Satellite magnetic field observations as a tool for studying the Earth's core:

Opportunities and Challenges

Chris Finlay

Technical University of Denmark

DTU Space National Space Institute

- 1. Satellite magnetic data as a tool for studying the core: state of the art
- 2. Opportunities
- 3. Challenges
- 4. Conclusions and outlook

- 1. Satellite magnetic data as a tool for studying the core: state of the art
- 2. Opportunities
- 3. Challenges
- 4. Conclusions and outlook

1.1 Satellite magnetic field observations for studying deep Earth processes

1.2 The Swarm satellite trio

- Multi-point constellation, launched in November 2013
- Aim: To carry out the best ever survey of the Earth's magnetic field
- \bullet Lower pair, altitude approx. 450 km, separated by 150 km East-West -> "gradiometer"
- Plus a higher satellite at altitude approx. 500 km: Different local time, potentially very long lifetime

1.3 Magnetic field measurements

- Vector Field Magnetometers plus star trackers (3 on each satellite)
- In-flight Calibration using Absolute Scalar Magnetometers
- Absolute accuracy: under 0.3 nT, alignment at arc-sec level

1.4 Global coverage within a few days

• Coverage from 4 days of *Swarm* data compares well to that from ground network

7 DTU Space

[•] Hope is for a long mission !

1.5 What 4D deep Earth process can we hope to probe?

1.6 Other field sources

1.7 Overlap of external signals with core processes

DTU

1.8 Example vector field data from quiet orbits

• 12 example geomagnetically quiet orbits from Sw-A in 2014

DTU

DTU

1.9 Example field differences (gradients) from quiet orbits

• 15 sec along-track differences of same 12 Sw-A orbits

1.10 Isolating the core signal: Potential field modelling

- Potential field approach: $\mathbf{B} = -\nabla V$ where $V = V^{\text{int}} + V^{\text{ext}}$.
- The internal part of the potential takes the form

$$V^{\text{int}} = a \sum_{n=1}^{N_{\text{int}}} \sum_{m=0}^{n} \left(g_n^m \cos m\phi + h_n^m \sin m\phi \right) \left(\frac{a}{r}\right)^{n+1} P_n^m \left(\cos \theta\right)$$

• For $n \leq 20$, expand in 6th order B-splines

$$g_n^m(t) = \sum_{k=1}^K {}^k g_n^m B_k(t).$$

• Expand external potential in SM and GSM coordinates, with θ_d and T_d being dipole co-lat. and local time

$$V^{\text{ext}} = a \sum_{n=1}^{2} \sum_{m=0}^{n} \left(q_n^m \cos mT_d + s_n^m \sin mT_d \right) \left(\frac{r}{a} \right)^n P_n^m(\cos \theta_d)$$

+
$$a \sum_{n=1}^{2} q_n^{0,\text{GSM}} R_n^0(r,\theta,\phi).$$

DTU

1.11 Isolating the core signal: Potential field modelling

• Model estimation by robust non-linear least squares including regularization, iteratively minimizing

$$\Theta = [\mathbf{d} - F(\mathbf{m})]^T \underline{\underline{\mathbf{W}}} [\mathbf{d} - F(\mathbf{m})] + \lambda_2 \mathbf{m}^T \underline{\underline{\mathbf{\Lambda}}}_2 \mathbf{m} + \lambda_3 \mathbf{m}^T \underline{\underline{\mathbf{\Lambda}}}_3 \mathbf{m}$$

 $\underline{\underline{W}}$ is a Huber weighting matrix, $\underline{\underline{\Lambda}}_{\underline{2}}$ and $\underline{\underline{\Lambda}}_{\underline{3}}$ are temporal regularization matrices [Olsen et al., 2006; Olsen et al., 2014; Finlay et al., 2016]

- DTU's latest field model, spanning 1999 2017.5, is CHAOS-6-x4
- Based on 8,533,432 data (satellite and ground observatory)
- Weighted rms misfit to non-polar, dark *Swarm* scalar data is **2.14 nT**, For scalar field differences, **0.25 nT** along-track and **0.4 nT** cross-track.

http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/

DTU

1.12 Core surface field in 2017

[CHAOS-6-x4, 2017, truncated degree 13]

1.13 Core surface field variation (SV) in 2017

[CHAOS-6-x4, 2017, truncated degree 20]

1.14 Core surface field acceleration (SA)

- Time changes in SA resolved up to degree 9
- Oscillations seen in SA energy, period 3-4 years
- Above degree 9 the applied temporal regularization has a strong influence
- Regularization is required to control spurious interannual oscillations, especially in polar regions

17 DTU Space

1.15 Core surface field acceleration (SA) to degree 9

1.16 Application - Inversion for core flow

• Invert for flow producing observed field changes, using the frozen flux induction eqn:

$$\frac{\partial B_r}{\partial t} = -\nabla_H \cdot (\mathbf{u} B_r)$$

- Example: rotation dominates the core flow i.e. quasi-geostrophy (QG)
- Ensemble approach, random realizations of unknown small scale field

 Planetary scale anticyclonic gyre, westward at mid/low latitudes under Atlantic

- Regions of intense flow, for example at high latitude under Alaska/Siberia
- Oscillations in azimuthal flow at sites of SA pulses

1.17 Alternatives approaches

• Use Green's functions or correlation functions to link core field estimates to data [Gubbins and Roberts, 1983; Jackson et al., (2007) Holschneider et al., (2016); Hammer and Finlay (2017)]

• Grids of monthly point estimates (Virtual Observatories)

[Mandea and Olsen, 2006; Whaler and Beggan, 2015]

20

DTU Space

- Take all data within cylinder of chosen radius
- Remove estimates of crustal, magnetospheric and S_q fields
- Robust fit of local (cubic) potential model
- Convenient for use in data assimilation schemes (regular grid, manageable size, can account for covariances) [Barrois et al., 2017]
- Direct use of observations in data assimilation schemes ?

• Already nearly 4 years of high quality data collected by the 3 Swarm satellites

DTU

- Already nearly 4 years of high quality data collected by the 3 Swarm satellites
- \bullet Combined with CHAMP and Ørsted, close to two decades with global coverage

- Already nearly 4 years of high quality data collected by the 3 Swarm satellites
- \bullet Combined with CHAMP and Ørsted, close to two decades with global coverage
- Gradient estimates help with the retrieval of small scale SV and SA

- Already nearly 4 years of high quality data collected by the 3 Swarm satellites
- \bullet Combined with CHAMP and Ørsted, close to two decades with global coverage
- Gradient estimates help with the retrieval of small scale SV and SA
- Able to image time-averaged SV to degree 20, time-dependent SA to degree 9

- Already nearly 4 years of high quality data collected by the 3 Swarm satellites
- \bullet Combined with CHAMP and Ørsted, close to two decades with global coverage
- Gradient estimates help with the retrieval of small scale SV and SA
- Able to image time-averaged SV to degree 20, time-dependent SA to degree 9
- Find pulses of field acceleration, especially at low latitudes in the Atlantic

- Already nearly 4 years of high quality data collected by the 3 Swarm satellites
- Combined with CHAMP and Ørsted, close to two decades with global coverage
- Gradient estimates help with the retrieval of small scale SV and SA
- Able to image time-averaged SV to degree 20, time-dependent SA to degree 9
- Find pulses of field acceleration, especially at low latitudes in the Atlantic
- Given assumptions can then invert for large scale core flow (gyre, jets etc.)

DTU

- Already nearly 4 years of high quality data collected by the 3 Swarm satellites
- Combined with CHAMP and Ørsted, close to two decades with global coverage
- Gradient estimates help with the retrieval of small scale SV and SA
- Able to image time-averaged SV to degree 20, time-dependent SA to degree 9
- Find pulses of field acceleration, especially at low latitudes in the Atlantic
- Given assumptions can then invert for large scale core flow (gyre, jets etc.)

What does Swarm bring to the table?

- Longer time span of magnetic field observations with global coverage
- Higher spatial resolution of field time derivatives (SV, SA)

- 1. Satellite magnetic data as a tool for studying the core: state of the art
- 2. Opportunities
- 3. Challenges
- 4. Conclusions and outlook

2.1 Structure of geodynamo and its decadal fluctuations

Recent highly-driven, low viscosity, dynamos simulations suggest:

- Striking differences inside vs outside the tangent cylinder
- Regions of strong shear and jets may play an important role in the geodynamo process?

[Sheyko (2014, 2017), Schaeffer et al., (2017)]

• Can such structures be identified and their evolution tracked using high resolution SV?

DTU

2.1 Structure of geodynamo and its decadal fluctuations

• Flow inversions indicate preferred regions of strong (decadal) flow acceleration

[Gillet and Finlay (in prep), Livermore et al., (2017)]

- Can we map the detailed structure of the flows driving the geodynamo?
- Inferences within the core require additional information (data-assimilation approaches?)
- Can older data sources be utilized to reconstruct decadal variations in these structures?

24 DTU Space

2.2 Rapid core dynamics: Jerks, pulses and waves

- Localised secular acceleration pulses [Lesur et al., 2008, Olsen and Mandea, 2008]
- Compatible with non-axisymmetric azimuthal flow fluctuations [Gillet et al., 2015]
- 25 DTU Space

2.2 Rapid core dynamics: Jerks, pulses and waves

• Opportunity to test hypotheses regarding rapid core dynamics!

DTU

=

• Hydromagnetic wave arriving at core surface?

[Aubert and Finlay, under review]

- MAC wave propagating in stratified layer ? [Chulliat et al., 2015]
- Dynamics give information on underlying physical properties (stratification, elec. conductivity)
- Progress requires:
 - (i) Suitable forward models
 - (ii) Higher spatial and temporal resolution of core field changes

- 1. Satellite magnetic data as a tool for studying the core: state of the art
- 2. Opportunities
- 3. Challenges
- 4. Conclusions and outlook

3.1 How best to exploit older datasets?

- Combine with long ground series e.g. AUX_OBS database now back to 1957
- Earlier satellite missions (Magsat, POGO) and ground surveys e.g. gufm1, COV-OBS, CM4

PROBLEM:

• Model parameterization (external field, regularization) designed for specific data quality

OUTLOOK:

• Might it be possible to propagate information back from *Swarm* era?

Requires physics-based constraints and data assimilation techniques....

3.2 How to handle signatures of polar ionospheric currents?

• Olsen et al. (2016) made first co-estimation of poloidal potential field due horizontal ionospheric currents

$$V^{\text{MLT}} = a \sum_{n=1}^{20} \sum_{m=1}^{n} \left(g_n^{m,\text{MLT}} \cos m\tau + h_n^{m,\text{MLT}} \sin m\tau \right) \left(\frac{a}{r}\right)^{n+1} P_n^m(\cos \theta_{QD})$$

• Need to co-estimate FAC's and their far-field effects And include time-dependence (seasonal, solar-cycle variations) [e.g. Laundal et al., 2016]

29 DTU Space

DTU

- 1. Satellite magnetic data as a tool for studying the core: state of the art
- 2. Opportunities
- 3. Challenges
- 4. Conclusions and outlook

- Swarm is extending the time span of high resolution global monitoring of the core field
- Thanks to gradient information, provides enhanced resolution of field time changes

- Swarm is extending the time span of high resolution global monitoring of the core field
- Thanks to gradient information, provides enhanced resolution of field time changes

Opportunities

- (i) To map detailed structure of geodynamo and its decadal changes
- (ii) To characterize rapid core dynamics and the origin of jerks

- Swarm is extending the time span of high resolution global monitoring of the core field
- Thanks to gradient information, provides enhanced resolution of field time changes

Opportunities

- (i) To map detailed structure of geodynamo and its decadal changes
- (ii) To characterize rapid core dynamics and the origin of jerks

Immediate challenges include

- How best to exploit older datasets?
- How to handle signatures of polar ionospheric currents?
- How to make best use of the available prior information on core dynamics?

- Swarm is extending the time span of high resolution global monitoring of the core field
- Thanks to gradient information, provides enhanced resolution of field time changes

Opportunities

- (i) To map detailed structure of geodynamo and its decadal changes
- (ii) To characterize rapid core dynamics and the origin of jerks

Immediate challenges include

- How best to exploit older datasets?
- How to handle signatures of polar ionospheric currents?
- How to make best use of the available prior information on core dynamics?

Thinking bigger, where do we want to be in 15 yrs?

- Swarm is extending the time span of high resolution global monitoring of the core field
- Thanks to gradient information, provides enhanced resolution of field time changes

Opportunities

- (i) To map detailed structure of geodynamo and its decadal changes
- (ii) To characterize rapid core dynamics and the origin of jerks

Immediate challenges include

- How best to exploit older datasets?
- How to handle signatures of polar ionospheric currents?
- How to make best use of the available prior information on core dynamics?

Thinking bigger, where do we want to be in 15 yrs?

Which forward models, data processing, assimilation/inversion schemes ?

Approximate field gradients

- EW gradients: Given Sw-A data, difference Sw-C data from same latitude, with short delay (typically 10sec)
- Along-track gradients: For a single satellite, difference data separated in time by 15sec
- Assuming fields are stationary over 15 seconds, then
- Large-scale magnetospheric signal cancelled, small-scale internal field signal enhanced

33 DTU Space

DTU

Fit to Swarm gradients and ground SV data

DTU

Improving in recovery of core surface SV

35 DTU Space

Contrast with pre-Swarm SV from CHAOS-4

[CHAOS-4, 2013, truncated degree 15]

[CHAOS-6-x4, 2017, truncated degree 20]

DTU

