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The Earth’s magnetic field

Fig 1.1: Schematic picture of Earth’s magnetic field interacting with the solar wind(credit: NASA)

Mediates between the Earth and the wider solar-system environment.
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Primary source - dynamo in our planet’s core

Fig 1.2: The geodynamo operating in Earth’s core (credit: J. Aubert, IPGP)

Thermochemical convection in Earth’s core drives motions which
generate electrical currents and sustain the geomagnetic field.
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Components of the geomagnetic field
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Fig 1.3: Components of the geomagnetic field.
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Practical applications: directional information

Fig 1.4: Mobile phones, Air traffic control, Directional drilling, Anomaly mapping.

Use of electronic compasses now very widespead in mobile phones &
compact cameras. Also for drill orientation in hydrocarbon industry.
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Practical applications: directional information

Fig 1.4: Mobile phones, Air traffic control, Directional drilling, Anomaly mapping.

Use of electronic compasses now very widespead in mobile phones &
compact cameras. Also for drill orientation in hydrocarbon industry.

But requires an accurate model of the current geomagnetic field.

Models become noticeably inaccurate within 5 years.
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A major scientific challenge

How can we better predict changes in Earth’s magnetic field?
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A major scientific challenge

How can we better predict changes in Earth’s magnetic field?

Solution requires an improved knowledge and understanding of the
‘weather’ in Earth’s core.

Strategies to attack this problem:

Re-analysis of past field evolution.

Higher resolution studies of present field evolution.

Development of new models of physics of Earth’s core.
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History of studies in terrestrial magnetism I

1050 A.D. Chinese scholars from Song Dynasty note the use of magnets
for navigational purposes.
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History of studies in terrestrial magnetism I

1050 A.D. Chinese scholars from Song Dynasty note the use of magnets
for navigational purposes.

1269 Petrus Peregerinus carries out systematic experiments on properties
of magnets.

1600 William Gilbert declares that Earth itself is a great magnet.
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William Gilbert: Physician and natural philosopher

Fig 2.1: William Gilbert, circa 1600. Fig 2.2: ‘Orb Virbitus’: Gilbert’s term for sphere
of influence surrounding a magnetic terella, from
De Magnete, Book V, chapt. 2.
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History of studies in terrestrial magnetism I

1050 A.D. Chinese scholars from Song Dynasty note the use of magnets
for navigational purposes.

1269 Petrus Peregerinus carries out systematic experiments on properties
of magnets.

1600 William Gilbert declares that Earth itself is a great magnet.

1634 Henry Gellibrand discovers that Earth’s magnetic field is slowly
changing (secular variation).
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Historical Declination and Inclination in London

Fig 2.3: Changes of declination in London compared to
gufm1 model of Jackson et al. (2000).

Fig 2.4: Changes of inclination in London compared
to gufm1 model of Jackson et al. (2000).
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History of studies in terrestrial magnetism II

1701 Edmund Halley presents a maps of declination derived from
measurements he made during voyages in the Atlantic ocean.
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Edmund Halley: Geophysicist & Explorer

Fig 2.5: Edmund Halley in 1687 aged 32. Fig 2.6: Halley’s 1701 map of declination.
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History of studies in terrestrial magnetism II

1701 Edmund Halley presents a maps of declination derived from
measurements he made during voyages in the Atlantic ocean.

1779 James Cook makes his final voyage of discovery to the Southern
Seas, extensive magnetic observations made throughout.
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Captain James Cook: Voyages to Pacfic 1768-1779

Fig 2.7: Replica of Cook’s Endeavour. Fig 2.8: Captain James Cook in 1776, prior to
his final voyage.
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Examples from mariner’s logbooks

Fig 2.9: Extract from log book: From
Leghorn to London, 23rd July 1770.

Fig 2.10: Illustration of a mariner determining D: Les
premieres Oeuvres de Iacques de Vaulx, pilotte en la Marine
(Havre de Grace 1583 (Credit: National Library, Paris).

Log books from English, Dutch, French, Spanish and Danish
mariners provide many thousands of valuable records.
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Geographic distribution of magnetic observations in
the 18th century.

Fig 2.11: 18th century historical data distribution.
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History of studies in terrestrial magnetism II

1701 Edmund Halley presents a maps of declination derived from
measurements he made during voyages in the Atlantic ocean.

1779 James Cook makes his final voyage of discovery to the Southern
Seas, extensive magnetic observations made throughout.

1798 Alexander von Humboldt voyages to the Americas, carries out
relative intensity experiments & shows field is weaker at low latitudes.

Seminar at DTU Space, November 2010



Alexander Von Humboldt: Explorer and Polymath

Fig 2.12: Alexander von
Humboldt circa 1806 after his
return from American travels.

Fig 2.13: Humboldt’s masterpiece ‘Kosmos’
(1846) was finally published in German, French
and English.
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History of studies in terrestrial magnetism II

1701 Edmund Halley presents a maps of declination derived from
measurements he made during voyages in the Atlantic ocean.

1779 James Cook makes his final voyage of discovery to the Southern
Seas, extensive magnetic observations made throughout.

1798 Alexander von Humboldt voyages to the Americas, carries out
relative intensity experiments & shows field is weaker at low latitudes.

1832 Carl Friedrich Gauss measures absolute intensity, promotes
magnetic observatories and develops spherical harmonic analysis.
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Gauss, Weber and the Magnetic Union

Fig 2.14: Portrait of Gauss and Weber
at the time of their collaboration in the
study of geomagnetism.

Fig 2.15: Inside Göttingen Magnetic Observatory, circa 1836.
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Temporal distribution of historical observations

Fig 2.16: No. data versus time in 5 year bins from the gufm1 model of Jackson et al. (2000).
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Change in declination over the past 400 years

Fig 2.17: Declination at Earth’s surface from 1590.0 to 1990.0 from the gufm1 model of Jackson
et al. (2000) : units µT
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Change in radial field over past 400 years

Fig 2.18: Br at Earth’s surface from 1590.0 to 1990.0 from the gufm1 model of Jackson et al.
(2000) : units µT
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Downward continuation of radial field to core surface

Fig 2.19: Change in Br during downward continuation (Credit: S. Gibbons)
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Evolution of radial field at the core surface

Fig 2.20: Br at core surface from 1590.0 to 1990.0 from the gufm1 of Jackson et al. (2000) :
units µT
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Distribution of power for east-west motions

Eastward zonal phase speed (km(yr)−1)
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Fig 2.21: Power moving in the east-west diection as a function of latitude and azimuthal speed,
from Radon transform of Br at core surface filtered to remove periods longer than 400 yrs. From

Finlay & Jackson (2003).
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Time-Longitude analysis of field at equator

Longitude / degrees east

T
im

e 
/ y

rs

−150 −120 −90 −60 −30 0 30 60 90 120 150

1650

1700

1750

1800

1850

1900

1950

−10

−8

−6

−4

−2

0

2

4

6

8

10

Fig 2.22: Historical evolution of radial magnetic field at core surface, filtered to remove changes
with periods longer than 400 years. From Finlay & Jackson (2003).
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Summary of historical field evolution

Dedication of individual observers over past four centuries has
endowed us with a rich record of geomagnetic observations.
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Summary of historical field evolution

Dedication of individual observers over past four centuries has
endowed us with a rich record of geomagnetic observations.

Earth’s magnetic field has changed continuously over the past four
centuries.

Most striking feature at Earth’s surface is westward drift.

More detail is revealed by downward continuing field to the surface
of the core.

Westward drift is due to the motion of a series of field
concentrations moving westwards under the Atlantic hemisphere.
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Modern monitoring of the geomagnetic field

LEO Satellites: short term but excellent global coverage.

Fig 3.1: Satellites CHAMP (left) and Ørsted (right) measuring the geomagnetic field.
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Modern monitoring of the geomagnetic field

LEO Satellites: short term but excellent global coverage.

Fig 3.1: Satellites CHAMP (left) and Ørsted (right) measuring the geomagnetic field.

High quality, long-term observations from worldwide network.

Fig 4: Brorfelde and Qeqertarsuaq/Godhavn observatories, operated by DTU Space.
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Observatory network

Fig 3.3: Locations of geomagnetic observatories providing data used for field modelling in the
interval 2000-2010.
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Pre-processing of data

Use CHAOS-3 (Olsen et al., 2010) dataset for 2000.0-2010.0.

Sub-sample on equal area tessera reset every 0.25 yrs.

Quiet time, night side, vector only < |60 deg| geomag lat.

Subtract estimates of large scale magntospheric and crustal field.

Fig 3.4: Map showing crustal corrections from model of Stockmann et al. (2009) applied to
CHAMP vector Z component data. Units are nT .
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Core field modelling

Model core field as potential field with purely internal source,

B = −∇V and ∇ · B = 0

where V (r , θ, φ, t) = a

L
∑

l=1

l
∑

m=0

(a

r

)l+1

gm
l (t)Y m

l (θ, φ).
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Core field modelling

Model core field as potential field with purely internal source,

B = −∇V and ∇ · B = 0

where V (r , θ, φ, t) = a

L
∑

l=1

l
∑

m=0

(a

r

)l+1

gm
l (t)Y m

l (θ, φ).

Account for secular variation using a 6th-order B-spline basis for
Gauss coefficients,

gm
l (t) =

∑

n

gmn
l Mn(t).

Use SH expansion to degree L=24 and choose knot points every
0.25 yrs so that representation does not influence model.

Solve inverse problem by minimizing a cost function: data misfit & a
regularization norm based on core surface field,

Θ = [d− f(m)]
T
C−1
e [d− f(m)] +R(m).

R(m) is a norm measuring spatial & temporal complexity at CMB.
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Core field modelling II: Regularization

The classic quadratic form of regularization is:

R
Q(m) =

λS

Te − Ts

te
∫

ts

∫

CMB

(Br )
2
dΩ dt +

λT

Te − Ts

te
∫

ts

∫

CMB

(

∂
3
Br

∂t3

)2

dΩ dt

Seminar at DTU Space, November 2010



Core field modelling II: Regularization

The classic quadratic form of regularization is:
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Here we also investigate models constructed using ‘entropy’
regularization in space (Jackson et al., 2007a; Gillet et al., 2007):

R
E (m) =

λS

Te − Ts

te
∫

ts

∫

CMB

S(Br )dΩdt +
λT

Te − Ts

te
∫

ts

∫

CMB

(

∂
3
Br

∂t3

)2

dΩ dt

where S(x) = −4d

(

Ψ− 2d − x ln

[

Ψ+ x

2d

])

with Ψ =
√

x2 + 4d2

−S(x) is a generalized (normalized, co-ordinate invariant) form of
the configuration entropy (Sivia & Skilling, 2006) that applies to scalar
functions that may be either positive and negative.
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Fit to satellite data : CHAMP Z component

Fig 3.5: Residuals between field model and CHAMP vector data (Z component) in 2008. Units are
nT .
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Fit to observatory data : Z component

Fig 3.6: Comparison of Y at Earth’s surface with annual differences of month means in grey
triangles at HUA, LRM and GUA, red/blue is our model, black dashed is CHAOS-3, green dashed

is GRIMM2.Seminar at DTU Space, November 2010



Core surface field evolution 2000 - 2010

Fig 3.7: Br at core surface from 2000.0 to 2010.0 : units µT
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Core surface field acceleration 2000 - 2010

Fig 3.8 : Second time derivative of Br at core surface from 2000.0 to 2010.0: units µT/yr2
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Summary of present field evolution

Satellite and observatory data provide excellent spatial coverage and
good temporal constraints on core field evolution.
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Summary of present field evolution

Satellite and observatory data provide excellent spatial coverage and
good temporal constraints on core field evolution.

Maps of the core surface field display intense concentrations at low
latitude which are rapidly evolving.

Efforts to predict future secular variation need to be capable of
modelling these features.
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Ingredients of core dynamics
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Fig 4.1: Schematic picture showing key ingredients of core dynamics.
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Governing equations
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Governing equations

Ro

(

∂u

∂t
+ u.∇u

)

+Ω×u = −∇p−qRaT g+(∇×B)×B+E∇2u
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Governing equations
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+Ω×u = −∇p−qRaT g+(∇×B)×B+E∇2u
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g0αβr
2
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2Ωκ
E =

ν

2Ωr2o
q =

κ

η

Earth : Ro = 10−9 Ra ∼ 1015 E = 10−15 q = 10−5

Difficulties:
(i) Coupled nonlinear system.
(ii) Large disparities of time scales and lenth scales.
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Approach 1: Direct Numerical Simulation

Fig 4.1: Radial component of flow inside 3D spherical shell simulation with Ro=10−6, E=10−6,
Ra=3.103, q=1. (Courtesy of Andrey Sheyko - ETHZ PhD Student).
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Approach 1: Direct Numerical Simulation

Fig 4.2: Radial magnetic field at outer bounary of 3D spherical shell simulation with Ro=10−6,
E=10−6, Ra=3.103, q=1. (Courtesy of Andrey Sheyko - ETHZ PhD Student)
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Approach 2: Simplified model

Neglect small inertial & viscous terms & assume that convective
driving appears at higher order to drive motions against weak
magnetic dissipation (Zhang, 1994; Zhang et al., 2003).
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Approach 2: Simplified model

Neglect small inertial & viscous terms & assume that convective
driving appears at higher order to drive motions against weak
magnetic dissipation (Zhang, 1994; Zhang et al., 2003).

Ω× u = −∇p + (∇× B)× B

∂B

∂t
= ∇× (u× B)

These equations may be linearized, combined into a single wave
equation, and then solved subject to no penetration and insulating
BC to obtain normal modes.
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Simplified model of rotating flows

Fig 4.3: Example normal mode of rotating MHD flow close to the core surface, orange denotes
upwelling, blue denotes downwelling.
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Synthetic field evolution produce by wave flow

Fig 4.4: Synthetic Br at core surface from 1590.0 to 1990.0 using simple wave flow acting on 1590
initial field : units µT. From Finlay (2005).
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Summary of theory of secular variation

Equations governing convection-driven, rotating MHD are difficult to
solve in the parameter regime expected in Earth’s core.
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Summary of theory of secular variation

Equations governing convection-driven, rotating MHD are difficult to
solve in the parameter regime expected in Earth’s core.

Nonetheless, much progress has been made in the past 15 yrs using
supercomputers to produce dipole-dominated dynamo simulations,
but understanding of rapid secular variation remains elusive.

An alternative approach is to pursue simple models of the essential
physics. Promising results are obtained with simple wave models.

Now need to make use of observations to better constrain physical
models and to test their predictive ability.
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SWARM and assimilation into dynamical models

Fig 5.1: Visualization of SWARM: ESA Earth Observation constellation. (picture credit: ESA).

SWARM will provide essential high quality data in upcoming years.

Need to develop framework to encorporate satellite data into
dynamical models (e.g. Dedicated data selection and processing,
error covariance models, assimilation schemes).
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Extending the empirical record further back in time

Fig 5.2: Left: Example of artefacts used in archeomagnetic samping (Genevey et al., 2009); Right:
Example of a lake sediment core.

Archeomagnetic and lake sediment records could provide long term
constraints.

Modelling perhaps requires probabilistic approach with spatially and
temporally correlated priors.
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Conclusions
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Historical observations reveal that westward motion of low latitude
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Conclusions

Historical observations reveal that westward motion of low latitude
flux concentrations is an important component of geomagnetic
secular variation.

Recent observations show that low latitude flux concentrations are
very intense and that they are evolving rapidly.

Improved predictions of the geomagnetic secular variation will
require that the dynamics of such features is adequately modelled.

Assimilation of satellite data into dynamical models appears to be
promising avenue for future progress.
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Failure of current IGRF predictions
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Fig 0.1: Error in field intensity in 2010 predicted by IGRF-10 (Maus et al., 2005) compared to
IGRF-11 (Finlay et al., 2010) in 2010. Units are nT.
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Accuracy of maritime declination measurements
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Fig 0.2: Distribution of deviations of Declination measurments from daily mean, when more than
one measurement taken on a certain day. From Jackson et al. (2000)
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Determination of declination by mariners

Fig 0.3: Determinations of declination by mariners. From Jonkers (2003).
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Core field modelling I: Sampling the CMB field

Observations at surface and satellite altitude depend on weighted
average of core field; for example:

Fig 0.4: Z at core surface with Earth’s surface shown together with the relevant Green’s fns.

We seek simple (minimum norm), converged, core surface fields that
can account for observations within estimated errors.
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Core field modelling: Entropy regularization

Jaynes (1957) set out the rationale for using maximum entropy to
allocate probabilities in the absence of other information:

”the maximum-entropy estimate ... is the least biased estimate
possible on the given information; i.e. it is maximally non-committal
with regard to missing information”

Often applied to reconstruction of images from incomplete and noisy
data e.g.in astronomy, image processing and medical tomography.

In Geomagnetism:

(i) Assumes there is a finite amount of magnetic flux.
(ii) All possible arrangements assumed equally likely before the data
arrives.
(iii) Consideration of all possible combinations => x ln x factor.
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Core field modelling: Entropy regularization (cont)

!

"
#

CMB Field Modelling
(a) Original (dynamo)
+ crustal field
(b) Maxent retrieval
(c) Quadratic retrieval
(Jackson et al., 2007)

(a)

(b)

(c)

(a)

(b)

(c)

Image Processing
(a) Original
(b) With Gaussian noise
(c) With 50% loss
(Gull & Skilling, 1984)

Entropy regularisation performs well many in deconvolution problems
and produces a simple solution without penalizing dynamic range.
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Temporal distribution of observations 2000-2010
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Fig 0.5: Temporal distribution of data types used to construct a field model of the past decade.
Vector measurments are counted as a single observation.
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Fit to satellite data II
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Fig 0.6: Histogram of residuals between field model and all CHAMP Z component data.
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Fit to observatory data II: Y component

Fig 0.7 : Comparison of Y at Earth’s surface with annual differences of month means (black
triangles) at BFE, MBO and AMS, red/blue is our model, black dashed is CHAOS-3, green dashed

is GRIMM2.
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Fig 0.8: Comparison of MF spectra..
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Fig 0.9: Comparison of SV spectra.

Seminar at DTU Space, November 2010



SA Spectra

Spheri cal harmonic degree

P
o
w
e
r
/
(n

T
/y

r
2
)2

QQ

EQ

GR IM M- 2x

CHAO S- 3

Fig 0.10: Comparison of SA spectra.
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