMP, 
Swarm-A, Swarm-B, and the monthly SV data from ground 
observatories between 2008 and 2018. Magnetic data from 
five platform magnetometers were used: three on-board 
CryoSat-2 and one on-board each of the two GRACE satel-
lites. This allowed us to considerably improve the geograph-
ical and temporal coverage of satellite data after CHAMP 
and before the launch of the Swarm satellites.

We successfully co-estimated a geomagnetic field model 
along with the  calibration parameters of the five platform 
magnetometers. The misfit to the high-quality satellite data 
and ground observatory SV data was similar to that for 

models derived without including platform magnetometer 
data, and the good fit to an independent ground observa-
tory dataset from Saint Helena provides evidence that our 
modeling approach performs well.

In a series of experiments, we investigated the trade-
offs when co-estimating calibration and geomagnetic field 
model parameters. We found that the calibration param-
eters strongly correlate with the internal axial dipole and 
the RC-baseline corrections of the external field during the 
gap period, when there is less high-quality data available. By 
preventing platform magnetometer data from contributing 
to the internal axial dipole and using constant RC-baseline 
corrections throughout the entire gap period, we success-
fully avoided those complications.

Our experiments showed that including platform 
magnetometer data leaves the SA signal practically 
unchanged during the CHAMP and Swarm period, but 
leads to differences in the gap period. The difference 
in the recovered SA signal is stronger in the West and 
South Pacific, where only a few observatories are located, 
which suggests that platform magnetometer data help to 
improve the global picture of the SA. Based on our inves-
tigations, we find that it is worthwhile to include platform 
magnetometer data in internal field modeling, in particu-
lar from CryoSat-2 given the relative low noise level.

Fig. 10 Global maps of the radial SA up to degree 10 at the CMB for Model-B (left column), Model-A (center column), and the difference (right 
column). The maps are computed in 2009 (bottom row), 2013 (center row), and 2017 (top row). The projection is Equal Earth (Šavrič et al. 2018)
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