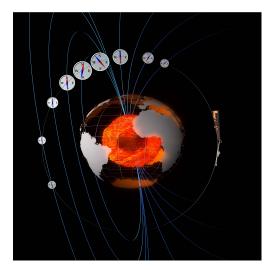
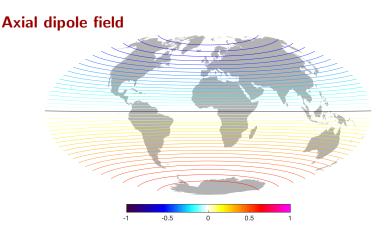
Gyre-driven decay of the Earth's magnetic dipole

Chris Finlay¹, Julien Aubert² & Nicolas Gillet³


- 1: DTU Space, Technical University of Denmark
- 2: IPGP, Université Sorbonne Paris Cité
- 3: ISTerre, l'Université Joseph Fourier, Grenoble


DTU Space National Space Institute

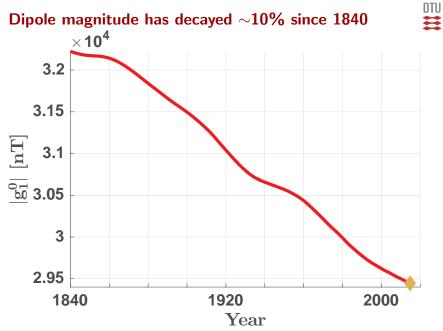
Earth's magnetic field: Predominantly an axial dipole

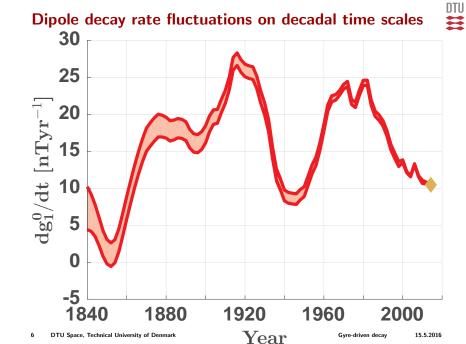
Credit:ESA

- Axial dipole g_1^0 is the first term in the spherical harmonic expansion of **B**.
- Dipole represents 99.9% of field energy at 10 R_e .
- ▶ Dipole represents 93% of field energy at Earth's surface, 1 R_e .
- **>** Dipole represents 37% of field energy at the core surface, 0.55 R_e

DTU

175 years of absolute observations





⁶ DTU Space, Technical University of Denmark

Gyre-driven decay

Origin of the decay: MHD processes in the core

The rate of change of the dipole moment is

$$\frac{d\mathbf{m}}{dt} = \frac{1}{2} \int \widehat{\mathbf{r}} \times \frac{\partial \mathbf{J}}{\partial t} \, dV = \frac{3}{2\mu_0} \int \frac{\partial \mathbf{B}}{\partial t} \, dV. \tag{1}$$

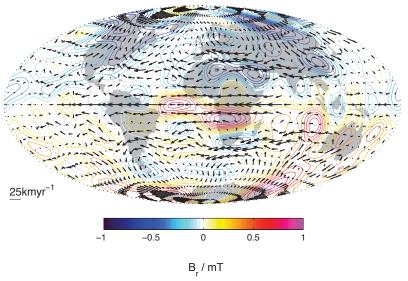
Substituting from the magnetic induction equation

$$\frac{d\mathbf{m}}{dt} = \frac{3}{2\mu_0} \int \left[\nabla \times (\mathbf{u} \times \mathbf{B}) + \eta \nabla^2 \mathbf{B} \right] dV.$$
(2)

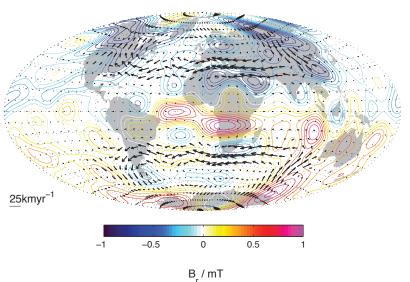
Taking the axial component, expanding and integrating by parts, find that the axial dipole moment (ADM) change can be written as

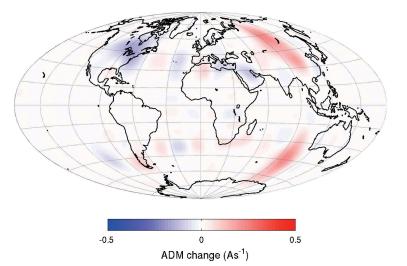
$$\frac{dm_z}{dt} = \underbrace{-\frac{3}{2\mu_0} \int u_\theta \sin \theta B_r \, dS}_{\mathbf{ADM} \text{ change due to}} + \underbrace{\frac{3\eta}{2\mu_0} \int \widehat{\mathbf{z}} \cdot \nabla^2 \mathbf{B}}_{\mathbf{ADM} \text{ change due to}} \quad \text{ADM change due to}_{\mathbf{M} \text{ observation}} \quad \text{Ohmic diffusion} \quad (3)$$

Satellite vector field observations 1999-2010

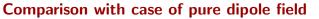


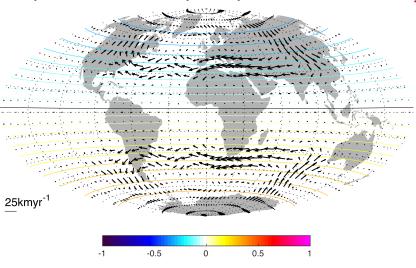
Core surface field and flow: 2000-2010


Contributions from meridional flux transport decay


Simplified model: Observed field plus filtered gyre

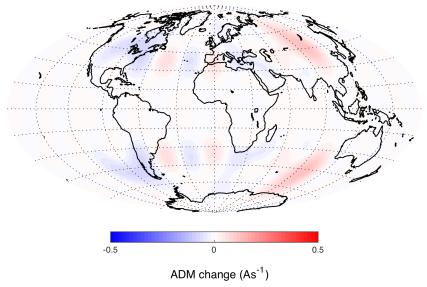
DTU


3

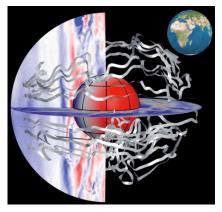

Simplified model: Observed field plus filtered gyre

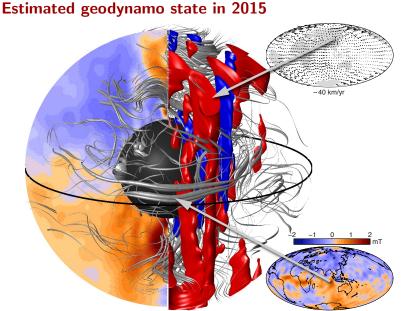
DTU

Ξ

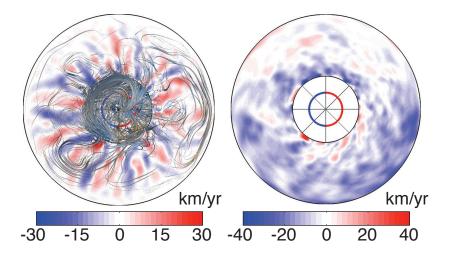


B_r/mT

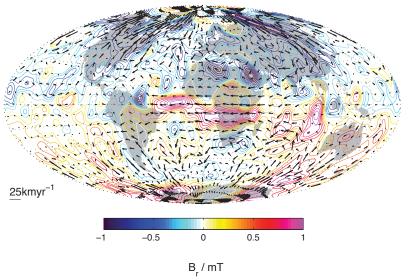

Comparison with case of pure dipole field

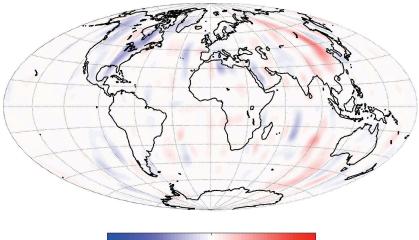


A 3D dynamo model including magnetic diffusion

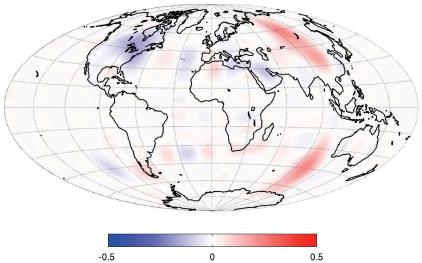

- Coupled Earth Dynamo Model (Aubert et al., 2013)
- EM coupling at ICB, gravitational coupling btw IC and mantle
- ▶ Relatively high magnetic Reynolds number, Rm = 942
- Produces a planetary-scale gyre as in core flow inversions

DTU

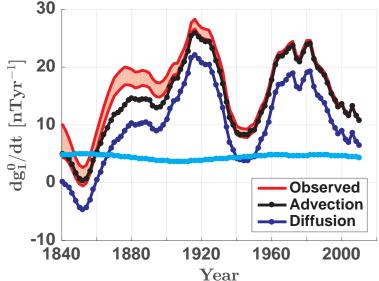

Estimated field and flow within core in 2015

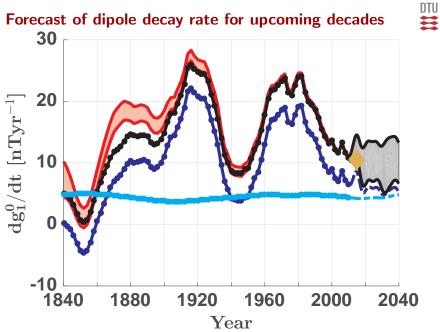

Estimated core surface field and flow in 2015

Dipole decay due to meridional flux transport in 2015



-0.5 0 0.5 ADM change (As⁻¹)


Comparison with simple gyre model



ADM change (As⁻¹)

Retrospective analysis: Contributions to historical dipole decay

Summary

- ▶ The Earth's magnetic dipole has been decaying for the past 175 yrs.
- Planetary gyre transporting normal flux equatorward and reversed flux poleward accounts for much of the decrease.
- Mechanism requires field asymmetric (e.g. South Atlantic Anomaly).
- Dipole decay fluctuations due to fluctuations in meridional flux transport by the gyre.
- Magnetic diffusion makes a secondary, almost steady contribution.
- Mechanism suggests dipole will continue to decay, at least for next few decades.

Outlook: Using Swarm data for more detailed tests

 Do fluctuations in equatorward flow correlate with fluctuations in the decay rate? [PhD thesis of M. Hammer]

24 DTU Space, Technical University of Denmark

Inverse geodynamo modelling: A Kalman filter approach

[See Aubert (2013, 2014) for full details]

 (i) Estimate B throughout core x_B to degree 30, from the poloidal field at the surface to degree 13, using the a-priori covariance matrix P_B derived from a large number of states x_B:

$$\mathbf{x}_B = \mathbf{P}_B \mathbf{H}_B^T (\mathbf{H}_B \mathbf{P}_B \mathbf{H}_B^T + \mathbf{R}_B)^{-1} \mathbf{b}$$
 where $\mathbf{H}_B \mathbf{x}_B = \mathbf{b}$ (4)

 (ii) Estimate the core surface flow x_{fs} using the poloidal SV from a field model corrected by diffusion estimates from (i), b :

$$\mathbf{x}_{fs} = \mathbf{P}_{fs} \mathbf{M}^T (\mathbf{M} \mathbf{P}_{fs} \mathbf{M}^T + \mathbf{R}_{\dot{B}})^{-1} (\dot{\mathbf{b}} + \mathbf{c}) \qquad \text{where} \quad \mathbf{M} \mathbf{x}_{fs} = \dot{\mathbf{b}} + \mathbf{c}$$
(5)

 (iii) Estimate velocity throughout core x_u from x_{fs} using the a-priori covariance matrix P_u

$$\mathbf{x}_u = \mathbf{P}_u \mathbf{H}_u^T (\mathbf{H}_u \mathbf{P}_u \mathbf{H}_u^T)^{-1} \mathbf{x}_{fs} \qquad \text{where} \quad \mathbf{H}_u \mathbf{x}_u = \mathbf{x}_{fs} \tag{6}$$

Provides an estimate of (u, B) throughout the core, at a given epoch, from a field model plus prior statistics from a self-consistent 3-D numerical dynamo simulation.

