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1.1 Satellite magnetic field observations for studying deep Earth processes
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1.2 The Swarm satellite trio

e Multi-point constellation, launched in November 2013
e Aim: To carry out the best ever survey of the Earth’s magnetic field
e | ower pair, altitude approx. 450 km, separated by 150 km East-West -> "gradiometer”

® Plus a higher satellite at altitude approx. 500 km: Different local time, potentially very long lifetime
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1.3 Magnetic field measurements

e Vector Field Magnetometers plus star trackers (3 on each satellite)

e In-flight Calibration using Absolute Scalar Magnetometers

® Absolute accuracy: under 0.3 nT, alignment at arc-sec level
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1.4 Global coverage within fwdy
90

it

“‘A
e Coverage from 4 days of Swarm data compares well to that from ground network

® Hope is for a long mission !
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1.5 What 4D deep Earth process can we hope to probe?
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1.6 Other field sources

induced-currents
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1.7 Overlap of external signals with core processes
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1.8 Example vector field data from quiet orbits
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e 12 example geomagnetically quiet orbits from Sw-A in 2014
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1.9 Example field differences (gradients) from quiet orbits
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e 15 sec along-track differences of same 12 Sw-A orbits
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1.10 Isolating the core signal: Potential field modelling
e Potential field approach: B = —VV where V = Vot 4 yext,

® The internal part of the potential takes the form

Nint n

yint _ Z Z (gn' cosme + hy' sinme) (%)nJrl P (cosb)

n=1m=0

e For n < 20, expand in 6th order B-splines

e Expand external potential in SM and GSM coordinates, with 6, and T; being dipole co-lat. and local time

Vet = v cosmTa+ i sinmTa) (£)" P (cos 0
aZZ(q cosmTy + s, sinmTy) u (cos Bq)

n=1m=0

2
+ ad g MRN(r,0,0).

n=1
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1.11 lIsolating the core signal: Potential field modelling

e Model estimation by robust non-linear least squares including regularization, iteratively minimizing
© = [d— F(m)]"W[d — F(m)] + \om" A m + \sm"A m

W is a Huber weighting matrix, AQ and Aa are temporal regularization matrices

[Olsen et al., 2006; Olsen et al., 2014; Finlay et al., 2016]

e DTU's latest field model, spanning 1999 - 2017.5, is CHAOS-6-x4
o Based on 8,533,432 data (satellite and ground observatory)

e Weighted rms misfit to non-polar, dark Swarm scalar data is 2.14 nT,
For scalar field differences, 0.25 nT along-track and 0.4 nT cross-track.

http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/
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1.12 Core surface field in 2017
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[CHAOS-6-x4, 2017, truncated degree 13]
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1.13 Core surface field variation (SV) in 2017

A .&

[CHAOS-6-x4, 2017, truncated degree 20]
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. .
1.14 Core surface field acceleration (SA)
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e Time changes in SA resolved up to degree 9
o Oscillations seen in SA energy, period 3-4 years
e Above degree 9 the applied temporal regularization has a strong influence

e Regularization is required to control spurious interannual oscillations, especially in polar regions
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1.15 Core surface field acceleration (SA) to degree 9
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[CHAOS-6-x4, truncated degree 9]
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1.16 Application - Inversion for core flow =
e |nvert for flow producing observed field changes, using the frozen flux induction eqn:
0B,
=—Vg - (uB,
ot u - (uBr)

e Example: rotation dominates the core flow i.e. quasi-geostrophy (QG)
e Ensemble approach, random realizations of unknown small scale field

e Planetary scale anticyclonic gyre,
westward at mid/low latitudes under
Atlantic

® Regions of intense flow, for example at
high latitude under Alaska/Siberia

e Oscillations in azimuthal flow at sites of
SA pulses

-0.8 -06 -04 -0.2 00 02 04 06 08
[Gillet et al., 2015; Finlay et al., 2016]
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1.17 Alternatives approaches

e Use Green's functions or correlation functions

to link core field estimates to data
[Gubbins and Roberts, 1983; Jackson et al., (2007)

Holschneider et al., (2016); Hammer and Finlay (2017)]

¢ Grids of monthly point estimates (Virtual Observatories)
[Mandea and Olsen, 2006; Whaler and Beggan, 2015]

e Take all data within cylinder of chosen radius

e Remove estimates of crustal, magnetospheric and S, fields
e Robust fit of local (cubic) potential model

e Convenient for use in data assimilation schemes
(regular grid, manageable size, can account for covariances)
[Barrois et al., 2017]

e Direct use of observations in data assimilation schemes ?
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1.18 Summary: present state of the art
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1.18 Summary: present state of the art

o Already nearly 4 years of high quality data collected by the 3 Swarm satellites
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What does Swarm bring to the table?

e Longer time span of magnetic field observations with global coverage
e Higher spatial resolution of field time derivatives (SV, SA)
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2.1 Structure of geodynamo and its decadal fluctuations

Recent highly-driven, low viscosity, dynamos simulations suggest:

e Striking differences inside vs outside the tangent cylinder

® Regions of strong shear and jets may play an important role in the geodynamo process?

- — ;
> - 68,0205
e 800
i‘?bv7725
70 400
100
0
100
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) S 800
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[Sheyko (2014, 2017), Schaeffer et al., (2017)]

e Can such structures be identified and their evolution tracked using high resolution SV?
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2.1 Structure of geodynamo and its decadal fluctuations

e Flow inversions indicate preferred regions of strong (decadal) flow acceleration

30

Speed / kmyr~!

15

50 km/yr

[Gillet and Finlay (in prep), Livermore et al., (2017)]

e Can we map the detailed structure of the flows driving the geodynamo?
e Inferences within the core require additional information (data-assimilation approaches?)

e Can older data sources be utilized to reconstruct decadal variations in these structures?
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2.2 Rapid core dynamics:
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o Localised secular acceleration pulses [Lesur et al., 2008, Olsen and Mandea, 2008]

e Compatible with non-axisymmetric azimuthal flow fluctuations [Gillet et al., 2015]
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2.2 Rapid core dynamics: Jerks, pulses and waves
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e Opportunity to test hypotheses regarding
rapid core dynamics!

e Hydromagnetic wave arriving at core
surface?

[Aubert and Finlay, under review]

e MAC wave propagating in stratified layer ?
[Chulliat et al., 2015]

e Dynamics give information on underlying
physical properties (stratification, elec.
conductivity)

® Progress requires:
(i) Suitable forward models
(ii) Higher spatial and temporal resolution
of core field changes
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3.1 How best to exploit older datasets?
70 TRk e Combine with long ground series e.g. AUX_OBS
. — CHAOS-6-x3 database now back to 1957
60F 5 —gufml B
ey —Cm4 . e Earlier satellite missions (Magsat, POGO) and
50 ¢ 1 ground surveys e.g. gufml, COV-OBS, CM4
g4 1 PROBLEM:
S

® Model parameterization (external field,
regularization) designed for specific data quality

30r

201

OUTLOOK:

e Might it be possible to propagate information back
from Swarm era?

10p

1930 1040 1050 1960 1970 1980 1990 2000 2010 2020 . . .
Year Requires physics-based constraints

and data assimilation techniques....
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3.2 How to handle signatures of polar ionospheric currents?

Region 1 Region 1

_ Field-aligned . Northern Hemisphere Southern Hemisphere
/ Currents

Pedersen
Currents

Currents

Pedersen
Currents

® Olsen et al. (2016) made first co-estimation of poloidal potential field due horizontal ionospheric currents

20 n
n+1
yMLT _ ( MU Cosmr + BTMET gip mT) (a) P (cos 0
> > (g + . (cosbop)

n=1m=1
® Need to co-estimate FAC's and their far-field effects
And include time-dependence (seasonal, solar-cycle variations) [e.g. Laundal et al., 2016]
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4. Conclusions and outlook
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4. Conclusions and outlook

e Swarm is extending the time span of high resolution global monitoring of the core field

e Thanks to gradient information, provides enhanced resolution of field time changes
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(i) To map detailed structure of geodynamo and its decadal changes

(i) To characterize rapid core dynamics and the origin of jerks
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Opportunities
(i) To map detailed structure of geodynamo and its decadal changes

(i) To characterize rapid core dynamics and the origin of jerks

Immediate challenges include
- How best to exploit older datasets?
- How to handle signatures of polar ionospheric currents?

- How to make best use of the available prior information on core dynamics?
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Thinking bigger, where do we want to be in 15 yrs?

DTU Space Finlay, 4D Earth Workshop, ESA/ESTEC, 27th Sept 2017

)
—
[

i



4,

31

Conclusions and outlook

Swarm is extending the time span of high resolution global monitoring of the core field

Thanks to gradient information, provides enhanced resolution of field time changes

Opportunities
(i) To map detailed structure of geodynamo and its decadal changes

(i) To characterize rapid core dynamics and the origin of jerks

Immediate challenges include
- How best to exploit older datasets?
- How to handle signatures of polar ionospheric currents?

- How to make best use of the available prior information on core dynamics?

Thinking bigger, where do we want to be in 15 yrs?

Which forward models, data processing, assimilation/inversion schemes ?
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Approximate field gradients

i

e EW gradients: Given Sw-A data, difference Sw-C data from same latitude, with short delay (typically 10sec)
e Along-track gradients: For a single satellite, difference data separated in time by 15sec
e Assuming fields are stationary over 15 seconds, then

e | arge-scale magnetospheric signal cancelled, small-scale internal field signal enhanced
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Fit to Swarm gradients and ground SV data
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Improving in recovery of core surface SV
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Contrast with pre-Swarm SV from CHAQOS-4

.

[CHAOS-4, 2013, truncated degree 15]
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Core field (SV) in 2017

nT/yr
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[CHAOS-6-x4, 2017, truncated degree 20]
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