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SUMMARY

We present an update of the geomagnetic data assimilation tool pygeodyn, use it to analyse
ground and satellite-based geomagnetic data sets, and report new findings on the dynamics
of the Earth’s outer core on interannual to decadal timescales. Our results support the idea
that quasi-geostrophic Magneto-Coriolis waves, recently discovered at a period of 7 yr, also
operate on both shorter and longer timescales, specifically in period bands centred around
3.5 and 15 yr. We revisit the source of interannual variations in the length of day and argue
that both geostrophic torsional Alfvén waves and quasi-geostrophic Magneto-Coriolis waves
can possibly contribute to spectral lines that have been isolated around 8.5 and 6 yr. A
significant improvement to our ensemble Kalman filter algorithm comes from accounting
for cross-correlations between variables of the state vector forecast, using the ‘Graphical
lasso’ method to help stabilize the correlation matrices. This allows us to avoid spurious
shrinkage of the model uncertainties while (i) conserving important information contained in
off-diagonal elements of the forecast covariance matrix, and (ii) considering a limited number
of realizations, thus reducing the computational cost. Our updated scheme also permits us to
use observations either in the form of Gauss coefficient data or more directly as ground-based
and satellite-based virtual observatory series. It is thanks to these advances that we are able to
place global constraints on core dynamics even at short periods.
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1 INTRODUCTION

1.1 Transient dynamics within the Earth’s core

The present era of geomagnetic field monitoring from space now covers more than two decades. This large amount of observational data
enables the study of fine details of the changes in space and time of the field that originates in Earth’s core, which in turn provides new
details concerning the dynamics taking place within the liquid iron core (Lesur et al. 2022). A new framework for interpreting the observed
field changes and the underlying core motions has been recently brought to the fore by Gillet et al. (2022), based on quasi-geostrophic (QG)
Magneto-Coriolis (MC) waves. It favours motions parallel to the equatorial plane that are invariant along the Earth’s rotation axis due to
the predominance of the Coriolis force. MC waves are sustained by both the Coriolis and the Lorentz forces, and are thus sensitive to the
background magnetic field within the core.

QG MC waves were first described analytically by Hide (1966), and have been the subject of a large number of theoretical and numerical
studies (e.g. Canet et al. 2014; Hori et al. 2018). They have long been believed to play an important role for centennial and longer field
changes. However, Gerick et al. (2021) recently pointed out the existence of interannual QG MC eigenmodes possessing large azimuthal
length-scales that are accessible to observations. Furthermore, the footprint of such waves turns out to be easier to detect towards the equator
because, at low latitudes, a short wavelength in the cylindrical radial direction translates into a much larger meridional length-scale on the
spherical core surface where we study the dynamics. Gillet et al. (2022) recently reported the detection of such QG MC waves at interannual
periods based on flows derived from the CHAOS-7 field model covering the satellite era (Finlay et al. 2020). They found waves dominated
by long length-scales in the azimuthal direction (predominantly of azimuthal wavenumber m = 2), and significantly shorter length-scales
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along the cylindrical radius, with a period close to 7 yr. Since QG MC waves are highly dispersive, one can envision their existence at other
periods with little modification of their wavelengths. The above description is consistent with analyses from recent dynamo simulations
(Aubert & Gillet 2021), where similar such waves have been isolated (Gillet et al. 2022; Aubert et al. 2022). There, they seem to morph
from QG Alfvén waves (for which the restoring force is only magnetic, see Aubert & Finlay 2019) excited deep in the core by convecting
plumes.

1.2 Geomagnetic data assimilation

This interpretation of observed field changes in terms of core physics can be pursued by means of geomagnetic data assimilation algorithms,
that target an inference of the core state while considering both observational and dynamical constraints (Fournier et al. 2010; Gillet 2019;
Sanchez et al. 2019). However, we face several major difficulties in this quest. Dynamical models of the core based on the primitive equations,
although they are now in a position to capture the physics at work in the core, still struggle to fully replicate interannual timescales in an
operational manner (Aubert 2018; Aubert & Gillet 2021). On the observational side, the separation of the signal generated in the core from
that associated with external (ionospheric and magnetospheric) sources is very challenging at periods approaching 1 yr (Finlay et al. 2017;
Lesur et al. 2022).

This state of affairs has led to simplified approaches to geomagnetic data assimilation based either on advection by core surface flows
(e.g. Whaler & Beggan 2015; Beggan & Whaler 2018), or to the use of dynamo models in a regime where rapid dynamics are not captured
(e.g. Fournier et al. 2015; Sanchez et al. 2020). For a review in the context of IGRF models, see Fournier et al. (2021). Most of these
approaches are based on Kalman filter or ensemble Kalman filter (EnKF) algorithms (Evensen 2003), which enable one to consider nonlinear
dynamics. Although geodynamo model based schemes can be used to tentatively forecast decadal changes (Aubert 2015), they suffer from
abrupt adjustments, triggering spurious transient responses that do not correspond to observed variations—even though this effect can be
partly mitigated, see Aubert (2020). On the other hand, previous attempts at extracting, from noisy observations, rapid core flow changes
based on simplified models of core surface dynamics have often suffered from spurious high frequency content (Beggan et al. 2009; Barrois
et al. 2018).

The pygeodyn tool for assimilating magnetic observations (Huder et al. 2019) has been developed with the aim of avoiding the
limitations of dynamo models at short timescales, while benefiting from their rich spatiotemporal dynamics on longer timescales. This is
achieved by fitting parameters of a reduced stochastic model of the core surface evolution to time-series produced by numerical geodynamo
models (Gillet et al. 2019). However, up to now, the observations assimilated into the pygeodyn scheme have consisted of Gauss coefficients
from magnetic field models, at least in an operational context. Magnetic data collected above the Earth’s surface with ground or satellite
observatories had only been considered in a prototype application where, due to a coarse estimate of the forecast statistics, the irregular
sampling of noisy observations generated unphysical rapid flow changes (Barrois et al. 2018). We present here an update of the pygeodyn tool
including significant improvements in order to reduce the impact of noise, whether it be associated with non-Gaussian distribution of errors
in geomagnetic data, or with noisy second-order statistics such as those constructed empirically based on a finite ensemble size. Regarding
this latter issue, we adopt the Graphical lasso (G-LASSO) method (Friedman et al. 2007) in order to improve the estimation of the forecast
covariance matrices that enter the EnKF at the heart of our software. The new algorithm is first applied to the COV-OBS-x2 field model
(Huder et al. 2020), starting from 1880, which then sets the initial condition for the remainder of the reanalysis, starting from 1997, based on
geomagnetic data collected at ground-based observatories (GGO) and on board of satellites, in the form of geomagnetic virtual observatory
(GVO) data (Hammer et al. 2021b) which we use up to 2022. The GVO data format is well suited to a sequential assimilation tool such as
pygeodyn.

Based on this reanalysis, performed using our updated version of pygeodyn, we obtain a new and extended estimate of core surface
flow changes. Both zonal and non-zonal motions are analysed within the framework of the hydromagnetic waves recently proposed by Gillet
et al. (2022) to interpret the observed interannual field changes (which includes secular acceleration pulses, see Chulliat & Maus 2014; Finlay
et al. 2016). The non-axisymmetric wave with 7 yr period previously documented by Gillet et al. (2022) is not the fundamental mode, and
QG MC waves likely exist on longer, and possibly shorter, periods. We investigate the existence of such QG MC waves and their potential
link with the evolution of axisymmetric motions and thus with recorded fluctuations in the length-of-day (LOD). Such a link would provide
a rationale for the synchronicity of LOD changes and geomagnetic jerks, reported from both geophysical observations (Holme & De Viron
2013; Duan & Huang 2020) and geodynamo simulations (Aubert & Finlay 2019; Aubert et al. 2022).

The result of our reanalysis also includes, in addition to a core surface flow model, a new time-dependent model of the geomagnetic
field originating in Earth’s core. This by-product constitutes an alternative to regularized field models such as CHAOS-7 (Finlay et al. 2020),
or to models based on stochastic equations and a Kalman filter but not related to core surface flows such as the Kalmag (Baerenzung et al.
2020) or MCM (Ropp et al. 2020) models.

The paper is organized as follows: in Section 2 we present the geophysical (geomagnetic and geodetic) observations considered.
Improvements to the pygeodyn assimilation tool and their effects are described in Section 3, where in particular we discuss why and how
we implement an improved estimate of the forecast covariance matrix (83.3.3-3.3.5). In Section 3.4 we present the magnetic field evolution
recovered over the satellite era, while in Section 4 we document the interannual and decadal flow changes resulting from our reanalysis,
together with their predictions to interannual changes in the LOD. We discuss the implications of our findings in Section 5.
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Figure 1. Number of observations available as function of time, where each count corresponds to an estimation of the vector magnetic field in the r, 6 and ¢
components. The ground and virtual observatories are indicated as a continuous line or as histograms. At each assimilation step, all the available observations
are used.

2 GEOPHYSICAL OBSERVATIONS

2.1 Geomagnetic ground-based observatories (GGO)

We make use of magnetic field time-series at 206 geomagnetic ground-based observatories that cover the period 1997-2021. These were
derived from hourly mean values taken from the BGS database, version 0129, using Intermagnet and WDC Edinburgh data as available in
2022 February. The observatory data have been checked and corrected for known baseline jumps (Macmillan & Olsen 2013). Revised annual
means were produced from hourly values using the procedure described by Olsen et al. (2014) for producing observatory revised monthly
means, but by applying it to annual rather than monthly time windows. Estimates of the large-scale magnetospheric field and the solar-quiet
ionospheric field (along with estimates of their Earth induced contributions) from the CHAOS-7.9 model (Finlay et al. 2020), and the CM4
(Sabaka et al. 2013) models respectively are first removed from the hourly mean observatory data. Then robust (Huber weighted) annual mean
values are computed using an iterative reweighting procedure. To avoid offsets due to crustal biases we removed from each series the median
difference between each GGO series and CHAOS-7.9 model estimates. Secular variation (SV) estimates were computed using first differences
of the annual means. For each series considered individually, annual mean main field (MF) data are provided together with an uncertainty
level o045, based on the robust (Huber weighted) r.m.s. difference to the CHAOS-7 field model for each series. Error variances on the SV
data (in (nTyr~1)?) are then obtained as 64, = 263,/ t? with t= 1yr. These may in some locations/components appear conservative in
comparison with error estimates derived directly on annual differences. In order to work with synchronized MF and SV data, we considered
a two-point mean of the MF data, and thus consider for MF error variances 62 = 63./2 (in nT2). The temporal distribution of the resulting
GGO data set used in this study is shown in Fig. 1.

2.2 Geomagnetic virtual observatories (GVO)

In addition to ground data we make use of a satellite-based Geomagnetic Virtual Observatories data set that consists of time-series of the
magnetic field vector components together with its first time derivative (Mandea & Olsen 2006; Olsen & Mandea 2007; Hammer et al.
2021a) using either annual or 4-monthly sampling. The GVO series are provided at fixed points in space at satellite altitude. For each series
satellite magnetic vector field measurements from within a local region defined by a cylinder of radius 700 km are used to compute a field
estimate at a central target point during a specified time window. Here, we use a network of 300 globally distributed GVVOs, created using
the partitioning algorithm of Leopardi (2006). The GVVOs were derived using the processing algorithm described in Hammer et al. (2021a),
which has showed good agreement with magnetic records from ground observatory series during reference tests. We used only data from
geomagnetically quiet and dark conditions. In order to reduce contributions from non-core field sources, in a similar fashion as for the GGO
processing, the GVO algorithm removes estimates of the large-scale magnetospheric and ionospheric fields (along with estimates of their
Earth-induced contributions) using the CHAOS-7.9 (Finlay et al. 2020), and Cl'Y4 (Sabaka et al. 2018) models, respectively. To mitigate the
biases due to the lithospheric field the field estimates from the LCS-1 model (Olsen et al. 2017) were also removed.
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In this study, we have made use of GVO series derived from vector magnetic field measurements collected by the following satellite
missions (see Fig. 1): the @rsted mission (1999-2005 for vector field measurements), the CHAMP mission (2000-2010), calibrated platform
magnetometer data from the CryoSat-2 mission (2010-2018) (Olsen et al. 2020), and also Level 1b MAG-L data, version 0505/0506, from the
Swarm trio of satellites (2013-2022). Due to different orbital configuration of the upper satellite and lower pair, the local time (LT) coverage
of the Swarm mission enables a 4-month time window to be used when computing the GVO estimates (Hammer et al. 2021a), whereas for
the other missions it was necessary to use a 12-month time window in order to minimize problems associated with insufficient LT coverage.
SV estimates for the first time derivative of the field were computed in all cases using annual differences. In order to work with synchronized
MF and SV data, we considered a two-point mean of the MF data. Simple uncertainty estimates o o,s for each GVO MF series were adopted,
assuming the data errors to be time-independent and spatially uncorrelated—for more details see Hammer et al. (2021a). As for GGO data,

SV error variances are then obtained as 64, = 263,/ t?>—with t= 1yr—and MF error variances are 65 = 03./2.

2.3 COV-0OBS-x2 field model

In addition to the geomagnetic observatory and satellite data described above, for the early part of our assimilation model (before 1997) we
used the COV-OBS-x2 geomagnetic field model (Huder et al. 2020), starting from 1880. During this period the COV-OBS-x2 model relied
primarily on ground observatory annual means, along with data from the POGO satellites (1965-1971) the MAGSAT satellite (1979-1980)
and the DE-2 satellite (1981-1983), as well as ground and marine survey data (Gillet et al. 2013). COV-OBS-x2 is a time-dependent spherical
harmonic field model with truncation degree 14 and using cubic B-spline basis with 2 yr knots in time. We also made use of the diagonal
part of the model covariance matrix supplied along COV-OBS-x2. For further details on the COV-OBS-x2 model see Gillet et al. (2013) and
Huder et al. (2020).

2.4 Length-of-day (LOD) records

We consider observations of the length-of-day over the period 1880-2022. For this purpose we have concatenated two data sets. For the
most recent epochs (from 1962 onwards) LOD series are derived from VLBI (very large based interferometry) data. We use the C04 series
(Bizouard & Gambis 2009), which have been cleaned for solid tides (the IERS 2000 model) and from atmospheric angular momentum
contributions (Dobslaw et al. 2010). For the older times we make use of the Lunar97 series (Gross 2001), constrained by lunar eclipses. The
two series have been concatenated by imposing the same average over the overlapping era. We finally removed from the resulting series a
linear 1.78 ms per cy trend, to account for the mean trend observed over the past millenia (Stephenson et al. 2016).

3 A GEOMAGNETIC DATA ASSIMILATION ALGORITHM

3.1 Some prerequisite notations

We describe the time evolution of the core surface state vector using an Ensemble Kalman filter algorithm (Evensen 2003). It consists of a
series of forecast (time-stepping a forward dynamical model) and analysis (regression of the model state when observations are available)
steps, for an ensemble of N, realizations, as described below. Let us consider a quantity (MF, flow, SV, etc.) represented by a vector x. For any
such vector, the statistical expectation is denoted E [x] = X , and the deviation from the expected value is 6x = x — X . Let us now consider
two quantities represented by vectors x and y. The cross-covariance matrix between these two vectors is P,y = E 8x3y" , and

Cyy = diag(Px)"¥?Pyydiag(Pyy) ™2 1)

denotes the associated cross-correlation matrix. These may be estimated empirically from an ensemble of finite size. In this case I5Xy refers

to the empirical (or sample) estimate of Py, obtained from an ensemble of N, realizations xI,y! i Lone 8

Ne

. 1 o
Py = N.—1 oxiay! . (2)

=1

The associated sample correlation matrix is then ny = diag(P )2 f’xydiag(ﬁ’yy)‘l’z. Throughout this paper, we denote by respectively
x and x? the forecasted and analysed vectors. The associated covariance matrices are noted f’:x and ﬁix, with similar notations for the
correlation matrices.

3.2 Forward model of the core surface dynamics

Throughout we use the spherical coordinate system, of unit vectors (1;, 1g, 1¢) in the radial, meridional and azimuthal directions. We recall
here the main characteristics of the forward model; in this regard we follow the approach of Gillet et al. (2019), to which we refer for
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further details. The temporal evolution of the radial magnetic field is described by the radial part of the induction equation at the core—mantle
boundary (CMB),

0B
ot
where B, is the radial magnetic field at the core surface, n is the magnetic diffusivity and uy, the horizontal velocity field. B, and uy, are

parametrized in the spectral domain, by means of spherical harmonics. Above the core surface of radius rc = 3485 km, the magnetic field is
described by a potential, thatis B = — V, with

== - (uB)+n ZBI’1 ©)

Np r n+1 n

V(r>re,0,0)=rg £ gy cos(me) + h!' sin(mg) PI"(cosB). 4)
n=1 r m=0

re = 6371.2 km is the Earth’s reference radius. g and h]' (in nT) are the Gauss coefficients of degree n and order m, PI" the Schmidt

seminormalized Legendre functions, and ny is the truncation degree for the magnetic field. The core surface flow is represented as (e.g. Holme

2015)

un(®,0) = >(Tri)+ (rS), (®)

with T and S, respectively, the toroidal and poloidal scalars, which we decompose as
Ny n
T(0,0)= tey cos(m@) + ts)' sin(me) Py'(cos )
n:ll mn=0 . (6)
S(0,0) = Sep cos(m@) + ssp' sin(mg) P."(cosB)
n=1 m=0
ny is the truncation degree for the core surface flow, and t; sy and sq sy are the toroidal and poloidal spherical harmonic coefficients (in
kmyr~?). The flow coefficients are then normalized as

n(n + 1)
2n+1)

TC,S?vsC,S? = tC,SnmISC,Snm , )

so that the core surface kinetic energy per harmonic degree n is

1
Ex(n) = Ep (Tesm)? + (Sesp) (8)
m
where p = 10% kgm~2 is the core density. At a given epoch, we store flow coefficients (t.s™, sc,sI") in a vector u, and (T s, Sc.sh') in a vector
U. Eq. (7) is then represented as U = Nu with N a diagonal normalization matrix. The flow is described up to spherical harmonic degree n,
= 18, so that the flow vectors u and U are of size N, = 2n,(n, + 2) = 720.
Considering only the resolvable large length-scales of the fields (spherical harmonics of degrees n < ny, for the magnetic field and n <

ny for the flow, denoted by overlines), eq. (3) then transforms into
ag - 5

atr:_ h* UhBr +er, (9)
where the quantity e, contains the errors of representativeness (with contributions from subgrid and diffusion processes). In matrix form this
becomes

b=Abu+e=f+e, (10)

where b, b and e store spherical harmonic coefficients for, respectively, the fields B,/dt, B, and e, (with a decomposition similar to eq. (4)
for 9B,/dt and e;). Vectors b and e are given in nTyr~1. The MF, the SV and the error term are expanded up to n, = 13, so that vectors for
the MF, SV and error terms are each of size Ny = ny(n, + 2) = 195. The matrix A(b), in nTkm™, is of size Ny % Ny.

The magnetic field evolution described by eq. (10) is coupled to a stochastic model for the flow and the error term (see below) that is
anchored to statistics derived from time-series produced by a numerical model of the geodynamo. In contrast to Gillet et al. (2019), who used
outputs from the 50p numerical dynamo model of Aubert et al. (2017), we use here a time-series from the 71p dynamo model (Aubert &
Gillet 2021). The 71p model involves dynamo control parameters closer to those expected for Earth, thus enabling a better separation of the
turnover time in the core (ty =rc/U 130 yr in both the Earth’s core and the dynamo simulations, with U a t)\/})ical core flow velocity) from
the Alfvén time (ta = rc/Va 2 yrin the core, compared with 6 yr in 71p and 15 yr in 50p, with Vo, = B/ ~ pH the Alfvén speed—B the
typical field intensity deep in the core, pt = 410~" Hm™! its magnetic permeability).

In order to reduce the dimension of the flow state vector, U is projected onto a subspace of N, =200 components using a PCA. The PCA
is based on a time-series of the core surface flow coefficients from the 71p geodynamo model. Because of the strong spatial constraint brought
by the rapid rotation of the Earth, using N, = 200 components is enough to capture most of the geodynamo core surface kinetic energy (see
Gillet et al. 2019). The flow vector is then represented asu = u + N~*Sv, with u the background flow (averaged from snapshots of the
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dynamo model extracted every t = 10yr) and v the representation of the flow projected onto the principal components, with S a projection
operator (e.g. Pais et al. 2015). eq. (10) then becomes

b=A(b)u + A(b)v+e, (11)

where A(b) = A(b)N~S is a matrix of size N, < N, (in nTkm™, since N and S are unitless). eq. (11) is then coupled to multivariate
autoregressive stochastic equations of the order of 1 (AR-1) for v and e:

dv +D,vdt = dw,

de +D (e — e )dt =dw, (12)

The term e, similarly to u , is a time-averaged quantity derived from the geodynamo model time-series. w, . are multivariate Wiener
processes. Their second-order statistics, as well as the drift matrices D, ., are derived following Gillet et al. (2019), based upon cross-
covariances obtained here from time-series of the 71p geodynamo model core surface states, sampled every 10 yr. The stochastic model (12)
replicates the cross-covariances of the vectors u and e seen in the geodynamo simulation, as well as the main statistics of temporal increments
in u and e (characterized by eigen-vectors and eigen-values of the drift operators D, ). The forward model is time-stepped using an explicit
Euler scheme for the numerical integration of eq. (11) for the magnetic field, while an Euler—-Maruyama scheme is used to time step the
stochastic eq. (12) for the flow and the error term, using a time step  t* = 1 month.

3.3 Analysis

3.3.1 Model state and observation operators

At any epoch t where observations (either GGO, GVO or Gauss coefficients) are available, MF and SV data are stored in vectors yy,:(t) and
y2y(t), respectively. The analysis is then performed in two steps. The assimilation of MF data is done in a first step, from which we obtain an
analysed state b?(t). Then in a second step we assimilate SV data to get an analysis of the augmented state

z=Vv,e' T, (13)
of size N, = N, + N,. MF data are linked to the model parameters stored in b by a linear observation operator H, through
Yur = Hob + e (14)

emr denotes the error vector on MF observations, whose cross-covariances are stored into a diagonal matrix Rye. For Gauss coefficient data,
Hy, is simply the identity matrix of size ny. For observations above the Earth’s surface (GGO and/or GVVO), analytical expressions for Hy, can
be found in Barrois et al. (2018), or more generally in Sabaka et al. (2010). Similarly SV data are related to b by

Y2y = Hob +eg, . (15)

e2y stands the error vector on SV observations, whose cross-covariances are stored into a diagonal matrix Rsy. Using relations (11) and (13),
eq. (15) can be written

Yoy = Yoy — HoA(b*) u = H,(b*)z+eg,, (16)

with the forward operator H, (b®) = HpA (b?) | Hy . This represents an extension, to observations made above Earth’s surface, of the
algorithm of Gillet et al. (2019) that was initially developed for data in the form of Gauss coefficients.

3.3.2 Analysis of MF and SV data in the presence of outliers

Due to the presence of remaining unmodelled external field signals in both GVO and GGO data, as well as outliers particular in the GVOs
based on satellite platform magnetometer data, the distribution of data residuals is in practice not Gaussian. Gaussian data error statistics were
implicitly assumed in our previous stochastic flow and field reconstructions using either GVO (Barrois et al. 2018) or Gauss coefficient (Gillet
et al. 2019) data, via the use of a L, norm measure of the misfit to observations. As shown in Fig. 2, a Gaussian distribution is inconsistent
with the long tails we find in the distributions of the normalized prediction errors from the ensemble average solution,

=y =y /o, (17)

The term y;” describes the model prediction to the ith observation y°, with ¢° its associated uncertainty (see Section 2 for details), while
brackets indicate the ensemble average. Use for instance of a L;-norm for the data misfit would be more consistent with a long-tailed error
distribution, but in this case one expects N observations to be fit exactly, where N is the number of unknowns (Walker & Jackson 2000). Since
our number observations N° is not much larger than the number of unknowns (N, or N,), we would then have a risk of overfitting the data.
Instead, we assume a Huber probability distribution of normalized errors (e.g. Olsen 2002),

2/2 if] |<c

Pe() exp(=Le()), with Le()=" "\ oy if| |20

(18)
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Figure 2. Histograms of the normalized residuals (as defined in eq. 17) averaged over all realizations from case nglo, at epochs 1999-01, 2007-01, 2013-01
and 2018-09. Histograms consider only observations from the ground observatories, CHAMP, CryoSat-2 and Swarm, respectively. The green curve is a fit of a
Huber distribution to the distribution of residuals. The legends indicate the normalized and dimensional misfits (see eqs 25-26).

and the constant ¢ = 1.5. In the following, we detail the algorithm used to recover the model parameters that, given noisy observations,
maximize the probability of the residuals, as provided with eg. (18).

At each epoch t* where GGO and/or GVO data are available, an ensemble b (t?) 21N of analysed MF vectors are obtained using
an iterative reweighted least-squares algorithm (Farquharson & Oldenburg 1998). To create the ensemble we perturb each datum y? using,
for the sake of simplicity, a Gaussian random variable within N (0, 6,°). At each iterative step k, and for all ensemble membersj [0, N¢], one
has

. ) . -1 . .
biy =b" + Py H] HuPgH] + Rue b’ yuE — Heb ™, (19)
with Ry (b27) = RiY2W e (b®)Ry?. The weight matrix W e is diagonal, with elements

if] i byl |<c

Wi (b)) = . . cand bt =Ry Yk — Hobg! (20)
MFii (Mg o/l bi’J | if] bE'J |>c Kk MF MF bMk

bfi(t?) i=1Ne is the ensemble of forecast MF estimated at the analysis epoch, and

P () =E 8b'(t*)sb’(t?)" (1)

is the associated forecast covariance matrix. It is approximated empirically from the ensemble of realizations, as described below in §3.3.4—
3.3.5. We stop the iterative process when the relative change in the solution between two steps is less that 107*. In practice, performing 10
to 15 iterations of eq. (19) is enough to reach convergence. The iterative process for the analyses is computed separately for all ensemble
members. It is initiated by setting Wy equal to the identity matrix.

Once an ensemble b®1(t?) 21N of analysed MF is obtained, an ensemble of analysed augmented state z21(t2) 21N, is obtained
by inverting the SV data using the same iterative algorithm,
aj — ,fj fgiTl ipfuil ajy t 0,] f,j
Ly =27 + Pzsz HZ Pzsz + RSV(Zk ) Ysv — HZZ ' ’ (22)
with Rey(z2)) = ReY?Wev(z))Rg? and H = H, b . The weight matrix W sy is diagonal with elements
a,j 1 iflizi'j |<C a,j —1/2 0,] joa.]
Wevii zg! = : ,and  z!' =Ry yey — HizZ3! . (23)

o/li | il g =
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zi(t?) i=1Ne is the ensemble of forecast augmented state vectors estimated at the analysis epoch, and
P! (t?) =E &z'(t?)sz (t?)" (24)

is the associated forecast covariance matrix. Below in §3.3.3-3.3.5 we show how we improve the estimation of matrices Pgb and P/, in
comparison with the previous work of Gillet et al. (2019). The above iterative estimate based on Huber weights is only considered when
inverting GGO/GVO data. A simple linear analysis is performed at epochs where the input data takes the form of Gauss coefficients.
Fig. 2 shows histograms of SV residuals (z%1); 1], at the end of the iterative process, of the CHAMP, CryoSat-2, Swarm and GGO
data sets, respectively, at example epochs when these data were considered. It also reports the normalized misfit
NO  Ne
Le ¢z (25)

i=1 j=1

L, _ 1

Xb = NN,

and the dimensional misfit
1 NO Ng

Xp = Le 00 22 (26)
N°Ne i=1 j=1

averaged over all GVO sites at these epochs. The median residuals in all cases indicate negligible biases, less than 0.05 in absolute value.
Furthermore, the shape of the prediction error distributions shows that the reweighting algorithm accounts well for the presence of non-
Gaussian tails. Normalized (Huber weighted) misfits are slightly below unity for all considered epochs, indicating that all data sets are
adequately fit. Dimensional misfits show that our algorithm is able to predict annual GVO SV data within less than 2 nTyr~* for Swarm.
Misfits are larger for CHAMP and CryoSat-2, though in both cases less than 3 nT yr~* in average. Such relatively low values can probably be
attributed to the fact that we consider 12-monthly robust averages when building these GVO.

3.3.3 Limitations with previous estimates of the forecast covariance matrices

Up to now, in the pygeodyn software the matrix Pgb defined in eq. (21) had been considered time independent, and equal to P, the
cross-covariance of the numerical geodynamo series employed to build the forward model (Gillet et al. 2019). This simplified set-up was
considered, because for initial applications of the algorithm to Gauss coefficient data from the COV-OBS field model series, the result of
the re-analysis was not found to be sensitive to this a priori choice. However, when considering GVO/GGO observations instead of Gauss
coefficients, there are irregularities in the data sampling (for instance gaps due to the lack of observations from satellite missions at some
times, or uneven data coverage associated with varying external conditions) that could possibly induce unphysical jumps in the recovered
main field series. Indeed, under weak observational constraint and using a loose prior such as P, coefficients in b? are abruptly driven back
towards the background state (here from the time average geodynamo). Such discontinuities in the MF can subsequently generate severe
jumps in the reconstructed flow (as already witnessed in the prototype data assimilation scheme described by Barrois et al. 2018). In order to
resolve such problems it is necessary to more carefully model the spread within the ensemble of forecast field states.
Furthermore, Gillet et al. (2019) had approximated P, defined in eq. (24), from (i) the empirical spread within the ensemble of analysed
states and (ii) analytical properties of the stochastic eqs (12) that describe the time evolution of z(t), while at the same time discarding all
possible cross-covariances between def and v’ (or Pefv = 0). This pragmatic approach allowed sensible estimates of the diagonal elements of
PZ'Z, and ensured the stability of the filter (the matrices were well conditioned in all situations). However, possibly important anticorrelations
between e’ and 5 were ignored, as explained below—we recall that 3f = A(b)v — A(b)v .

The spread within the ensemble of SV predictions at the forecast step ({y™/}; r1.n.;, Where y*J = e + 1), is provided by the diagonal
of

P;y:Pefe_'_P;f_'_Peff_'_P;e' (27)

If accurate observations and short timespans between two analyses are used, the dispersion within the ensemble of SV forecasts can be rather
small. Meanwhile, the spread within the ensembles of realizations of both e’ and ' is relatively larger, as many combinations of solutions to
the inverse problem can reasonably fit the data. This implies

diag P!,  diag P/ +diag P{ |, (28)

and consequently the diagonal elements of Peff must be negative, that is de and 8f" have to be significantly anticorrelated. Furthermore, the
spread within the ensemble {f f’j}j [1.Ne] I8 Mainly due to the dispersion within the ensemble of flow solutions (as b is more directly constrained
than u, and its evolution smoother). This implies Peff PE'VA(bf), and consequently Pefv = 0. The anticorrelation between e and f appears
clearly in Fig. 3(e), which shows sample correlation matrix (in the SV data domain) computed in a case with N, = 400 realizations. This
motivates the use of an algorithm capable of handling non-zero cross-covariances in szz, because neglecting significant cross-covariances
within the ensemble of forecast state variables is known to produce biased inference of the vector state, and thus lose of part of the information
carried by the data. We review in the Section 3.3.4 several possibilities from the literature for retaining cross-covariances, and describe in
Section 3.3.5 the Graphical lasso (G-LASSO) approach that we have followed.
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Figure 3. (a) and (e): Empirical forecast correlation matrices computed from 400 realizations, extracted from the reanalysis GJ:: 200 &t epoch 2018-01 (just before
an assimilation step). (b) to (d) and (f) to (h): Application of G-LASSO for different values of A. The top row (a to d) corresponds to correlation matrices
involving the flow (v, after rotation via the PCA) and subgrid error (e) basis. The bottom row (e to f) corresponds to correlation matrices involving e and f the
induction from the large length-scale flow. Correlatlon matrices are shown for increasing values of the parameter A from left to right: from A = 0 (empirical
matrix PZZ) in (a, €) to A = oo (diagonal matrix PZZ) in (d, h). For the sake of clarity, we only present elements of the matrices for spherical harmonic degrees
n < 7 for e and f, and the first 63 elements for v. For e and f, elements are stored as follows: (n, m) = (1, 0), (1, 1), (1, —1), (2, 0), (2, 1), (2, —1), (2, 2), (2,
—2),(3,0)....

Table 1. Several set-up considered throughout the paper, where each reanalysis label contains a subscript for the number
of realizations N and a superscript for the value of the parameter A.

Case Covariance matrices Realizations Data A
WIS /Wi, G-LASSO 400 Covobs (Gauss coeffs) 0.075/00
D550 diagonal 200 GGO+GVO oo
E%0”ES0o empirical 100/400 GGO+GVO 0

GO /G35 /GY2 G-LASSO 200 GGO+GVO 0.1/0.15/0.2
G /G G-LASSO 400 GGO+GVO 0.075/0.1

Before going further, we list here the various cases that have been investigated in this study. The main input parameters (data kind,
ensemble size, G-LASSO parameter, etc.) are summarized in Table 1. We performed several reanalyses that cover the period [1997,2021],
using as observations GGO and GVO data sets. Two free parameters have to be chosen: the ensemble size N, and A the trade-off parameter
that enters the G-LASSO algorithm. These two are not independent the one from the other (see Section 3.3.5). Reanalyses carried out with A

10, oo[ will be referred to as ‘Gﬁ,e’. A = oo is equivalent to using diagonal forecast matrices (cases denoted D’ ), while A = 0 comes back
to using the sample estimates given by eq. (2), with no effect of G-LASSO (cases noted E%e). The initial conditions for all the experiments
reported here were the result of a previous reanalysis of the COV-OBS-x2 Gauss coefficient data (Huder et al. 2020), starting from 1880,
using t'=4 monthsand t* = 12 months. These ‘warm-up’ cases are referred to as ‘WANe’. Two different warm-up reanalyses have been
considered, so that the inversion of GVO/GGO data computed with A = oo (resp. A = co) are started from a warm-up also computed with A =
oo (resp. A = oo). In this way, the initial condition of D33, is given by the reanalysis W35, while for G3 or G2 we used as initial conditions
the re-analysis W3g,. WS35 is also used as an initial condition for E3;,/ES,,/E5y, as the re-analysis with A = 0 lead to negligible flow variance
and cannot be used as warm-up. Our choice for the preferred pair (N, A) is described below (and see Appendix A).
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Figure 4. Time evolution of the standard deviation of the flow coefficients o (tcl) (top) and o(ch) (bottom) for several reanalysis experiments. Two reanalyses

use the empirical estimate B of the forecast matrices with Ne = 100 (case Eloo) and N = 400 (case E400) and the other two use G-LASSO estimates with A
= 0.1 and Ne =400 (case Ggolo) and with A = 0.2 and Ne = 200 (case Gzoo) See Table 1 for more details.

3.3.4 Ensemble estimates of the forecast covariance matrices

In the original formulation of the ensemble Kalman filter (Evensen 2003), the forecast covariance matrix of a state x is obtained as the sample
estimate P Xfx based on a finite number of ensemble realizations. As such it possibly accounts for cross-covariances between elements of the
state vector. However, such an estimate can lead to a number of problems related to the finite sample size (Bocquet 2011; Raanes et al. 2019),
in particular:

(i)an underestimation of the ensemble spread (sometimes leading to an ensemble collapse),
(if)spurious cross-talking between variables when the covariance matrix, based on a small number of realizations, is too noisy.

As an illustration of the former effect (i), we perform a reanalysis of GVO and GGO observations while considering the crude sample
covariance matrices ﬁgb and P, . We show in Fig. 4 the standard deviation within the ensemble of realizations of the flow coefficients t.? and
S¢5. With N, = 100 (case EYy), We witness a clear shrinkage of the ensemble spread, with uncertainties decreasing to unrealistic values. This
probl em b barely improves when increasing N, to 400 (case ES,), as sampling the forecast error cross-correlations is rather slow, proportional
to 1/ N, for a normal sampling. An ensemble of size N¢ N, would be required to obtain in this way a converged estimate of the dense
cross-covariance matrix (for example, as performed by Baerenzung et al. 2018).

Error (ii) is introduced due to spurious cross- correlatlovs which are non-zero only due to undersampling. Because the standard deviation
on each coefficient of the covariance matrix convergesas 1/ N, (Bocquet 2011) the error on weak off-diagonal coefficients can then be of the
same order of magnitude as the coefficient itself, resulting in a very poor signal-to-noise ratio, and possibly causing a severe degradation of
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the re-analysis performance (Hamill et al. 2001). In the worst cases, an incorrect sample covariance matrix may also lead to filter divergence
(Bocquet 2011). These issues are well known in oceanography and atmospheric sciences (Ott et al. 2004; Berry & Sauer 2013).

Inadequate evaluation of the unknown true covariance matrices in eqs (19) and (22) is a common issue in the EnKF and many avenues
have been proposed to tackle the aforementioned problems. Unfortunately, the two main approaches, covariance localization and covariance
inflation (e.g. Hamill et al. 2001), are not appropriate for our problem. The approach of covariance localization artificially reduces correlations
of two points that are well separated in space, an approximation that suits in the atmospheric sciences. However, this approach is difficult
to implement when working in the spectral space, because coefficients far apart in the spectral domain can show non-zero correlations —
but see the attempt by Sanchez et al. (2019), who address this issue by cancelling all correlations between coefficients of different orders
m. Furthermore, the physical mechanisms that govern the core surface dynamics operate at planetary scale. Covariance inflation in its most
naive form involves artificially increasing the sample covariance matrix at each analysis, for instance replacing |5:x by y |5fo, withy > 1.
The parameter y is picked by trial and error (Anderson & Anderson 1999; Hamill et al. 2001), or with an adaptive algorithm to avoid ad-hoc
tuning (Raanes et al. 2019). At first glance, this seems like a relevant solution to deal with the problem of underestimation of the variance. In
Hamill et al. (2001), the constant inflation factor is set to increase the variance between 0.025 to 4 per cent at each analysis for resp. 400 and
25 realizations; these values are certainly not enough to maintain the variance at a high enough level throughout our reanalysis (see Fig. 4).
Another drawback of using covariance inflation for our problem is that a constant y through time for all coefficients is not appropriate for
observations with varying density and quality (Anderson 2009). Although solutions have been proposed to mitigate these issues (Anderson
2009; Bauser et al. 2018; Raanes et al. 2019), we here consider an alternative solution involving the Graphical lasso technique, which easily
adapts to the EnKF formalism.

3.3.5 Handling of the forecast covariance matrix using the graphical lasso algorithm

The dilemma raised in the previous section can be rephrased succinctly: Given a number of realizations and the associated sampling errors,
how many non-zero cross-correlations can we afford to include in our model? On the one hand, one wishes to keep as many meaningful
cross-correlations as possible, in order to reproduce the complex cross-talking between the core flows at large length-scales and subgrid error
patterns. On the other hand, the empirical covariance matrix includes spurious correlations that should if possible be removed.

To determine a covariance matrix that conserves as much as possible the information contained into its off-diagonal elements, yet
removing many spurious cross-correlations, we use G-LASSO (Friedman et al. 2007; Banerjee et al. 2008). This algorithm computes the
following sparse penalized maximum-likelihood estimator of the precision matrix  (inverse of the covariance matrix), by searching for

") =argmin o, tr(P )—logdet( )+A | il - (29)
j=k

P is the sample covariance matrix, input for the algorithm. The first two terms in brackets constitute the log-likelinood of  under Gaussian
assumptions. The condition = 0 imposes that the precision matrix is positive definite. The use of a L; norm for the last term in (29)
makes ~ sparse. The penalizing parameter A is a positive real scalar that drives the sparsity of the solution: a large value (in comparison
with the off-diagonal elements of P) returns a diagonal precision matrix, while a small value for A results in a solution close to the sample
precision matrix, if it exists.

In our case, we are more interested in an estimator of the covariance matrix than the precision matrix. Conveniently, we can choose
the inverse of the solution to eq. (29) as an estimator of the covariance matrix (since for reasonable values of A, such as those favoured in
Appendix A, ~ is well conditioned). It happens that € = ~ % is also a sparse matrix. This unintuitive situation where both the estimated
covariance and its inverse are sparse is due to the fact that the solution to the dual problem of eq. (29) gives an estimation of the covariance
matrix (Banerjee et al. 2008), and that the optimal of both the primal and dual problems are equal (Mazumder & Hastie 2012). As G-LASSO
performs better when the variance of the different elements in a vector x have similar scales, we apply here the algorithm to the correlation
matrix C ., rather than P, (with x standing for either b or z). Once éxx is estimated from €,y using eg. (29), the estimated covariance matrix
is computed from the correlation matrix as

PN =diag P, "2 C(Ndiag Py 7, (30)

so that the diagonal of the covariance matrix is kept untouched. In practice we use the scikit-learn implementation of the G-LASSO algorithm
(Friedman et al. 2007; Pedregosa et al. 2011).

C,, obtained for different values of A are presented in Fig. 3. In Appendix A, we show how we choose the penalty parameter A by solving
eq. (29) for several values of A and maximizing the likelihood. Note that G-LASSO implicitly assumes that our set of realizations follows a
Gaussian distribution (not to be confused with LASSO, see Tibshirani 1997). The procedure is applied to obtain both Pgb (A\) and szz (A) before
each analysis, and then used in egs (19) and (22). We readily see from Fig. 4 that no ensemble collapse is observed when using G-LASSO
with values of A in the vicinity of our preferred choice of A = 0.1 (resp. 0.2) for N, = 400 (resp. 200). Furthermore, for A close to this value,
a significant part of the anticorrelation expected between e’ and 3f' is conserved (see Fig. 3). Our new implementation thus constitutes a
significant improvement in comparison with that of Gillet et al. (2019): in their study although the variance within the ensemble of solutions
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Figure 5. Time-series of some examples of flow coefficients for the two re-analyses G32 and G35

for the flow coefficients behaved sensibly, as for the case of a diagonal forecast matrix (see D3, in Fig. 4), the important cross-covariances
mentioned above were clearly ignored.

Finally, we show in Fig. 5 the time evolution of some examples of flow coefficients, together with their associated spread. The two
ensemble average flows obtained for reanalyses G32 and Gl show a very similar time evolution, with differences always much smaller than the
associated uncertainties. The dispersion within the ensemble of flows is also very similar for both re-analyses. This indicates that convergence
has already been obtained in terms of ensemble size with N, = 200. The use of G-LASSO thus enables stable and converged solutions to be
obtained with only limited computing resources, while conserving an important part of the information contained in cross-covariances within
the ensemble of realizations, and providing a reasonable measure of the posterior model uncertainties.

3.4 Geomagnetic secular variation over the satellite era

As a result of our reanalysis, a new model of the geomagnetic field evolution is obtained, constrained by both GVO and GGO observations
and the dynamics taking place at the surface of Earth’s core. In this section we compare this new field model with existing models from the
literature, namely the CHAOS-7 model (Finlay et al. 2020), and the Kalmag model (Baerenzung et al. 2020). The former is a regularized field
model smoothed in time by penalizing third time derivatives of the field. The latter is governed in time by stochastic equations embedded into
a Kalman filter, and is smoothed a-posteriori. Neither of these existing models has constraints on the field time evolution from core surface
flow dynamics.

We focus hereafter on the re-analysis G, obtained with A = 0.1 and N, = 400 realizations. Fig. 6 illustrates how our model fits SV
data at two GGO site examples (Ascension Island and Kourou), and two examples of GVO site (above the Eastern Pacific at low latitude and
above Japan at mid-latitude), together with the spread in the ensemble of predictions. It also compares with predictions from the CHAOS-7
and Kalmag models. Beside the local maximum around 2014 on the radial component in Ascension Island (which is not well fit by any of the
models), our SV predictions lie within the observation error and fit well the large interannual SV changes responsible of pulses in the secular
acceleration (see for instance dB,/dt at Ascension Island and dB,/dt in Kourou or above Japan). The amplitude of the analysis prediction
spread depends on the amount of data and its quality. It is bigger in the beginning of the reanalysis, when few satellite data are available
and observations rely mostly on GGOs (around 1997-2002), gets smaller during the period of best quality CHAMP data (2005-2010). In
areas covered by few GGO, it then increases when only CryoSat-2 observations are available (2011-2014), whereas areas well sampled by
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Figure 6. Time-series of SV predictions from the analysed state obtained for Gﬂblo (cyan), superimposed with those for the CHAOS-7 (red) and Kalmag
(brown) models, and compared with observations (black circles). The black thin dashed lines represent the +10 uncertainties on GGO and GVO SV data.
Left-hand panel: radial component at the Ascension island GGO (ASC, 7°S, 14°W, sampled every 12 months, top) and at a CHAMP GVO above Japan (41.8N,
134.0E, bottom). Right-hand panel: azimuthal component at the Kourou GGO (KOU, 5°N, 53°W, top), and at a Swarm GVO above the Eastern Pacific at low
latitude (18°S, 111°W, sampled every 4 months, bottom). The scale of the SV coefficients is shown on the left-hand side. The standard deviations for the
reanalysis G%O and for Kalmag are shown in coloured dashed lines, and correspond to the scale on the right and to the thickness of the shaded curve for the
model predictions.
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Figure 7. SV Lowes spectra at the Earth’s surface for cases nglo and D35, and compared with the Kalmag model, at epochs 2012.08 (left) and 2018.08 (right):
for the ensemble average model (full line), the dispersion within the ensemble of models (dotted lines). Dashed lines represent the spectra for the difference
with respect to the model of case nglo, for the model of case D35, (yellow) and Kalmag (brown).

GGO show posterior uncertainties less affected by the satellite responsible for the GVO data (see for instance CHAMP above Japan). Finally
the spread becomes smallest when Swarm data are available (after 2014). When GVO are available, we obtain uncertainties in general a bit
smaller than those provided with Kalmag, though of similar magnitude. In the example of Fig. 6, the spread within the ensemble of analysis
predictions in 2020 reaches =1.6 nT yr~* on dB,/dt at Ascension Island and 0.4 nT yr—* on dB,/dt at a Swarm GVO located at 18°S, 111°W
(against respectively 1.9 and 0.7 nT yr~* for Kalmag). Uncertainty estimates between the two models are closer in Kourou (=1 nTyr™).
We compare in Fig. 7 spatial SV power spectra at the core surface (Lowes 1974),

n

Esv(n)=(+1) (g2 + (A7),

m=0

()
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Figure 8. Time-series of the SV Gauss coefficients for cases G%O and D33, and compared with CHAOS-7 and Kalmag models. The shaded areas represent
the =10 standard deviation.

for models of cases Gl and D35, and Kalmag. At the two epochs considered (2018.08 during Swarm, and 2012.08 when only CryoSat-2
and GGO are available), spectra for the ensemble average solutions almost superimpose, even if we note a slightly larger power for Kalmag
at harmonic degrees n > 10. Spectra for the dispersion within the ensemble is very similar between the two considered cases (A = oo
and A = 0.1). It suggests little effect on the dispersion within the ensemble of SV models when using G-LASSO (compared to a diagonal
forecast covariance matrix), likely because the SV is a quantity that is directly observed. Our estimate of posterior SV uncertainties (from
the dispersion within the ensemble) is comparable to the difference between our models and Kalmag, for the two epochs considered here.
It is larger (resp. smaller) by a factor about 3 than those proposed with Kalmag at small (resp. large) length-scales. The larger uncertainties
at large length-scales for Kalmag is coherent with the spread observed for the predicted SV series (see Fig. 6). During the Swarm era, our
estimate of these SV errors decreases by a factor =2 at the largest length-scales (degrees n  6), in comparison with the period covered by
only CryoSat-2 GVO.

Example of SV Gauss coefficient series are shown in Fig. 8. The overall time evolution for our model is comparable to that observed
with the other considered field models. This suggests that our assimilation tool is able to build appropriate time-dependent SV estimates.
The evolution of near sectorial coefficients agrees particularly closely with other models (see g7 in Fig. 8), but we witness enhanced high
frequency fluctuations in the near zonal coefficients (e.g. §3), although the other models always lie within =10 . Near-zonal coefficients are
known to be more difficult to constrain because of possible leakage of external fields near auroral regions (Ropp et al. 2020). This is why such
coefficients are more heavily damped in CHAOS-7. We recover as in CHAOS-7 some rapid oscillations in §? that are absent in Kalmag, for
instance around 2011 when Kalmag lacks satellite data, as well as around 2003, when there were gaps in CHAMP data suitable for internal
field modelling due to high solar activity. This means there is likely an impact of both the data coverage and the modelling strategy. Note that
uncertainties that we provide for the axial dipole are less than those from the Kalmag model. We witness for some high degree coefficients
differences between our model and CHAOS-7 or Kalmag that does not fall within the uncertainty level (for instance ¢3,). However, these
only represent a tiny contribution to the overall MF model. For all models, caution is needed when interpreting such small length-scale SV
structures, for example they are known to be oversmoothed in the CHAOS model. For g3, we estimate uncertainties twice larger than those
associated with Kalmag.

4 INFERRED MAGNETOHYDRODYNAMICS OF THE CORE

In this section, we turn to the core surface flow inferred in the reanalysis Gz, composed of a re-analysis of COV-OBS-x2 Gauss coefficient
data from 1880 onwards, and then applied to GGO and GVO when available (see Section 3.3.3). We make use of a cylindrical polar coordinate
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Figure 9. Power in the core surface azimuthal flow acceleration du,/dt (in km? yr~*) presented on a logo scale as a function of latitude and period, for the
ensemble average solution of our reanalysis nglo. This spectrogram has been obtained by calculating a power spectrum of the azimuthal flow acceleration
series on a 2° x 2° grid at the CMB over the period 1960-2022, after tapering with a Hanning window. The spectra have next been averaged over longitude.
Note that 2 yr correspond to the Nyquist period when using a 1 yr sampling rate as used in the input ground GGO and satellite GVO data series (except from
Swarm). The black dotted lines indicate the latitudes of the equator and of the intersection between the tangent cylinder and the core surface.

system where unit vectors (15, 1o, 1,) refer, respectively, to the cylindrical radial, azimuthal and axial (i.e. along the Earth’s rotation axis)
directions. We present in Fig. 9 a spectrogram for the ensemble average of the azimuthal flow acceleration du,/0t. It shows enhanced power
in the equatorial belt, and to a lesser extent within the tangent cylinder (this hypothetical surface, aligned to 1, and attached to the inner core,
intersects the core surface in two circles of latitudes +69.5°). Some period ranges display stronger power. This is the case around 6-7 yr as for
the waves documented by Gillet et al. (2022), but also at 12-15 yr periods. These bring to mind two broad spectral peaks at interannual and
decadal periods, seen in some observatory series towards the equator (see fig. 3 in Lesur et al. 2022). These correspond to intense SV changes
(some tens of nTyr—1), more clear on the eastward component (the least affected by the magnetospheric ring current), and peak at a period
longer than 11 yr the solar cycle period (see also fig. 3 in Lesur et al. 2022). This suggests that a significant pollution from external fields
on these flow patterns is unlikely. Some power is also present on shorter periods in our flow model with another less intense local maximum
around 3.5 yr.

Below we document in more detail these flow patterns. First we investigate in Section 4.1 whether we recover the 7 yr wavelike motions
similar to Gillet et al. (2022) when inverting the dynamics from GGO/GVO data, instead of Gauss coefficients. We also discuss one example
of higher frequency motions. Next we consider in Section 4.2 whether similar waves may also exist over longer periods, when considering
motions inverted from the COV-OBS-x2 Gauss coefficients. Finally we focus in Section 4.3 on interannual axisymmetric motions, their
relation to LOD changes and their interpretation either as torsional Alfvén waves, or as part of the spectrum of QG-MC waves.

4.1 Interannual magneto-Coriolis waves

In Fig. 10, we replicate time-latitude and time-longitude diagrams similar to those presented by Gillet et al. (2022), but for our flow models
based on Gauss coefficient data from COV-OBS-x2 prior to 1997, and then GVO/GGO data up to 2022. In order to focus on subdecadal
motions, where intense SA oscillations have been observed (Chulliat & Maus 2014; Finlay et al. 2016), we apply a Butterworth bandpass
filter of the order of 2, with a window between 4 and 9.5 yr, to the ensemble average flow model. Over the satellite era, we successfully recover
the main patterns interpreted by Gillet et al. (2022) as the signature of interannual QG MC waves. The strongest core surface flow features
are focused near the equator, where the intensity reaches up to =5kmyr~* under the Pacific hemisphere. The flow is primarily equatorially
symmetric, as expected for QG motions, and shows evidence of outward propagation at a speed of the order of 150 kmyr~! from the tangent
cylinder towards the equator. At the equator, we recover a westward propagation of the flow patterns at a speed of the order of 1500 kmyr~*
(Fig. 10, top). There are clearly longitudes of enhanced wave power (e.g. near 180°E or 120°W), indicating the wave patterns can be locally
magnified.

Because our flow models have been started based on a longer reanalysis of the COV-OBS-x2 field model, we can also extend backwards
in time the analysis of Gillet et al. (2022). There are suggestions of similar dynamics (in particular the equatorial focusing) at earlier epochs
in the time-latitude diagram near 1970, 1980 and in the 1990’s. The first two of these epochs are coincident with well-known jerk events in
ground magnetic observatory records (Mandea et al. 2010; Lesur et al. 2022). They are also periods when some early satellite data (POGO,
Magsat and DE-2) is available and contributes to COV-OBS-x2. No clear evidence of the westward propagation is resolved prior to the
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Figure 10. Azimuthal flow (in kmyr™1), for the ensemble average solution from reanalysis nglc), bandpass filtered for T[4, 9.5] yr. Time-longitude diagram
at the equator (top). Time-latitude diagram at longitude 180°E (bottom), where black dotted lines indicate the latitudes of the equator and of the intersection
between the tangent cylinder and the core surface.

satellite era, in agreement with previous results (see fig. 8 in Gillet et al. 2019). This possibly results from the limited spatial resolution of
non-axisymmetric interannual motions, when the observational constraint comes predominantly from ground-based records.

Motivated by the secondary maximum in the power of the flow acceleration found near the equator at periods around 3.5 yr in Fig. 9, we
next investigate higher frequency motions, filtering to retain only periods between 2 and 4 yr. Within this frequency range we again witness
a clear outward propagation of wave-like patterns (see the time-latitude diagram for longitude 180°E in Fig. 11, bottom). These transient
motions are again mostly equatorially symmetric, and the strongest in the equatorial belt, with a magnitude up to 1.5 kmyr~, so containing
significantly less power than the 7 yr waves. They travel at a speed =400 kmyr~! in the cylindrical radial direction, more than twice faster
than the 7 yr waves.

The recovery of these rapid interannual motions is mostly limited to the post-1997 interval of continuous satellite observations in our
model; periods shorter than 3 yr are filtered by construction in the COV-OBS-x2 model that is used as the data source prior to 1997 (due
to spline knot spacing employed in the construction of COV-OBS-x2, see Pick et al. 2019). Nevertheless some faint patterns are seen, for
instance, during the 1970’s. We find no clear evidence for a preferred direction of azimuthal propagation in these patterns at the equator
(Fig. 11, top).

4.2 Decadal magneto-Coriolis waves

QG MC waves should also exist on longer timescales where field and flow changes are more intense, since the 7 yr travelling patterns
highlighted by Gillet et al. (2022) do not constitute the fundamental mode. It is therefore natural to ask whether a detection of such QG MC
motions is possible on decadal periods. Motivated by suggestions of a broad spectral peak at some low latitude observatory stations around
15 yr periods (Lesur et al. 2022), we bandpass filter our flow solutions for T [10, 20] yr. As previously noted by Gillet et al. (2015), for
such decadal flow changes the largest amplitudes are again seen in the equatorial belt.

We present in Fig. 12 a time-longitude diagram for the azimuthal flow u, at the equator, and a time-latitude diagram for u, at 180°E,
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Figure 11. Same as Fig. 10, for the flow band-pass filtered for periods T [2, 4] yr.

where these decadal motions are the strongest and reach up to 5 kmyr=2. Here again the flow is predominantly equatorially symmetric. Several
modulated wave trains appear, typically lasting several decades (i.e. over 2 to 3 periods), with maxima of the envelope centred around 1930
and 1990 (note however there is a damping effect for the most recent epochs associated with filter end-effects). A clear node is observed near
+10° in latitudes during those two wave trains, reminiscent of the behaviour for the 7 yr wave documented in Fig. 10. It is replaced by an
outward propagation from about 1955 to 1975, at a speed of =70 kmyr~?, less than that found for interannual motions, but still much larger
than the convective velocity. Less stringent nodes also appear at higher latitudes.

The similarities between the patterns found on the time-latitude diagrams at interannual and decadal periods suggests the QG MC
waves in Earth’s core could indeed be present across a broad range of periods. This is in agreement with the behaviour observed in the
71p geodynamo simulation (Aubert & Gillet 2021), with control parameters approaching Earth’s core conditions and which is suitable for
studying QG MC waves. In this simulation the presence of numerous spectral lines has been detected in the core surface azimuthal flow,
covering a wide range of periods — see fig. 9 of Gillet et al. (2022). The strongest signature occurs in the vicinity of the equator, with several
nodes present in latitude. Such a dynamo simulation is an arena where both QG Alfvén and QG MC waves are continuously excited (Aubert
et al. 2022).

Throughout the investigated time-span, the location of the strongest decadal velocity is surprisingly stationary, and centred around 180°E
as for the 7 yr waves. For the strongest patterns, some westward drift is seen around 1930 from 60°W to 150°E, while it is mostly stationary in
longitude for the second wave train over 1970-2010. QG MC waves potentially propagate both in cylindrical and azimuthal directions. The
former is favoured away from the equator, as such waves are elongated along 1,, or k. m with k and m wavenumbers, respectively, along
15 and 1,. Near the equator, westward drift of wavelike patterns have been documented from both core flow inversions and eigen solutions
(Gillet et al. 2022). For these latter, the drift appears to be modulated by the local intensity of the cylindrical component of the background
field, allowing in principle for complex trajectories in time-longitude diagrams. Furthermore, in the vicinity of the equator, a more accurate
derivation of the local dispersion relation is required.

In any case, the consistency of the wave-like patterns documented here across multiple periods nevertheless calls for further investigation.
Prior to the satellite era, despite the broad sensitivity of the magnetic data kernels (Gubbins & Roberts 1983), the observational constraints
on the time evolution of core surface motions under the equatorial Pacific rely on a limited amount of observatories (in particular from the
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Figure 12. Same as Fig. 10, for the flow band-pass filtered for periods T  [10, 20] yr.

stations at Honolulu, Apia and Guam). This information is then complemented by the spatiotemporal prior (from the geodynamo simulation),
whose importance is not negligible when the observational constraints are more sparse. The recovered flow changes are consistent with the
recorded magnetic variations, common to the ensemble of realizations, and can be isolated despite the ensemble spread. Nevertheless, a full
evaluation of the quality of the inverted solutions requires dedicated validation experiments based on a synthetic set-up.

4.3 Axisymmetric motions and length-of-day changes

Finally, we turn to transient zonal motions in the core and their relation to changes in the length-of-day. At sub-decadal periods, transient
zonal motions inferred from geomagnetic observations have previously been interpreted as torsional Alfvén waves (Gillet et al. 2010). Their
magnitude is significantly weaker than that of non-zonal flows, by a factor of about 5 (e.g. Gillet et al. 2015; Kloss & Finlay 2019). However,
because of their simple geometry, it is possible to have a partial access to them even with a less dense networks of observations.

Zonal motions carry angular momentum. In the presence of a coupling with the mantle, it can be transferred to the solid Earth and
generate changes in the LOD (e.g. Jault & Finlay 2015). Recent analyses of the LOD series have suggested the existence of distinct sub-decadal
spectral lines (e.g. Duan & Huang 2020; Ding et al. 2021; Hsu et al. 2021), in particular around 6 and 8.5 yr periods. We thus consider the
possibility of two different waves, and bandpass filter our ensemble average zonal flow model using a causal Butterworth filters of order 2,
with period bands respectively [4.5,7.5] yr and [7.5,9.5] yr (see Fig. 13). The former 6 yr zonal motions show a maximum near the equator
that is particularly clear during the satellite era, and less pronounced at earlier epochs. A clear node appears around #10°-15" in latitude over
the satellite era. Some intense patterns also appear over the past 15 yr within the tangent cylinder in the Southern hemisphere. Conversely,
the 8.5yr zonal motions present a maximum around £20° in latitude, and a local minimum at the equator. They are also associated with
intense motions within the tangent cylinder, in both hemispheres. The 8.5 yr pattern appears particularly stable through time (apart from the
artificial damping due to the filter near the endpoint, and from the decrease of amplitude in the Southern hemisphere backward in time, that
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