
1.  Introduction
A key challenge in geoscience is that of combining different kinds of geo-information into one geo-model, typi-
cally describing the subsurface. This information can be direct information about geological processes, and 
spatial variability, or it can be indirect information from measurements of properties related to the subsurface, 
such as geophysical data. Ideally, when such a geo-model has been established, one should be able to quantify 
information about specific features related to the geo-model, consistent with all information.

This integration of geo-information is typically solved using inverse problem theory (Menke, 2012; Tarantola & 
Valette, 1982a). Fast deterministic methods exist and have been widely used. For such methods, the goal is to 
obtain one optimal model, such as the simplest possible model, consistent with available information, typically in 
the form of observed data (Constable et al., 1987; Menke, 2012; Tikhonov, 1963). In practice, in part due to noise 
on data and model nonlinearities and imperfections, infinitely many models exist that will be consistent with data, 
and the deterministic approach can in general not account properly for such uncertainty.

Probabilistic inversion methods can, in principle, take into account arbitrarily complex information, and integrate 
the information into one consistent model, as given by the posterior probability distribution. A full analytic 
expression of the posterior distribution is rarely possible. Instead, sampling methods can be used to generate a 

Abstract  The solution to a probabilistic inverse problem is the posterior probability distribution for which 
a full analytic expression is rarely possible. Sampling methods are therefore often used to generate a sample 
from the posterior. Decision-makers may be interested in the probability of features related to model parameters 
(e.g., existence of pollution or the cumulative clay thickness) rather than the individual realizations themselves. 
Such features and their associated uncertainty, are simple to compute once a sample from the posterior 
distribution has been generated. However, sampling methods are often associated with high computational 
costs, especially when the prior and posterior distribution is non-trivial (non-Gaussian), and when the inverse 
problem is non-linear. Here we demonstrate how to use a neural network to directly estimate posterior statistics 
of continuous or discrete features of the posterior distribution. The method is illustrated on a probabilistic 
inversion of airborne EM data from Morrill Nebraska, where the forward problem is nonlinear and the prior 
information is non-Gaussian. Once trained the application of the network is fast, with results similar to those 
obtained using much slower sampling methods.

Plain Language Summary  Probabilistic inversion is in principle ideal as a method for combining 
available information about geo-models, in a way that will allow detailed risk analysis and hypothesis 
testing based on available information. However, practical use of such methods has historically been limited 
because they (a) require computationally expensive numerical algorithms and (b) typically rely on relatively 
simple assumptions about the model. Machine learning-based methods, such as neural networks, provide 
an alternative approach to probabilistic inversion. We discuss using neural networks to estimate in principle 
any statistics  about continuous or discrete statistical features of the combined information, such as “What 
is the probability that a specific lithology exists below a certain depth?”. A focus is on the use of realistic/
complex assumptions. As an example, the method is demonstrated on a probabilistic inversion of airborne 
electromagnetic data, and it is demonstrated as accurate, fast, and allows analysis of many (>100.000) 1D 
soundings per second, making it applicable to very large data sets.
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sample of the posterior, which is a collection of realizations drawn from the posterior distribution. From such a 
sample, the posterior statistics of any feature related to the model parameters can be computed. The probabilistic 
approach is therefore ideal for decision-makers for uncertainty quantification, as it allows probabilistic analysis 
and risk assessment consistent with available information.

The main obstacle to applying the probabilistic methodology in practice is that sampling methods are computa-
tionally very demanding (Hastings, 1970; Mosegaard & Tarantola, 1995). In some cases information about the 
posterior distribution can be used, for example, to construct a proposal distribution similar to the posterior distri-
bution (Khoshkholgh et al., 2022), or in the form of information about the gradient of the posterior distribution 
(Fichtner et al., 2018), which can lead to more efficient sampling algorithms. Such cases are however often based 
on rather simplistic choices of prior models. In general, sampling-based methods typically require sampling or 
evaluation of a prior model, evaluation of the physical forward response(s), and evaluation of a noise model, 
many times.

One approach for reducing the computational requirements is to make use of fast approximate forward modeling. 
This can be related to using simplified 1D forward modeling as opposed to 3D forward models, or by using 
approximate physical models, which leads to modeling errors that should be accounted for (Hansen et al., 2014; 
Köpke et al., 2018; Madsen & Hansen, 2018).

Machine learning algorithms, which are fast to evaluate once trained, have also been used to approximate the 
forward modeling (Bording et al., 2021; Conway et al., 2019; Hansen & Cordua, 2017; Moghadas et al., 2020). 
Unsupervised machine learning methods, for example, Generative adversarial neural networks, have been used 
more generally as a means of representing features in a prior dataset; once trained, these provide an efficient 
means of rapidly generating many prior realizations (Laloy et al., 2018; Mosser et al., 2017, 2020).

Attempts have also been made to use machine learning methods to learn a mapping from data to a model that 
can directly solve the inverse problem. Röth and Tarantola  (1994) were amongst the first to solve an inverse 
problem in this way using a multilayer perceptron neural network and demonstrated an application of inversion 
of reflection seismic data to obtain single estimates of 1D velocity profiles. Recently, several authors have further 
explored this approach for directly solving a geophysical inverse problem, making use of convolutional neural 
networks (Bai et al., 2020; Moghadas, 2020; Puzyrev & Swidinsky, 2021). A drawback of such methods is that, as 
in the deterministic solution of an inverse problem, they estimate only a single model, typically without account-
ing for uncertainty in geophysical data, and do not quantify the uncertainty on the predicted model parameters.

An important step toward finding probabilistic solutions to inverse problems using neural networks was made by 
Devilee et al. (1999) who considered training data sets consisting of realizations from the prior distribution and 
the corresponding forward simulated data with and without noise. They then used neural networks to learn a set of 
statistics about each model parameter, including median and equidistant histogram estimators. Meier et al. (2007) 
extended this work and used a mixture density network (MDN) to estimate the parameters of a Gaussian mixture 
model representing a parametric distribution that approximated the 1D marginal posterior distribution, and 
applied it to the problem of estimating global crustal thickness maps, comparing to results obtained using a 
Monte Carlo based sampling method. Several other applications of MDN to approximate the posterior distribu-
tion, for different geophysical problems, have followed Earp and Curtis (2020); Earp et al. (2020); Shahraeeni 
and Curtis (2011); de Wit et al. (2013).

Zhang and Curtis (2020a) argue that it may be problematic to apply such MDN's for higher dimensional inverse 
problems, and suggest using variational inference (Blei et al., 2017) to estimate the mean and standard devia-
tion of the (non-Gaussian) posterior distribution in an example of a seismic tomographic inverse problem. This 
method has been developed further for variational full waveform inversion and tomographic inversion using 
normalizing flows (Zhang & Curtis, 2020b; Zhao et al., 2022). In all these cases a uniform prior was assumed.

Attempts have also been made to use so-called invertible neural networks to simultaneously estimate both the 
forward and inverse mapping between data and model parameters (Ardizzone et al., 2018). This approach, which 
has recently been applied to geophysical data by Zhang and Curtis  (2021), allows the generation of multiple 
realizations of the posterior distribution, from which properties of the posterior distribution can be estimated, 
although constructing invertible neural networks involves more work than traditional neural networks and 
involves compromises related to the flexibility of the network.
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Here we present a method where the goal is not primarily to estimate the marginal 1D posterior distribution (as in 
works based on Earp et al. [2020]; Meier et al. [2007]; Shahraeeni & Curtis [2011]; de Wit et al. [2013]). Instead, 
we propose and demonstrate a machine learning-based method that provides direct estimates of any desired 
statistical property (continuous or discrete) of the posterior distribution, including any feature or property that 
can be computed from realizations of an, in principle, arbitrarily complex, prior model. This is achieved without 
generating realizations of the posterior distribution.

Following Devilee et al. (1999) and Meier et al. (2007), we construct a finite-size training data set, represent-
ing the information available in the probabilistic formulation of the inverse problem, namely prior informa-
tion and information about the forward model and the noise. This is then used to train a neural network whose 
output parameterizes any desired statistical property of the posterior distribution for which a log-likelihood can 
be computed. These properties can, for example, represent a Gaussian, generalized Gaussian, log-normal, or a 
mixture model distribution, representing continuous model parameters. The output can also refer to the posterior 
probability of defined classes of model features of discrete model parameters. The neural network is designed 
to ensure that the estimated statistical properties of the posterior are similar to the same statistics derived from a 
sample of the posterior. Given a suitable training set the method provides accurate information regarding proper-
ties of the posterior distribution of interest in a given problem at a fraction of the computational cost of traditional 
sampling-based approaches.

The method is first presented for probabilistic inverse problems in general; this can be considered a generaliza-
tion of the ideas proposed by Devilee et al. (1999) and followed up by for example, Meier et al. (2007); Earp 
et al. (2020). Next, we demonstrate the method, applying it to non-linear probabilistic inversion of airborne elec-
tromagnetic data using non-Gaussian prior models of varying complexity. We show the neural network approach 
can be used to accurately estimate statistical properties of the posterior, related to both discrete and continuous 
model parameters, using regression and classification networks. The results are compared to results obtained by 
calculating the same statistical properties from a sample of the posterior obtained using the extended rejection 
sampler (Hansen, 2021).

2.  Method
Let 𝐴𝐴 𝐦𝐦 =

[

𝑚𝑚1, 𝑚𝑚2,… , 𝑚𝑚𝑁𝑁𝑀𝑀

]

 represent NM model parameters that define some properties of a system, such as for 
example, physical properties of a geo-model. m is typically represented on a grid in a Cartesian or spherical coor-
dinate system. For example, m might represent geophysical properties such as resistivity, velocity, or any other 
geological/geophysical/geochemical parameter.

A key issue in geosciences is how to infer information about m from different types of available information, such 
as geological expert knowledge, geophysical data, well log data, etc. This is generally referred to as an inverse 
problem. Tarantola and Valette (1982b) describe the inverse problem as a problem of probabilistic conjunction of 
information. Available information about m is described in the form of probability densities and then combined 
using a conjunction of information to obtain a single probability density that describes the combined information. 
For example, consider a case when a specific type of information about structural properties is quantified by 
ρ(m), and that information from observed electromagnetic (EM) data and well logs is quantified through L(m). 
Then the conjunction of this information is given by the posterior probability distribution σ(m), which, under the 
assumption that the individual types of information have been obtained independently, is given by

𝜎𝜎(𝐦𝐦) ∝ 𝜌𝜌(𝐦𝐦) ⋅ 𝐿𝐿(𝐦𝐦).� (1)

In other words, the conjunction of the independent information is proportional to the product of probability 
densities describing each independent set of information. The likelihood L(m) is a measure of how well the data 
d computed from a specific model matches observed data dobs given to noise with a specified probability distri-
bution. Noise-free data can be computed by evaluating the forward model

𝐝𝐝 = 𝑔𝑔(𝐦𝐦),� (2)

where g is a non-linear operator that maps the model parameters into data. g typically refers to some numerical 
algorithm solving some physical equations (such as Maxwell's equations).

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024703 by T
est, W

iley O
nline L

ibrary on [31/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

HANSEN AND FINLAY

10.1029/2022JB024703

4 of 23

The probabilistic inverse problem is then to infer information about σ(m), which contains the combined informa-
tion of, for example, both structural prior information, through the prior ρ(m), and information from observed 
geophysical data, through L(m).

A general approach (that allows using a non-linear forward model and non-Gaussian prior) for solving proba-
bilistic formulated inverse problems is the use of sampling methods to sample the posterior distribution, Equa-
tion 1 (Geman & Geman, 1984; Green, 1995; Hansen et al., 2013, 2016; Hastings, 1970; Laloy & Vrugt, 2012; 
Metropolis et al., 1953; Mosegaard & Tarantola, 1995). Unfortunately, such sampling methods can be extremely 
computationally demanding, to the point where they cannot be practically applied. They rely on solving the 
forward problem, Equation 2, many (often millions of) times.

Some algorithms make implicit assumptions about the prior model, such as a layered subsurface (Malinverno, 2002; 
Sambridge et  al.,  2013), while others, such as the classical rejection sampler and Metropolis algorithm 
(Hastings, 1970) require that both the prior and likelihood can be evaluated. This typically leads to using rela-
tively simple prior models.

The extended variations of the Metropolis algorithm (Mosegaard & Tarantola, 1995) and the rejection sampler 
(Hansen, 2021; Hansen et al., 2016) do not require that an analytical description of the prior exists, as evaluation 
of the prior is not needed. It is sufficient that an algorithm exists that can generate a realization from the prior. 
This opens up the possibility of using a variety of more complex prior models, based on, for example, geostatis-
tical simulation-based methods (Hansen et al., 2008, 2012).

2.1.  Properties Related to Geophysical Model Parameters

The model parameters m typically refer to physical parameters (e.g., resistivity when dealing with EM data, or 
elastic properties when dealing with seismic data). In practice, decision-makers may be more interested in related 
features, or specific questions, such as “What is the chance of penetrating a specific lithology when drilling‘?” 
(Scales & Snieder, 1997). Such features or occurrences of events will be referred to through n.

In general, the relation between m and n can be complex and is formally described by a joint prior distribution 
ρ(m, n). This can, for example, be the case if n refers to subsurface lithology, and m to a geophysical property. 
This has been widely studied in the inversion of reflection seismic data, where information about geophysical 
properties is often assumed dependent on lithology, such that ρ(m, n) = ρ(n)ρ(m|n) (Bosch et al., 2010; Grana 
& Della Rossa, 2010; Rimstad et al., 2012). A more general formulation of Equation 1, describing information 
on both m and n is then

𝜎𝜎(𝐦𝐦,𝐧𝐧) ∝ 𝜌𝜌(𝐦𝐦,𝐧𝐧) ⋅ 𝐿𝐿(𝐦𝐦,𝐧𝐧),� (3)

given the available joint prior information, the forward model, and the noise. The corresponding forward prob-
lem, generalizing Equation 2, takes the form

𝐝𝐝 = 𝑔𝑔(𝐦𝐦, 𝐧𝐧).� (4)

Sometimes the relation between m and n is so simple that n can be computed from m through a mapping function 
n = h(m). For example, n can refer to the volume of a reservoir (a scalar) obtained from a high dimensional set 
of geophysical model parameters m. Or, n can refer to the cumulative thickness of layers with a resistivity (m) 
above some threshold. Another example is when m refers to the properties of a groundwater model. Then flow 
modeling based on a set of realizations from the posterior, can be used to propagate uncertainties into, for exam-
ple, the arrival time of polluted groundwater (n) at a specific location (Vilhelmsen et al., 2019). Such a focus on 
related features and properties derived from the posterior distribution, rather than the posterior distribution over 
the geophysical parameter σ(m) itself, is discussed by Scheidt et al. (2015).

The sampling algorithms described above can be used to generate a sample from σ(m, n) from which statistical 
analysis of any feature related to σ(m, n) can be computed.

The goal here is however not to generate realizations of the posterior distribution, but instead to compute directly 
statistical properties of the posterior distribution similar to those that would be obtained by computing it directly 
from a sample of the posterior distribution. In other words, given a sample 𝐴𝐴 𝐧̂𝐧 of the posterior, σ(n), the goal is 
to compute parameters Θ that define a desired statistical property of σ(n). For example, if n refers to a discrete 
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parameter with No possible outcomes, then 𝐴𝐴 Θ =
[

𝜃𝜃1,… , 𝜃𝜃𝑁𝑁𝑜𝑜

]

 could refer to the probability of realizing each possi-
ble outcome. If n refers to a continuous parameter, Θ = [θ0, Cθ] could represent the mean and covariance of a 
multivariate Gaussian distribution. Θ = [θ0, θ1, θ2] could represent the mean, variance, and power of a generalized 
1D Gaussian distribution. Θ = [θ0] could represent the rate of a Poisson distribution. Θ = [θ0, θ1] could represent 
a Binomial distribution.

Assume that a sample 𝐴𝐴 𝐧̂𝐧 of σ(n) is available. The optimal values of Θ can be found maximizing the likelihood, LΘ, 
that each realization of the posterior, 𝐴𝐴 𝒏̂𝒏

𝑖𝑖∗ , is a realization of the probability distribution (described by the param-
eter(s) Θ) 𝐴𝐴 𝐴𝐴

(

𝒏̂𝒏
𝑖𝑖∗
|Θ

)

 , given as

𝐿𝐿Θ = 𝑓𝑓 (𝐧̂𝐧|Θ) =

𝑁𝑁𝜎𝜎
∏

𝑖𝑖=1

𝑓𝑓
(

𝒏̂𝒏
𝑖𝑖∗
|Θ

)

,� (5)

where Nσ is the number of independent realizations of 𝐴𝐴 𝐧̂𝐧 . The specific choice of 𝐴𝐴 𝐴𝐴
(

𝒏̂𝒏
𝑖𝑖∗
|Θ

)

 depends on the type of 
statistical parameters to be estimated. Examples will be given below. Maximization of Equation 5 is equivalent to 
minimizing the negative log-likelihood (which we refer to as the loss, JΘ):

𝐽𝐽Θ = −log

(

𝑁𝑁𝜎𝜎
∏

𝑖𝑖=1

𝑓𝑓
(

𝒏̂𝒏
𝑖𝑖∗
|Θ

)

)

� (6)

= −

𝑁𝑁𝜎𝜎
∑

𝑖𝑖=1

log
(

𝑓𝑓
(

𝒏̂𝒏
𝑖𝑖∗
|Θ

))

.� (7)

Minimization of the loss function, Equation 7, can be used to obtain estimates of the parameters Θ representing 
statistical properties of σ(n).

Here a method is proposed that allows direct computation of the parameters, Θ, that describe statistical properties 
of σ(m,n), using a neural network trained on a data set containing a sample of the known information (including 
the prior, forward, noise and modeling errors), without ever generating realizations from σ(m,n). The approach 
follows the basic strategy proposed by Devilee et al. (1999) and consists of two steps: (a) construction of a train-
ing data set and (b) construction and training of a neural network. This is done once. Then, the trained machine 
learning algorithm can be applied, very efficiently to compute desired properties of the posterior distribution, for 
potentially many sets of observed data.

2.2.  A: Construction of Training Data Set

Equation 4 describes the forward problem of computing noise-free data. The forward problem describing simu-
lation of data including noise, dsim, is

𝐝𝐝𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑔𝑔(𝐦𝐦, 𝐧𝐧) + 𝑟𝑟(𝐦𝐦, 𝐧𝐧) = 𝐝𝐝 + 𝑟𝑟(𝐦𝐦, 𝐧𝐧),� (8)

where r(m, n) represent noise. Often geophysical data d depends only directly on the physical parameters, in 
which case g(m, n) = g(m).

Let 𝐴𝐴 𝐌𝐌
∗ =

[

𝐦𝐦
1∗,𝐦𝐦2∗,… ,𝐦𝐦𝑁𝑁𝑇𝑇 ∗

]

 and 𝐴𝐴 𝐍𝐍
∗ =

[

𝐧𝐧
1∗, 𝐧𝐧2∗,… , 𝐧𝐧𝑁𝑁𝑇𝑇 ∗

]

 represent NT realizations of ρ(m, n). Let 
𝐴𝐴 𝐃𝐃

∗ =
[

𝐝𝐝
1∗, 𝐝𝐝2∗,… , 𝐝𝐝𝑁𝑁𝑇𝑇 ∗

]

 represent the corresponding NT noise free data, obtained by evaluating Equation  4. 

Finally let 𝐴𝐴 𝐃𝐃
∗
𝑠𝑠𝑠𝑠𝑠𝑠

=

[

𝐝𝐝
1∗
𝑠𝑠𝑠𝑠𝑠𝑠

, 𝐝𝐝2∗
𝑠𝑠𝑠𝑠𝑠𝑠

,… , 𝐝𝐝
𝑁𝑁𝑇𝑇 ∗

𝑠𝑠𝑠𝑠𝑠𝑠

]

 represent NT corresponding realizations of simulated noisy data, follow-
ing Equation 8. This constitutes a training data set

𝐓𝐓 =
[

𝐍𝐍
∗;𝐌𝐌∗;𝐃𝐃∗;𝐃𝐃∗

𝑠𝑠𝑠𝑠𝑠𝑠

]

,� (9)

that can be obtained by (a) sampling the prior, (b) solving the forward problem, and (c) simulation the noise.
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The sample T in Equation 9 represents the available information (prior, physics of the forward model, noise) in so 
far as it can be represented by a finite sample of size NT. The larger the sample, the more complete the representa-
tion of the available information.

2.3.  B: Construct and Train a Neural Network to Estimate Relevant Statistics of σ(m, n)

The goal is to design and train a neural network to estimate Θ directly from realizations of simulated data includ-
ing noise 𝐴𝐴 𝐝𝐝

𝑖𝑖∗
𝑠𝑠𝑠𝑠𝑠𝑠

 . In principle any machine learning method capable of regression and/or classification, such as 
regression trees and support vector machines (Bishop et al., 1995), can be used to estimate the mapping �∗

��� ↦Θ 
which after training can be used on real data to evaluate dobs ↦ Θ. Here we choose to make use of a fully 
connected artificial neural network. The presented approach builds on earlier work by Devilee et al. (1999), Meier 
et al. (2007), and Röth and Tarantola (1994).

2.3.1.  The Structure of the Neural Network

A neural network can be described in terms of an input layer, an inner part of the neural network (which can 
consist of many layers, referred to as hidden layers), and an output layer.

The input layer here represents the training data, which includes noise, and consists of Nd neurons. The output 
layer has Nθ neurons representing the statistical parameters describing a distribution characterizing the features or 
properties of the posterior distribution that one wishes to predict.

The inner part of the network can be either simple or complex, and it can consist of either (fully) connected layers 
of neurons, convolutional layers, or combinations of these and other types of layers depending on the application. 
Here a fully connected neural network is considered as it has been demonstrated that such a neural network, with 
at least one hidden layer, can approximate any continuous function with arbitrary accuracy, when the number of 
hidden units is large enough (Hornik et al., 1990).

Each neuron has a number of adjustable parameters, the weights wi (one for each neuron in the previous layer), 
and a bias b, as well as an activation function Ψ. All neurons in one layer are fully connected to all neurons in the 
following layer. The input for a neuron (except for the first layer where the input 𝐴𝐴 𝐝𝐝

∗
𝑠𝑠𝑠𝑠𝑠𝑠

 ) is the output of the neurons 
in the previous layer, and the output y of a neuron in response to inputs xi, is given by

𝑦𝑦 = Ψ

(

∑

𝑖𝑖

(𝑤𝑤𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖) + 𝑏𝑏

)

.� (10)

For a specific network, with specified values for the weights and biases, one can compute the output, given some 
input, simply by evaluating the neurons layer by layer, starting from the input layer. See, for example, Bishop 
et al. (1995) for more details.

2.3.2.  The Loss Function

When a neural network is trained using the training data set, its free parameters (the weight and bias of each node 
for a fully connected network) are adjusted to minimize a specific loss function. In the present case, the training 
data set consists of (when properties of σ(n) are of interest) 𝐴𝐴 𝐓𝐓 =

[

𝐍𝐍
∗;𝐃𝐃∗

𝑠𝑠𝑠𝑠𝑠𝑠

]

 . The goal is to estimate 𝐴𝐴 𝐝𝐝
∗
𝑠𝑠𝑠𝑠𝑠𝑠

↦Θ rather 
than simply 𝐴𝐴 𝐝𝐝

∗
𝑠𝑠𝑠𝑠𝑠𝑠

↦𝐧𝐧 .

This is achieved by constructing a loss function with unknown parameters Θ that describe statistical properties 
of the desired probability distribution, Equation 5, and whose parameters can be found by minimizing the loss 
function, Equation 7. The key here is to choose a loss function that is the negative log-likelihood of the property 
of interest as described by the parameters Θ one wishes to estimate.

At each iteration of training the neural network, the loss is computed by applying the following steps for each 
dataset 𝐴𝐴 𝐴𝐴 𝑖𝑖 =

[

𝐧𝐧
𝑖𝑖∗, 𝐝𝐝𝑖𝑖∗

𝑠𝑠𝑠𝑠𝑠𝑠

]

 in the training data set T:

1.	 �Evaluate the network using 𝐴𝐴 𝐝𝐝
𝑖𝑖∗
𝑠𝑠𝑠𝑠𝑠𝑠

 as input. This provides as output an estimate 𝐴𝐴 Θ̂𝑖𝑖

2.	 �Evaluate the corresponding loss, 𝐴𝐴 𝐴𝐴𝑖𝑖 , as 𝐴𝐴 𝐴𝐴𝑖𝑖 = −log

(

𝑓𝑓

(

𝐧𝐧
𝑖𝑖∗
|Θ̂𝑖𝑖

))

 .

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024703 by T
est, W

iley O
nline L

ibrary on [31/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

HANSEN AND FINLAY

10.1029/2022JB024703

7 of 23

The total loss is then given by

𝐉𝐉 =

𝑁𝑁𝑇𝑇
∑

𝑖𝑖=1

𝐽𝐽
𝑖𝑖
.� (11)

By construction, as 𝐴𝐴 𝐝𝐝
𝑖𝑖∗
𝑠𝑠𝑠𝑠𝑠𝑠

 has been computed from n i* using Equation 8, n i* can be considered a realization of σ(n), 
given the data 𝐴𝐴 𝐝𝐝

𝑖𝑖∗
𝑠𝑠𝑠𝑠𝑠𝑠

 , and therefore, minimizing the loss in Equation 11 leads to estimates of statistical parameters 
Θ that describe σ(n), in the same manner as would minimizing Equation 7 given a sample, 𝐴𝐴 𝐧̂𝐧 , from σ(n). The 
difference is that the proposed method achieves this without the need to first realize the sample 𝐴𝐴 𝐧̂𝐧 .

Minimizing the loss function thus maximizes the probability that each n i* can be seen as a realization of the 
probability distribution whose parameters Θi are the result of evaluating the neural network 𝐴𝐴 𝐝𝐝

𝑖𝑖∗
𝑠𝑠𝑠𝑠𝑠𝑠

↦Θ𝑖𝑖 . Note that it 
is crucial that data with noise 𝐴𝐴 𝐝𝐝

𝑖𝑖∗
𝑠𝑠𝑠𝑠𝑠𝑠

 is used for training, as opposed to using noise-free data d i*, as this would imply 
ignoring noise completely, which would lead to overfitting.

In general, n (and/or m) can refer to a continuous parameter (such as velocity, resistivity, temperature, or related 
properties) or a discrete parameter (such as lithology type and event type). Continuous model parameters lead to 
a regression-type problem, whereas discrete model parameters lead to a classification problem.

2.3.2.1.  Continuous Model Parameters - Regression

We first consider the case when n represents continuous parameters. Say we wish to estimate the mean and covar-
iance, 𝐴𝐴 Θ̂0 and 𝐴𝐴 𝐂̂𝐂𝜃𝜃 , of the posterior distribution σ(n) given a set of observed data dobs. Assume a neural network 

exists that outputs a set of parameters describing 𝐴𝐴 Θ =

[

Θ̂0

𝑖𝑖

, 𝐂̂𝐂𝑖𝑖

𝜃𝜃

]

 , given the input 𝐴𝐴 𝐝𝐝
𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠
 . The likelihood that a set of 

parameters from the training dataset n i* is a realization from the multivariate Gaussian distribution 𝐴𝐴 

(

Θ̂0

𝑖𝑖

, 𝐂̂𝐂𝑖𝑖

𝜃𝜃

)

 
as obtained from evaluating the neural network using 𝐴𝐴 𝐝𝐝

𝑖𝑖∗
𝑠𝑠𝑠𝑠𝑠𝑠

 as input, is given by

�
(

��∗
|Θ̂0

�
, �̂�

�

)

= ��exp
(

−0.5
(

��∗ − Θ̂0
�
)�

�̂�
�

−1 (

��∗ − Θ̂0
�)
)

,� (12)

where 𝐴𝐴 𝐴𝐴𝐶𝐶 =

(

(2𝜋𝜋)
𝑁𝑁𝑑𝑑
|𝐂̂𝐂

𝑖𝑖

𝜃𝜃
|

)−
1

2 is a normalization factor. The corresponding loss function 𝐴𝐴 𝐴𝐴𝑖𝑖 is

𝐽𝐽
𝑖𝑖 = −log

(

𝑓𝑓

(

𝐧𝐧
𝑖𝑖∗
|Θ̂0

𝑖𝑖

, 𝐂̂𝐂𝑖𝑖

𝜃𝜃

))

� (13)

= 0.5

(

𝐧𝐧
𝑖𝑖∗ − ̂Θ0

𝑖𝑖

)𝑇𝑇

𝐂̂𝐂
𝑖𝑖

𝜃𝜃

−1
(

𝐧𝐧
𝑖𝑖∗ − Θ̂0

𝑖𝑖
)

− log (𝑘𝑘𝐶𝐶 )� (14)

The total loss is then given by Equation 11. Any neural network that minimizes this loss function, will lead to 

an estimate of the parameters of interest, here 𝐴𝐴 𝚯𝚯 =

[

Θ̂0, 𝐂̂𝐂𝜃𝜃

]

 , that are computed directly without ever computing 
realizations of σ(n).

To represent the posterior mean and full covariance, given Nm model parameters, an output layer of 𝐴𝐴 𝐴𝐴Θ = 𝑁𝑁𝑚𝑚 +𝑁𝑁2
𝑚𝑚 

nodes must be used. If only the posterior mean and variance are estimated, an output layer of NΘ = Nm + Nm nodes 
is needed. If only the posterior mean is of interest an output layer of NΘ = Nm nodes is needed and minimizing 
Equation 14 is then similar to minimizing the widely used mean squared error loss function (Bishop et al., 1995), 
as utilized for example, in for example, Röth and Tarantola (1994). Recall, that the above scheme does not impose 
any assumptions on either the prior or the posterior distribution which may be complex. The estimated mean  and 
covariance are simply statistical parameters of the posterior distribution, that may or may not be useful for a 
specific use case. The quality of the obtained estimate naturally depends on the complexity of the machine learn-
ing model used, and the size of the training data set, which will be considered in more detail in the application 
presented below.

Other statistical parameters of the posterior can be estimated by minimizing the appropriate negative log-likelihood 
function for the considered probability distribution. For example, a 1D generalized probability distribution is 
defined by three parameters Θ = [θ1, θ2, θ3], and its probability distribution given by Tarantola (2005)

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024703 by T
est, W

iley O
nline L

ibrary on [31/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

HANSEN AND FINLAY

10.1029/2022JB024703

8 of 23

𝑓𝑓
(

𝑛𝑛
𝑖𝑖
|Θ

)

=
1

2𝜃𝜃2Γ (1 + 1∕𝜃𝜃3)
exp

(

−

(

|𝑛𝑛𝑖𝑖 − 𝜃𝜃1|

𝜃𝜃2

)𝜃𝜃3

)

.� (15)

A 1D Gaussian mixture model based on a mixture of Nc 1D Gaussian distribution, as considered by for example, 
Meier et al. (2007), is defined by 𝐴𝐴 Θ = [𝐭𝐭1, 𝐭𝐭2, 𝐭𝐭3] =

[

𝑡𝑡1
1
,… , 𝑡𝑡𝑁𝑁𝑁𝑁

1
, 𝑡𝑡1

2
,… , 𝑡𝑡𝑁𝑁𝑁𝑁

2
, 𝑡𝑡1

3
,… , 𝑡𝑡𝑁𝑁𝑁𝑁

3
,
]

 , where t1 refers to the mean, 
t2 refers to the standard deviation of Nc Gaussian distribution, each with weight t3, and its probability distribution 
given by

𝑓𝑓
(

𝑛𝑛
𝑖𝑖
|𝐭𝐭1, 𝐭𝐭2, 𝐭𝐭3

)

=

𝑁𝑁𝑁𝑁
∑

𝑖𝑖=1

𝑡𝑡
𝑖𝑖

3

(

𝑡𝑡
𝑖𝑖

2

√

2𝜋𝜋

)−1

exp

(

−0.5

(

𝑛𝑛𝑖𝑖 − 𝑡𝑡𝑖𝑖
1

𝑡𝑡𝑖𝑖
2

)2
)

.� (16)

The corresponding negative log-likelihood for Equations 15 and 16 can trivially be obtained and used as a loss 
function in a neural network to estimate Θ. In principle, any statistical parameter with a corresponding nega-
tive log-likelihood that can be computed, and used as a loss function, can be estimated using the proposed 
methodology.

2.3.2.2.  Discrete Model Parameters - Classification

Say ni represents a discrete parameter with No possible outcomes (classes). One's aim is then to estimate the 
posterior probability of each of the No classes given some data dobs.

Let 𝐴𝐴 𝜽𝜽
∗
𝑖𝑖 =

[

𝑝𝑝𝑖𝑖
1∗, 𝑝𝑝𝑖𝑖

2∗,… , 𝑝𝑝𝑖𝑖
𝑁𝑁𝑜𝑜∗

]

 represent the true probabilities of 𝐴𝐴 𝐴𝐴∗
𝑖𝑖
 belonging to a specific class. In practice, the 

true probability of one (the correct) class will be one, and the others zero. Further 𝐴𝐴 𝜽𝜽𝑖𝑖 =
[

𝑝𝑝𝑖𝑖
1
, 𝑝𝑝𝑖𝑖

2
,… , 𝑝𝑝𝑖𝑖

𝑁𝑁𝑜𝑜
]

 repre-
sent the corresponding predictions by the neural network of the probabilities of each class for a specific model 
parameter, ni.

The likelihood of observing 𝐴𝐴 𝜽𝜽𝑖𝑖 given 𝐴𝐴 𝜽̂𝜽𝑖𝑖 is then

𝑓𝑓
(

𝜽𝜽𝑖𝑖|𝜽̂𝜽𝑖𝑖

)

=

𝑁𝑁𝑜𝑜
∏

𝑗𝑗=1

(

𝑝𝑝𝑖𝑖
𝑗𝑗
)𝑝𝑝𝑖𝑖

𝑗𝑗∗

.� (17)

The corresponding loss function 𝐴𝐴 𝐴𝐴𝑖𝑖 is then

𝐽𝐽
𝑖𝑖 = −log

(

𝑓𝑓
(

𝜽𝜽𝒊𝒊|𝜽𝜽𝑖𝑖

))

= −

𝑁𝑁𝑜𝑜
∑

𝑗𝑗=1

𝑝𝑝
𝑗𝑗∗

𝑖𝑖
log

(

𝑝̂𝑝
𝑗𝑗

𝑖𝑖

)

.� (18)

The choice of class probabilities 𝐴𝐴 𝜽𝜽𝑖𝑖 that maximizes Equation  17 can be found by minimizing the negative 
log-likelihood given by the loss function, Equation 18, which is equivalent to the categorical cross-entropy between 
the two probability distributions (Bishop et al., 1995). Usually, the softmax activation is used for multi-class clas-
sification problems (while the sigmoid activation function is used for binary classification problems), as it forces 
all probabilities to be in the range 0–1, and ensures that 𝐴𝐴

∑𝑁𝑁𝑜𝑜

𝑗𝑗=1
𝑝̂𝑝
𝑗𝑗

𝑖𝑖
= 1 , such that the output parameters can be inter-

preted as a probability. A neural network that estimates the mapping 𝐴𝐴 𝐝𝐝
𝑖𝑖

𝑠𝑠𝑠𝑠𝑠𝑠
↦𝜽̂𝜽

𝑖𝑖

 by minimizing Equation 18, using 
the softmax activation function in the output layer, therefore locates the maximum-likelihood of Equation 17, 
which directly estimates 𝐴𝐴 𝐴𝐴

(

𝑝𝑝∗
𝑖𝑖

)

 , that is, the posterior class probability for a discrete model parameter.

To summarize, our proposed method involves first constructing a training data set (Equation 9) that represents 
(within the limits of the size of the training data set used) the known information (the prior, the forward, and the 
noise model), and specifically contains prior knowledge regarding any feature n, that may be directly or indi-
rectly related to the model parameters m, about which one wishes to infer information. A neural network is then 
designed and trained by minimizing a specific loss function, that expresses the log-likelihood of the parameters Θ 
describing the probability distribution of desired features n that may be either continuous or discrete.
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3.  Application to Airborne EM Data From Morrill, Nebraska
The methodology described above is applied to the inversion of airborne electromagnetic (AEM) data. This 
inverse problem has been widely studied by deterministic linearized least-squares methods using both a 1D and 
3D forward model (Auken & Christiansen, 2004; Auken et al., 2014; Christensen, 2002; Cox et al., 2010; Grayver 
et al., 2013; Viezzoli et al., 2008).

The full non-linear 1D inverse problem has also been addressed using Markov chain Monte Carlo (McMC) 
sampling methods, based on, for example, the reversible-jump sampling method relying on a prior model represent-
ing a 1D layered subsurface (Brodie & Sambridge, 2012; Minsley, 2011; B. J. Minsley, Foks, & Bedrosian, 2021). 
Hansen and Minsley  (2019) proposed the use of the extended Metropolis algorithm, also an McMC method, 
that allows the use of any prior model that can be sampled. The 1D nonlinear inverse EM problem leads to a 
non-trivial sampling problem, due to the existence of model equivalences (significantly different models lead to 
the same forward response). A sufficient sampling of the 1D posterior distribution of resistivity values, to obtain 
a limited set of independent realizations, may require hundreds of thousands of McMC iterations, and hence 
forward model evaluations. For a single sounding this may take at least 10 min per sounding, requiring access to 
supercomputers for the application of real-world data sets (Foks & Minsley, 2020). Hansen (2021) proposed 1D 
probabilistic inversion based on the extended rejection sampler (using lookup tables, similar to [N*, M*, D*]) 
that relies on the construction of a large sample for the prior along with the forward responses (generated once). 
This is then used to generate independent realizations of the posterior distribution numerically more efficiently 
than is possible using Markov Chain-based algorithms, and at the same time avoids issues related to model equiv-
alences. This sampling approach is used for the comparison below.

The size of airborne EM surveys is becoming larger, so the use of any of the inversion methods discussed above 
will lead to considerable computational demands. Currently, two major airborne EM surveys are being carried 
out. The AusAEM20 project, by Geoscience Australia, is expected to collect around 65,000 flight-line-kilometers 
of data, leading to many hundreds of thousands of EM measurements (Howard, 2020). USGS has collected more 
than 43,000 flight-line-kilometer data in the Mississippi Alluvial Plain, and another 25,000 flight-line-kilometer 
is planned for 2021, leading to significantly more than 1,000,000 data points to be inverted in the Mississippi 
Alluvial Plain (Minsley, Rigby, et al., 2021).

As an example, we consider the inversion of airborne electromagnetic (AEM) data from Morrill, Nebraska 
(Abraham et al., 2012; Smith et al., 2010). We use data at 451 locations, at every 50m along a 22.5 km West-East 
profile, as also considered in Minsley (2011). Each observed data set consists of 13 measurements (in-phase and 
quadrature measurements from six pairs of transmitter and receiver coils, as well the measurement altitude).

Three different types of prior models will be defined, that represent different information about the subsurface 
resistivities (m) and related (both discrete and continuous) properties n at Morrill. For each of the three prior 
models considered, a unique posterior probability distribution exists. Various properties of the posterior distri-
bution will be computed using the proposed machine learning method and compared to results obtained from a 
finite sample of the posterior distributions obtained using the extended rejection sampler with a lookup table of 
size NT = 2 ⋅ 10 6.

3.1.  A Priori Models and Noise

3.1.1.  Parameterization

In this example, the subsurface is parameterized into 125 layers of dz = 1 m thickness. Prior models based on up 
to four sets of parameters, ρ(m, n1, n2, n3) are considered.

𝐴𝐴 𝐦𝐦 =
[

𝑚𝑚1, 𝑚𝑚2,… , 𝑚𝑚𝑁𝑁𝑀𝑀

]

 represents the resistivity of each of the 125 layers.

n1 represents the existence of a sharp boundary between two neighboring layers (𝐴𝐴 𝐴𝐴1𝑖𝑖 = 0 when there is no bound-
ary and 𝐴𝐴 𝐴𝐴1𝑖𝑖 = 1 in case of a boundary). A sharp boundary is defined when two neighboring resistivity values differ 
by more than 20%. n1 refers to 124 discrete parameters and can be directly computed from m.

n2 represents the cumulative thickness of resistivity values above 225 Ω. It can be directly computed from m 
using
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𝐧𝐧2 =

𝑁𝑁𝑀𝑀
∑

𝑖𝑖

𝑑𝑑𝑑𝑑 ∗ 𝐼𝐼 (𝑚𝑚𝑖𝑖) ,�

where I(mi) = 1 when mi > 225 Ωm, and I(mi) = 0 when mi ≤ 225 Ωm. n2 refers to a single continuous parameter.

n3 represents a category (’1’, ’2’, and ’3’, representing three distinct lithologies) in each layer. n3 cannot be 
computed from m, but n3 and m are linked through a conditional prior distribution ρ(m|n3) (see example below). 
n3 refers to 125 discrete parameters with three possible outcomes.

For brevity, all model parameters combined will be referred to as p = [m, n1, n2, n3]. To illustrate the potential 
of the method three different non-Gaussian prior models are considered that vary in complexity and information 
content.

3.1.2.  Prior Information

ρA(p) = ρA(m, n1, n2), a uniform prior model. ρA(p) represents a choice of independence between model param-
eters, ρA(mi, mj)  =  ρA(mi)ρA(mi) ∀(i, j). The resistivity of each resistivity model parameter is assumed to be 
log-uniform distributed in the range 𝐴𝐴  [2, 280] Ω. This is the least informative prior model considered. Eleven 
independent realizations of ρA(m, n1) are shown in Figure 1a.

ρB(p) = ρB(m, n1, n2), a discrete layered model. ρB(p) represents a layered subsurface consisting of 1–8 layers 
(uniformly distributed), each with a constant resistivity. The resistivity in a specific layer is assumed to be 
log-uniform distributed in the range 𝐴𝐴 𝑙𝑙[2, 2800] Ω.

A realization p* of ρB(p) is generated by first choosing the number of layers as a random number, Nl, between 
1 and 8. Then Nl − 1 layer interfaces are randomly selected from a uniform distribution of 𝐴𝐴  [0, 125] m. Then 
the resistivity within each layer is realized from a uniform distribution 𝐴𝐴 ↕[2, 280] Ω. This type of prior model is 
similar to the transdimensional prior considered by Minsley (2011). Eleven independent realizations of ρB(m, n1) 
are shown in Figure 1c.

ρC(p), a trimodal mixture Gaussian model. ρC(p) represents a subsurface with three possible lithologies (’1’, 
’2’, and ’3’) each with a distinct resistivity distribution. See the discussion about the prior geological knowledge 
in Morrill in Abraham et al. (2012) and Hansen and Minsley (2019).

To sample ρC(p) = ρC(m, n1, n2, n3), first a realization of ρC(n3) is generated as 𝐴𝐴 𝐴𝐴𝐶𝐶 (𝐧𝐧𝟑𝟑

∗) , which represents an 
example of the distribution of the lithologies. This is achieved by generating a realization of a multivariate normal 
distribution with a Gaussian-type covariance model with a range of 30 m, followed by a simple truncation to 
obtain 40% of lithology A, 40% of lithology B, and 20% of lithology C. Then a realization of the resistivity m* 
is generated, conditional to the lithology type from 𝐴𝐴 𝐴𝐴𝐶𝐶

(

𝐦𝐦|𝐧𝐧
∗

3

)

 . The resistivity, within each lithology, is generated 
as a realization of a multivariate normal distribution in log10-resistivity space with a range of 30 m, a specific 
mean, m0 and standard deviation, mstd. For lithology ’1’, m0 = 1.1 and mstd = 0.14. For lithology ’2’, m0 = 2 and 
mstd = 0.2. For lithology ’3’, m0 = 2.75 and mstd = 0.25. Finally, 𝐴𝐴 𝐧𝐧

∗

𝟏𝟏
 and 𝐴𝐴 𝐧𝐧𝟐𝟐

∗ are computed from m*. In this way a 
realization 𝐴𝐴 𝐩𝐩

∗ = [𝐦𝐦∗, 𝐧𝐧𝟏𝟏

∗, 𝐧𝐧𝟐𝟐

∗, 𝐧𝐧𝟑𝟑

∗] of ρC(p) is generated. Eleven independent realizations of ρC(p) are shown in 
Figure 1e.

ρC(p) is designed to reflect available information related to the subsurface at Morrill (Abraham et  al.,  2012; 
Hansen & Minsley, 2019). ρA(p) and ρB(p) are considered here to investigate how the proposed methodology 
reacts to a uniform (maximum entropy) prior such as ρA(p), and a simple (low entropy) prior as ρB(p).

3.1.3.  Noise

The noise of the EM data is assumed to be independent uncorrelated zero-mean Gaussian noise, with a standard 
deviation of 5 ppm (parts per million) plus 5% noise relative to the noise-free data value, which means the noise 
depends implicitly on the model. This is the same noise model as considered in previous works on the EM data 
from Morrill ( Hansen & Minsley, 2019; Hansen, 2021; Minsley, 2011).
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3.2.  Sampling of the Posterior Distribution

For reference, the extended rejection sampler, with a lookup table of size NT = 5 ⋅ 10 6, is used to sample the poste-
rior distribution, as detailed in Hansen (2021). Eleven independent realizations of the three posterior distributions 
(σA(p), σB(p), and σC(p)) are shown in Figures 1b, 1d and 1f.

The goal of the proposed machine learning approach is to directly compute statistical properties of the posterior 
distribution similar to the same statistical properties obtained from a sample of the posterior using sampling, such 
as shown in Figures 1b, 1d and 1f.

3.3.  Neural Network Design

Two fully connected neural networks are designed to allow the characterization of the 1D marginal posterior 
distribution of continuous and discrete parameters. The input layer, in both cases, consists of the observed data 
dobs, or simulated data with noise. For this specific case, it consists of 13 neurons. Twelve neurons refer to the 
12  data measurements, and 1 neuron to the altitude measured during the recording of data.

Figure 1.  First 11 models from the training data, T, for three prior models (a) ρa(m, n1), (c) ρb(m, n1),and (e) ρc(m, n1, n2), as well as 11 independent realizations from 
the posterior distribution obtained for the data at x = 15 km for (b) σb(m, n1), (d) σd(m, n1),and (f) σf(m, n1, n2). Thin horizontal black lines indicate the existence of a 
layer interface (n1). The thick line indicates variation in resistivity (m). In (e) and (f) the colors of the thick line represent lithology A (red), B(blue), and C (green) when 
defined.

 21699356, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024703 by T
est, W

iley O
nline L

ibrary on [31/10/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

HANSEN AND FINLAY

10.1029/2022JB024703

12 of 23

The inner network is designed using either four or eight hidden layers depending on the application, each with 40 
neurons using the rectified linear activation function (Bishop et al., 1995). This inner part of the network needs 
to be complex enough that the desired mapping can be represented, but simple enough to avoid overfitting, as 
discussed also by Meier et al. (2007). Network design is highly problem-dependent, and for the present prob-
lem, we found this network design provides results on par with, and in some cases better than, sampling-based 
approaches, while at the same time being relatively easy to optimize.

As discussed, the choice of the loss function, and to some extent the activation function, are set by the specific 
property of the posterior distribution that will be estimated. This leads to two specific types of output layers for 
regression and classification-type problems.

3.3.1.  Regression Type Neural Network

The first neural network type is designed to estimate parameters θ of a probability distribution describing the 1D 
marginal posterior distribution of continuous parameters (such as m and n2). If Nθ is the number of parameters 
needed to describe a specific 1D distribution, then in total Nout = NθNm neurons are needed in the output layer if 
the target is properties of σ(m), and Nout = Nθ if the target is σ(n2).

3.3.2.  Classification Type Neural Network

The second neural network type is designed to estimate the posterior probability of possible classes for the 
discrete type model parameters n1 and n3, that is, of σ(n1) σ(n3).

If the goal is to estimate the 1D marginal distribution of a discrete parameter with Ncat possible outcomes, this can 
be achieved by selecting an output layer with Nout = Nm when Ncat = 2 (using a sigmoid activation function), and 
Nout = NcatNm when Ncat > 2 (using the softmax activation function). As discussed above, using the cross-entropy 
loss function, Equation 18, will lead to direct estimation of the 1D posterior marginal probabilities in this case.

3.4.  Network Training

Using the prior models, the nonlinear forward model, and the noise model, a training data set of size NT = 5 ⋅ 10 6 
is constructed (one for each type of prior model) and used for training. Both networks are trained using 67% of 
the training data set, while 33% is reserved for validation. In both cases, the loss function is minimized using 
the Adam optimizer (Kingma & Ba, 2014) using a learning rate of 0.001, for a maximum of 2000 epochs. Early 
stopping is utilized which stops the training if the loss function evaluated on the validation data does not decrease 
for 50 epochs. This is done to avoid over-fitting, where the loss on the training data will decrease, but where 
the loss on the validation data increases. TensorFlow with Keras and TensorFlow-probability have been used to 
implement and train the neural networks (Abadi et al., 2015; Chollet, 2015; Dillon et al., 2017).

The two considered networks, and the training of the networks, only differ concerning the definition of the output 
layer (the number of nodes and activation function), the choice of the loss function, and the chosen number of 
hidden layers.

3.5.  Estimation of Properties of σ(m)

First, properties related to the posterior distribution of resistivity, σ(m), are considered.

3.5.1.  Estimation of Mean and Standard Deviation of σ(m)

A neural network is set up and trained to estimate the pointwise mean and standard deviation of σ(m), using eight 
hidden layers, by minimizing the loss function in Equation 14.

Figures 2a–2e show the pointwise mean of the posterior distribution σC(m) obtained using the machine learn-
ing approach with a training data set of size NT = [10 3, 10 4, 10 5, 10 6, 5 ⋅ 10 6], compared to the same statistics 
computed from a sample of the posterior obtained using the sampling method, Figure 2f. The corresponding 
standard deviation is shown in Figures 2g–2l.

It is clear from Figures 2a and 2g that using NT = 10 3 provides very poor results, as compared to the results 
obtained using sampling, Figures 2e and 2j. But even using NT = 10 4 leads to results close to the sampling-based 
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results. The changes in predicted mean and standard deviation become smaller as NT increases, with only very 
subtle changes between the use of NT = 10 6 and NT = 5 ⋅ 10 6.

One notable difference when comparing Figures 2e and 2k (NT = 5 ⋅ 10 6) and Figures 2f and 2l (sampling), is that 
sampling results in more small scale variability in the estimated parameters, as opposed to the more smooth result 
obtained using machine learning. The reason is simply that the sampling-based approach is based on inferring 
the statistics from a finite-sized sample of the posterior, whereas in the machine learning approach these statistics 
are estimated directly.

Figure 2.  Pointwise mean (a)–(f) and standard deviation (g–l) obtained from σC(m) obtained using machine learning based on a training data set of size 10 3 (a),(g), 10 4 
(b),(h), 10 5 (c),(i), 10 6 (d),(j), 5 ⋅ 10 6 (e),(k), and using the extended rejection sampler (f,l).
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Figure 3 shows a comparison between the posterior mean and standard deviation obtained using the sampling 
approach and using the machine learning approach (NT  =  5  ⋅  10 6), for σA(m) (Figures  3a–3d) and σB(m) 
(Figures 3e–3h), respectively.

ρA(m) refers to the least informed prior model, and hence one should expect the least resolution in the correspond-
ing posterior distribution. This is what can be seen in the results from both the machine learning and the sampling 
approach, Figures 3a–3d, where only the resistivities at the top of the model are resolved.

While ρB(m) is somewhat simpler than ρC(m), the mean of the corresponding posterior distribution is rather simi-
lar, Figures 2e and 3f, with the largest difference related to the posterior standard deviation, Figures 2k and 3h.

A key point from Figures 2 and 3 is that the use of the machine learning-based approach seems to provide results 
at least on par with the results obtained using sampling when the goal is to estimate the mean and standard devi-
ation of the (non-Gaussian) posterior distribution. This is the case using both informed and uninformed prior 
models.

3.5.1.1.  Computational Efficiency

Figure 4 shows the training and validation loss, and computation time needed to train the neural networks for 
the results presented in Figure 2, obtained using a workstation with an Intel Core(TM) i7-8700K CPU, Nvidia 
RTX 3090 GPU, and 64 Gb RAM was used. The training time increases with the size of the training data set, 
NT. Both training and validation loss is reduced when NT increases. It is also clear that the relative difference in 
loss decreases when comparing the use of NT = 10 5 to NT = 5 ⋅ 10 6, to when comparing the use of NT = 10 3 to 
NT = 10 5. Hence, using NT > 10 5 leads to a substantially longer training time, but only to a minor loss reduction. 

Figure 3.  Pointwise mean (a),(b) and standard deviation (c),(d) obtained from σA(m) obtained using the extended rejection sampler (a),(c) and machine learning (b),(d) 
based on a training data set of size NT = 5 ⋅ 10 6. (e)-(h) As (a)-(d) but for σB(m).
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In addition, and as expected, when NT increases the validation loss seems to match the training loss increasingly 
well, which indicates that there is no problem with overfitting.

Once set up and trained, the prediction of the network is very fast. For all the networks presented above, the 
prediction time for all 451 data locations was less than 5 ms. This means that more than 100,000 soundings can 
be analyzed per second.

3.5.2.  Estimation of Multiple 1D Properties of σ(mi)

As described above, any parameter of a probability distribution for which a loss function can be described through 
Equation 7 can be estimated using the machine learning method. To demonstrate this, four independent networks 
have been trained to estimate properties (Θ) of the 1D marginal posterior distribution σ(mi) given by (a) a normal 
distribution (Equation 12, as in Figure 2), (b) a generalized normal distribution (Equation 15), (c) a mixture distri-
bution based on two Gaussian distributions (Equation 16), and (d) a mixture distribution based on three Gaussian 
distributions (Equation 16). The loss functions used are the negative log-likelihood of the probability distribution 
in Equations 12, 15 and 16, respectively.

The number of parameters to estimate for the four cases, and hence neurons in the output layer, are Nθ = [2∗Nm, 
3∗Nm, 2∗Nm∗Nc, 3∗Nm∗Nc] = [250, 375, 750, 1125], where Nc is the number of distributions in the mixture model.

Figure 5a shows the posterior 1D marginal distribution of resistivity values obtained using sampling, based on 
a finite set of realizations, obtained at x = 15 km. One can clearly identify a bimodal to trimodal distribution at 
depth representing the three possible lithologies from the prior model ρC(m) with different resistivity values.

Figures 5b–5e show the probability distributions representing the estimated statistical properties of the 4 consid-
ered distributions. These distributions do not represent assumptions about the posterior distribution (which can 
be arbitrarily complex) but reflect example statistical properties that one might calculate from a sample of the 
posterior.

If the goal is to compute a representation of the 1D posterior marginal distribution, as considered by Meier 
et al. (2007); Shahraeeni & Curtis (2011), then care should be taken to use a parameterization for the chosen 
1D distribution complex enough to describe the variability of the posterior. From Figure 5 it is evident that only 
in case using the mixture model with 3 Gaussian distributions, does the estimated marginal probability density 
represents the actual 1D marginal posterior distribution well.

The statistical properties of the posterior distribution which is relevant to compute for a specific inverse problem, 
are naturally problem-dependent. This example nonetheless demonstrates that the machine learning methodology 
is capable of estimating parameters of different types of probability distributions, for which a probability density, 
and hence the corresponding loss function, can be computed.

Figure 4.  Training (thick lines) and validation (thin lines) loss as a function of training time for Nt = [10 3, 10 4, 10 5, 10 6, 
5 ⋅ 10 6].
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3.6.  Estimation of Properties of σ(n1)

σ(n1) refers to the existence (or lack of) of a layer interface, which can be formulated as a binary classification 
problem. Therefore, a classification-type network is constructed using a sigmoid activation function, and Equa-
tion 18 as the loss function. 4 hidden layers are used.

Figures 6a and 6c refer to the pointwise posterior probability of locating a layer interface, as computed from a 
sample from the posterior distribution of σB(n1) and σC(n1). The corresponding results obtained as the output of 
a trained neural network based on a training data set of size NT = 5 ⋅ 10 6 are shown in Figures 6b and 6d. The 
prior probability of a layer interface is around 0.1, and hence a posterior probability of 0.25 is indicative of a 
layer interface.

The results using sampling and the machine learning approach are in both cases very similar with a bit more vari-
ability in the results obtained using sampling, due to the use of a finite-sized sample of the posterior distribution.

3.7.  Estimation of Properties of σ(n2)

We consider the simpler problem of inferring information about a single continuous parameter, n2, representing 
the cumulative thickness of layers with a resistivity above 225 Ωm. The same neural network as considered above 
to estimate properties related to m is used here, except that here only 4 hidden layers are used.

Figure 7 shows the mean of σC(n2) (black line), as well as the probability distribution reflecting the mean and 
standard deviation estimated using the machine learning approach for NT  =  [10 3, 10 4, 10 5, 10 6, 5  ⋅  10 6] in 
Figures 7a–7e. The mean computed using the machine learning approach compares well to the mean obtained 
using sampling methods for NT ≥ 10 5.

3.8.  Estimation of Properties of σ(n3)

Finally, we consider the discrete parameter n3 which refers to lithology type, which can be of type ’1’, ’2’, and 
’3’. The outcome for each model parameter is then a multi-class (three classes) classification problem. Therefore, 
a classification-type network is constructed using a softmax activation function, and the loss function in Equa-
tion 18 fourhidden layers are used.

Figures 8a, 8c and 8e show the posterior probability for each of the three classes obtained using sampling, while 
Figures 8b, 8d and 8f show the corresponding results obtained by evaluating the trained network. Except for some 
small-scale variations in the sampling results, due to using finite sample size, the obtained posterior statistics are 
strikingly similar.

Figure 5.  1D posterior probability density with depth using data at X = 6.2 km (a) obtained using sampling followed by computation of the marginal posterior 
probability, and constructed from statistical properties inferred for a (b) normal distribution, (c) generalized normal distribution, (d-e) a mixture model based on 2 and 3 
1D normal distributions. Obtained using NT = [5 ⋅ 10 6].
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4.  Discussion
A typical application of probabilistic inversion is to use some sampling method to generate a large sample from 
the posterior distribution. Then some appropriate statistic, computed from the sample of the posterior distribu-
tion, is chosen and visualized.

The theory presented above proposes how one can construct a neural network that can directly estimate any statis-
tical property of the posterior distribution (for discrete or continuous parameters) for which a probability distri-
bution can be evaluated, without ever generating realizations of the posterior distribution. This can be achieved 
by the following steps:

1.	 �Construct a training data set, in the style of Devilee et al. (1999), 𝐴𝐴 𝐓𝐓
∗ =

[

𝐍𝐍
∗,𝐃𝐃∗

𝑠𝑠𝑠𝑠𝑠𝑠

]

 , where N* represents a set 
of features/properties of interest, and 𝐴𝐴 𝐃𝐃

∗
𝑠𝑠𝑠𝑠𝑠𝑠

 represents a corresponding set of simulated data with noise, using 
both the forward and the noise model.

Figure 6.  (a)-(b) Posterior probability of a layer interface obtained using extended rejection sampling (a), and machine 
learning (b), for σB(n1). (c)-(d) Posterior probability of a layer interface obtained using extended rejection sampling (c), and 
machine learning (d), for σC(n1). Obtained using NT = [5 ⋅ 10 6].
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2.	 �Design a neural network whose output layer represents the relevant statistical parameters Θ of the posterior 
distribution σ(n) of interest.

3.	 �Train the neural network by minimizing a loss function that is the negative log-likelihood of the probability 
density, f(Θ), whose properties one wishes to estimate.

Practical application of the methodology requires a) a neural network structure complex enough to be able to 
estimate the mapping 𝐴𝐴 𝐝𝐝

∗
𝑠𝑠𝑠𝑠𝑠𝑠

↦Θ , and b) a training data set large enough to allow the mapping to be inferred.

The methodology was applied and demonstrated in a case study using airborne EM data from Morrill, Nebraska. 
Several (uninformed to more informed) prior models were considered, describing both subsurface resistivity 
(a continuous parameter, m) and lithology (a discrete parameter, n3) and the considered forward problem was 
nonlinear. In addition, the method was used to estimate posterior statistics of low-dimensional features of the 
prior models, such as the existence of a layer interface, n1, and the thickness of layers with resistivity above 
225 Ωm, n2. Results showed that using a training data set of size NT > 10 5, in this case, leads to a trained neural 
network that provides estimates of posterior statistics similar to those obtained using sampling methods, using a 
fraction of the computational power (about 5 ms per sounding).

Figure 7.  Mean of the posterior distributions σC(n3) estimated using sampling (red line) compared with the estimated 1d 
normal mean and standard deviation of σC(n3) plotted as probability density in grayscale, estimated using the machine 
learning approach using training data set of size NT = [10 3, 10 4, 10 5, 10 6, 5 ⋅ 10 6] in (a-e).
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4.1.  Limitations

The proposed method does not generate realizations of the posterior distribution, as do other sampling-based 
methods (B. J. Minsley, 2011; Brodie & Sambridge, 2012; Hansen & Minsley, 2019; Hansen, 2021). Instead, 
statistics of the posterior distribution for features of interest are estimated directly by applying a trained neural 
network.

In some use cases, one may actually need the realizations, for example, to propagate flow responses from a set 
of realizations from the posterior representing hydraulic parameters (Vilhelmsen et  al.,  2019). But, in many 
applications, where one is primarily interested in some statistical parameter describing the posterior, such as the 
posterior probability of a lithology type, the presented methodology may be useful.

The key practical difference to using sampling methods is that one has to identify the feature one is interested 
in and specify an appropriate loss function before running the inversion. Whereas using sampling methods to 
sample the posterior, one can convert the realizations of the posterior into a specific feature, and perform the 
posterior analysis, after the sampling algorithm has run.

In the example application, we adopted a widely used uncorrelated Gaussian noise model. In practice, real data 
are often affected by correlated noise (Bai et al., 2021; Hansen et al., 2014; Hauser et al., 2015). While in prin-
ciple any noise model can be handled by the proposed methodology, as long as realizations of the noise can be 
generated, it remains to be tested how well the methodology works with more complex noise models.

The methodology is particularly promising for localized inverse problems, where the trained neural network can 
be set up and trained once, but applied many times. It is less obviously suited to 3D inversions with very large 
model dimensions because (a) construction of an adequately large training data set will be difficult and CPU 
intensive, (b) solving the 3D forward problem may be CPU intensive, and (c) it may be very difficult to train a 
neural network with millions of parameters in the output layer. While the method appears to work well for the 
AEM case considered, it remains to be seen how the method performs for other, possibly more nonlinear, inverse 
problems.

Figure 8.  Posterior probability of lithology, using (a, c, e) sampling and (b, d, f) machine learning for σC(n3).
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4.2.  Potential

The immediate appeal of the proposed methodology is that it leads to fast prediction times. One can get similar 
results, but much faster, compared with using sampling-based methods to analyze the posterior distribution. The 
presented method is faster than linearized least squares-based deterministic inversion of EM data (which uses 
less than a second CPU time per 4 soundings), which has been widely used for the inversion of large surveys 
(Auken et al., 2017; Minsley, Foks, & Bedrosian, 2021; Minsley, Rigby, et al., 2021) because they require much 
less computational resources than sampling-based methods. With the computational efficiency of the proposed 
method, the computational benefits of linearized methods are no longer so substantial that one should ignore 
the benefits of using the probabilistic methods that allow the use of site-specific prior information, a non-linear 
forward model, and full exploration of the space of uncertainty.

The more general appeal is that the proposed methodology allows the use of in principle arbitrarily complex 
prior models. The only requirement is that one must be able to generate independent realizations of the prior 
model. This allows an end-user to actively choose a prior model based on available information, as opposed to 
being forced to use the prior assumptions implicit in most available inversion algorithms, such as the assumptions 
of a layered subsurface (B. J. Minsley, Foks, & Bedrosian, 2021) or a Gaussian type smooth prior (Auken & 
Christiansen, 2004). The prior can be constructed according to site-specific information, and posterior statistics 
can be estimated for any parameter that can be computed from the prior model, as illustrated by the parameters 
n1 and n2 in the case study.

The main challenge then becomes the construction of realistic prior models that represent geological realistic 
information as well as realistic noise models.

5.  Conclusions
A simple, yet powerful, approach to probabilistic inversion has been proposed. Its application requires that one 
can simulate sets of examples capturing the known information. That is (a) sample from an arbitrarily complex 
prior model, (b) solving the forward problem, and (c) adding realistic noise to the simulated data. From each of 
these sets of models and data, a set of corresponding features related to the model parameters can be obtained. 
Together these represent, up to the limit of the finite set of models, all known information about these features 
of interest.

From such sets of features and corresponding noisy input data, a neural network can be used to estimate the 
statistical properties of the posterior distribution directly, by training the network to minimize an appropriate loss 
function. This provides the ability to carry out a fast and accurate estimation of relevant posterior statistics given 
an observed dataset.

A case study of the methodology applied to a nonlinear probabilistic inversion of EM data demonstrates it is 
possible to directly obtain posterior statistics similar to those obtained using sampling methods, using a fraction 
of the computation time. This approach allows the use and testing of multiple prior models, and to consider 
multiple features related to the prior distributions, in a fully probabilistic setting using only modest computational 
resources. The method has the most appeal for localized inverse problems, where the same trained neural network 
can be applied to many datasets with little computational effort.

Data Availability Statement
The airborne EM data used in this study is freely available and can be accessed at https://doi.org/10.3133/
ofr20101259 (Smith et al., 2010). Training data sets and python code for training and prediction will be made 
available upon publication at Zenodo https://doi.org/10.5281/zenodo.7037407.
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